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Abstract

Determinantal point processes (DPPs) are
well-suited for modeling repulsion and have
proven useful in applications where diversity
is desired. While DPPs have many appealing
properties, learning the parameters of a DPP
is difficult, as the likelihood is non-convex
and is infeasible to compute in many scenar-
ios. Here we propose Bayesian methods for
learning the DPP kernel parameters. These
methods are applicable in large-scale discrete
and continuous DPP settings, even when the
likelihood can only be bounded. We demon-
strate the utility of our DPP learning methods
in studying the progression of diabetic neu-
ropathy based on the spatial distribution of
nerve fibers, and in studying human percep-
tion of diversity in images.

1. Introduction

A determinantal point process (DPP) is a distribution
over configurations of points. The defining character-
istic of the DPP is that it is repulsive, which makes
it useful for modeling diversity. Recently, DPPs have
played an increasingly important role in machine learn-
ing and statistics with applications both in the discrete
setting—where they are used as a diverse subset selec-
tion method (Affandi et al., 2012; 2013b; Gillenwater
et al., 2012; Kulesza & Taskar, 2010; 2011a; Snoek et al.,
2013)— and in the continuous setting for generating
point configurations that tend to be spread out(Affandi
et al., 2013a; Zou & Adams, 2012).

Formally, given a space  C R?, a specific point con-
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figuration A C €2, and a positive semi-definite kernel
function L : 2 x  — R, the probability density under
a DPP with kernel L is given by

Pr(A) o< det(Ly) , (1)

where L4 is the |A| x |A| matrix with entries L(x,y)
for each x,y € A. This defines a repulsive point process
since point configurations that are more spread out
according to the metric defined by the kernel L have
higher densities.

Building on work of Kulesza & Taskar (2010), it is
intuitive to decompose the kernel L as

L(x,y) = q(x)k(x,y)q(y) (2)

where ¢(x) can be interpreted as the quality function
at point x and k(x,y) as the similarity kernel between
points x and y. The ability to bias the quality in
certain locations while still maintaining diversity via
the similarity kernel offers great modeling flexibility.

One of the remarkable aspects of DPPs is that they of-
fer efficient algorithms for inference, including comput-
ing marginal and conditional probabilities (Kulesza &
Taskar, 2012), sampling (Affandi et al., 2013a;b; Hough
et al., 2006; Kulesza & Taskar, 2010), and restricting
to fixed-sized point configurations (k-DPPs) (Kulesza
& Taskar, 2011a). However, an important component
of DPP modeling, learning the DPP kernel parameters,
is still considered a difficult, open problem. Even in
the discrete Q setting, DPP kernel learning has been
conjectured to be NP-hard (Kulesza & Taskar, 2012).
Intuitively, the issue arises from the fact that in seeking
to maximize the log-likelihood of Eq. (1), the numer-
ator yields a concave log-determinant term and the
normalizer a convex term, leading to a non-convex ob-
jective. This non-convexity holds even under various
simplifying assumptions on the form of L. Furthermore,
when (2 is either a large, discrete set or a continuous
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subspace, computation of the likelihood is inefficient
or infeasible, respectively. This precludes the use of
gradient-based and black-box optimization methods.

Attempts to partially learn the kernel have been stud-
ied by, for example, learning the parametric form of
the quality function ¢(x) for fixed similarity k(x,y)
(Kulesza & Taskar, 2011Db), or learning a weighting on
a fixed set of kernel experts (Kulesza & Taskar, 2011a).
So far, the only attempt to learn the parameters of
the similarity kernel k(x,y) has used Nelder-Mead
optimization (Lavancier et al., 2012), which lacks the-
oretical guarantees about convergence to a stationary
point. Moreover, the use of Nelder-Mead (and other
black-box optimization methods) relies heavily on exact
computation of the likelihood.

In this paper, we consider parametric forms for the
quality function ¢(x) and similarity kernel k(x,y) and
propose Bayesian methods to learn the DPP kernel pa-
rameters O using Markov chain Monte Carlo (MCMC).
In addition to capturing posterior uncertainty rather
than a single point estimate, our proposed methods
apply without approximation to large-scale discrete
and continuous DPPs when the likelihood can only be
bounded (with any desired precision).

In Sec. 2, we review DPPs and their fixed-sized counter-
part (k-DPPs). We then explore maximum likelihood
estimation (MLE) algorithms for learning DPP and
k-DPP kernels. After examining the shortcomings of
the MLE approach, we propose a set of techniques for
Bayesian posterior inference of the kernel parameters
in Sec. 3. In Sec. 4, we derive a set of DPP moments
that can be used for model assessment, MCMC conver-
gence diagnostics, and in low-dimensional settings for
learning kernel parameters via numerical techniques.
Finally, in Sec. 5 we use DPP learning to study the
progression of diabetic neuropathy based on the spatial
distribution of nerve fibers and also to study human
perception of diversity of images.

2. Background
2.1. Discrete DPPs/k-DPPs

For a discrete base set Q = {x1,X2,...,xx}, a DPP
defined by an NV x N positive semi-definite kernel ma-
trix L is a probability measure on the 2V possible
subsets A of Q:
det(LA)
A= —————— . 3

P(4) det(L + 1) 3)
Here, La = [Lij]x, x,ca is the submatrix of L indexed
by the elements in A and [ is the N x N identity matrix
(Borodin & Rains, 2005).

In many applications, we are instead interested in the
probability distribution which gives positive mass only
to subsets of a fixed size, k. In these cases, we con-
sider fixed-sized DPPs (or k-DPPs) with probability
distribution on sets A of cardinality k given by

det(LA)
PrA) = ————2 4
L( ) ek()\h...,)\N) ( )
where Ai,...,Ay are the eigenvalues of L and
ex(A,...,An) is the kth elementary symmetric

polynomial (Kulesza & Taskar, 2011a). Note
that ex(A1,...,An) can be efficiently computed using
recursion (Kulesza & Taskar, 2012).

2.2. Continuous DPPs/k-DPPs

Consider now the case where  C R? is a continuous
space. DPPs extend to this case naturally, with L
now a kernel operator instead of a matrix. Again
appealing to Eq. (1), the DPP probability density for
point configurations A C 2 is given by

det(LA)
L +1)7

. are eigenvalues of the operator L.

PL(A) = (5)

where A1, Ao, ..

The k-DPP also extends to the continuous case with

Ph(4) = dk&Ljo)) 7 (©)

where Aj.oo = (A1, Ag, .. .).

In contrast to the discrete case, the eigenvalues \;
for continuous DPP kernels are generally unknown;
exceptions include a few kernels such as the Gaussian.

3. Learning Parametric DPPs

Assume that we are given a training set consisting of
samples A', A2, ... AT, and that we model these data
using a DPP/k-DPP with parametric kernel

L(x,y;0) = q(x;0)k(x,y; ©)q(y; ©) , (7)

with parameters ©. We denote the associated kernel
matrix for a set A® by L4:(©) and the full kernel
matrix/operator by L(0). Likewise, we denote the
kernel eigenvalues by A;(©). In this section, we explore
various methods for DPP/k-DPP learning.

3.1. Learning using Optimization Methods

To learn the parameters © of a discrete DPP model,
recalling Eq. (3) we can maximize the log-likelihood

L(©) = logdet(L4(0)) — Tlogdet(L(©) +I) .
t=1
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Lavancier et al. (2012) suggest using the Nelder-Mead
simplex algorithm (Nelder & Mead, 1965). This method
evaluates the objective function at the vertices of a sim-
plex, then iteratively shrinks the simplex towards an
optimal point. Although straightforward, this proce-
dure does not necessarily converge to a stationary point
(McKinnon, 1998). Gradient ascent and stochastic
gradient ascent are attractive due to their theoreti-
cal guarantees, but require knowledge of the gradient
of £(©). In the discrete DPP setting, this gradient
can be computed straightforwardly, and we provide
examples for discrete Gaussian and polynomial kernels
in the Supplement.

We note, however, that both of these methods are
susceptible to convergence to local optima due to the
non-convex likelihood landscape. Furthermore, these
methods (and many other black-box optimization tech-
niques) require that the likelihood is known exactly.
From the determinant in the denominator of Eq. (3), we
see that when the number of base items N is large, com-
puting the likelihood or its derivative is inefficient. A
similar inefficiency arises when we expect large sets A?,
as determined by ©. Both of these challenges limit the
general applicability of these MLE approaches. Instead,
in Sec. 3.3, we develop a Bayesian method that only
requires an upper and lower bound on the likelihood.
We focus on the large N challenge and discuss in the
Supplement how analogous methods can be used for
handling large observation sets, A°.

The log-likelihood of the k-DPP kernel parameter is

T
L£(©) = logdet(L4(0)) — Tlog »_ det(Lp(®)),

t=1 |B|=k

which presents an addition complication due to needing
a sum over (Z) terms in the gradient.

For continuous DPPs/k-DPPs, once again, both MLE
optimization-based methods require that the likelihood
is computable. Recalling Eq. (5), we note the infinite
product in the denominator. As such, for kernel opera-
tors with infinite rank (such as the Gaussian), we are
forced to consider approximate MLE methods based
on an explicit truncation of the eigenvalues. Gradient
ascent using such truncations further relies on having
a known eigendecomposition with a differentiable form
for the eigenvalues. Unfortunately, such approximate
gradients are not unbiased estimates of the true gradi-
ent, so the theory associated with stochastic gradient
based approaches does not hold.

3.2. Bayesian Learning for Discrete DPPs

Instead of optimizing the likelihood to get an MLE,
we propose a Bayesian approach to estimating the
posterior distribution over kernel parameters:

T
POlAL,...,AT) x PO) ] diiE(LLAt(G))
t=1

©+n ©®

for the DPP and, for the k-DPP,

PO[AY,... AT) < P(O)]]

t=1

det(L 4:(09))
ex(M1(©),..., An(©))

(9)
Here, P(O) is the prior on O. Since neither Eq. (8)
nor Eq. (9) yield a closed-form posterior, we resort to
approximate techniques based on Markov chain Monte
Carlo (MCMC). We highlight two techniques: random-
walk Metropolis-Hastings (MH) and slice sampling.
We note, however, that other MCMC methods can be
employed without loss of generality, and may be more
efficient in some scenarios.

In random-walk MH, we use a proposal distribu-
tion f(©|0;) to generate a candidate value © given
the current parameters ©;, which are then accepted or
rejected with probability min{r, 1} where

o <P(©|A1,...,AT) f(®i|(3))> '

P(O:|AL,..., AT) f(6]©;) 1o

The proposal distribution f(6|0;) is chosen to have
mean ;. The hyperparameters of f(0]0;) tune the
width of the distribution, determining the average step
size. See Alg. 1 of the Supplement.

While random-walk MH can provide a straightforward
means of sampling from the posterior, its efficiency
requires tuning the proposal distribution. Choosing
an aggressive proposal can result in a high rejection
rate, while choosing a conservative proposal can result
in inefficient exploration of the parameter space. To
avoid the need to tune the proposal distribution, we
can instead use slice sampling (Neal, 2003). We first
describe this method in the univariate case, following
the “linear stepping-out” approach described in Neal
(2003). Given the current parameter ©;, we first sam-
ple y ~ Uniform[0,P(6©;|A!,..., AT)]. This defines
our slice with all values of © with P(©|A!,... AT)
greater than y included in the slice. We then define a
random interval around ©; with width w that is lin-
early expanded until neither endpoint is in the slice.
We propose 6 uniformly in the interval. If O is in
the slice, it is accepted. Otherwise, © becomes the
new boundary of the interval, shrinking it so as to still
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Figure 1. Sample autocorrelation function for posterior sam-
ples of the slowest mixing kernel parameter in Eq. (11) and
Eq. (12), sampled using MH and slice sampling.

include the current state of the Markov chain. This
procedure is repeated until a proposed © is accepted.
See Alg. 2 of the Supplement.

There are many ways to extend this algorithm to a
multidimensional setting. We consider the simplest
extension proposed by Neal (2003) where we use hyper-
rectangles instead of intervals. A hyperrectangle region
is constructed around ©; and the edge in each dimen-
sion is expanded or shrunk depending on whether its
endpoints lie inside or outside the slice. One could alter-
natively consider coordinate-wise or random-direction
approaches to multidimensional slice sampling.

As an illustrative example, we consider synthetic data
generated from a two-dimensional discrete DPP with

o) = exp { - Tx (11)
ki) = exp =306 -x) T2 i) b (12)

where I' = diag(0.5,0.5) and ¥ = diag(0.1,0.2). We
consider € to be a grid of 100 points evenly spaced in a
10 x 10 unit square and simulate 100 samples from this
DPP. We then condition on these simulated data and
perform posterior inference of the kernel parameters
using MCMC. Fig. 1 shows the sample autocorrelation
function of the slowest mixing parameter, ¥11, learned
using random-walk MH and slice sampling. Further-
more, we ran a Gelman-Rubin test (Gelman & Rubin,
1992) on five chains starting from overdispersed start-
ing positions and found that the average partial scale
reduction function across the four parameters to be
1.016 for MH and 1.023 for slice sampling, indicating
fast mixing of the posterior samples.

3.3. Bayesian Learning for Large-Scale
Discrete and Continuous DPPs

When the number of items, N, for discrete 2 is large
or when 2 is continuous, evaluating the normaliz-
ers det(L(0) + I) or [[72;(An(©) + 1), respectively,
can be inefficient or infeasible. Even in cases where
an explicit form of the truncated eigenvalues can be

computed, this will only lead to approximate MLE
solutions, as discussed in Sec. 3.1.

On the surface, it seems that most MCMC algorithms
will suffer from the same problem since they require
knowledge of the likelihood as well. However, we argue
that for most of these algorithms, an upper and lower
bound of the posterior probability is sufficient as long as
we can control the accuracy of these bounds. We denote
the upper and lower bounds by P*(6|A!,..., AT) and
P~ (6|AL, ..., AT), respectively. In the random-walk
MH algorithm we can then compute the upper and
lower bounds on the acceptance ratio,

rJr _ P+(é|Ala sy AT) f(@l|é) (13)
P_(ei‘Ala' ’AT) f(é‘(al)

—_ [P (e, A7) f(6i]6) (14)
PH(©:]AL, ... AT) f(6]0;)

The threshold u ~ Uniform[0, 1] can be precomputed,
so we can often accept or reject the proposal O even
if these bounds have not completely converged. All
that is necessary is for v < min{1,7~} (immediately
reject) or u > min{1, 7"} (immediately accept). In the
case that u € (r—,7"), we can perform further compu-
tations to increase the accuracy of our bounds until a
decision can be made. As we only sample u once in
the beginning, this iterative procedure yields a Markov
chain with the exact target posterior as its stationary
distribution; all we have done is “short-circuit” the
computation once we have bounded the acceptance
ratio r away from u. We show this procedure in Alg. 3
of the Supplement.

The same idea applies to slice sampling. In the
first step of generating a slice, instead of sampling
y ~ Uniform[0, P(©;] AL, ..., AT)], we use a rejection
sampling scheme to first propose a candidate slice

§ ~ Uniform[0, PT(0;|A',...,AT)] . (15)

We then decide whether §j < P~(0;|AY, ..., AT), in
which case we know § < P(0;]|AL, ..., AT) and we ac-
cept ¢y as the slice and set y = §. In the case where
g€ (P (0;]AL, ..., AT) PT(0,;]AL, ..., AT)), we keep
increasing the tightness of our bounds until a deci-
sion can be made. If at any point § exceeds the
newly computed P+ (0;|A, ..., AT), we know that
7 > P(6;|AY, ..., AT) so we reject the proposal. In
this case, we generate a new § and repeat.

Upon accepting a slice y, the subsequent steps for
proposing a parameter 6 proceed in a similarly mod-
ified manner. For the interval computation, the
endpoints ©. are each examined to decide whether
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y < P7(©.]AL, ...  AT) (endpoint is not in slice) or
y > PH(O.|AL, ..., AT) (endpoint is in slice). The
tightness of the posterior bounds is increased until a
decision can be made and the interval adjusted, if need
be. After convergence, © is generated uniformly over
the interval and is likewise tested for acceptance. We
illustrate this procedure in Fig. 1 of the Supplement.

The lower and upper posterior probability bounds can
be incorporated in many MCMC algorithms, and pro-
vide an effective means of garnering posterior samples
assuming the bounds can be efficiently tightened. For
DPPs, the upper and lower bounds depend on the trun-
cation of the kernel eigenvalues and can be arbitrarily
tightened by including more terms.

In the discrete DPP/k-DPP settings, the eigenvalues
can be efficiently computed to a specified point using
methods such as power law iterations. The correspond-
ing bounds for a 3600 x 3600 Gaussian kernel example
are shown in Fig. 2. In the continuous setting, explicit
truncation can be done when the kernel has Gaussian
quality and similarity, as we show in Sec. 5.1. For other
continuous DPP kernels, low-rank approximations can
be used (Affandi et al., 2013a) resulting in approxi-
mate posterior samples (even after convergence of the
Markov chain). We believe these methods could be
used to get exact posterior samples by extending the
discrete-DPP Nystrom theory of Affandi et al. (2013b),
but this is beyond the scope of this paper. In contrast,
a gradient ascent algorithm for MLE is not even fea-
sible: we do not know the form of the approximated
eigenvalues, so we cannot take their derivative.

Explicit forms for the DPP/k-DPP posterior probabil-
ity bounds as a function of the eigenvalue truncations
follow from Prop. 3.1 and 3.2 combined with Egs. (8)
and (9), respectively. Proofs are in the Supplement.

Proposition 3.1. Let \1.o be the eigenvalues of ker-
nel L. Then

M=
3

(T+X) < [[A+A) (16)
and ) )
oo M M
[T +x) <exp {tr(L) -y )\n} [H(l + An)

Proposition 3.2. Let A\.o, be the eigenvalues of ker-
nel L. Then

er(Av) < er(Mioo) (17)
and
k M j
er(Mico) < Z (tr(L) ]z.,:n_l An) er—j(M:m) -
=0 ‘
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Figure 2. Normalizer bounds for a discrete DPP (left) and
a 10-DPP (right) with Gaussian quality and similarity as
in Egs. (11) and (12) and Q a grid of 3600 points.

Note that the expression tr(L) in the bounds can be

easily computed as either Zi\;l L;; in the discrete case
or [, L(x,x)dx in the continuous case.

4. Method of Moments

In this section, we derive a set of DPP moments that
can be used in a variety of ways. For example, we
can compute the theoretical moments associated with
each of our posterior samples and use these as sum-
mary statistics in assessing convergence of the MCMC
sampler, e.g., via Gelman-Rubin diagnostics (Gelman
& Rubin, 1992). Likewise, if we observe that these
posterior-sample-based moments do not cover the em-
pirical moments of the data, this can usefully hint at a
lack of posterior consistency and a potential need to
revise the misspecified prior.

In the discrete case, we first need to compute the
marginal probabilities. Borodin (2009) shows that the
marginal kernel, K, can be computed directly from L:

K=L(I+L)". (18)

The mth moment can then be calculated via
N
E[x™] = ZXTK(xi,Xi) . (19)
i=1

In the continuous case, given the eigendecomposition
of the kernel operator, L(x,y) = > -~ A\én(X)*dn(y)
(where ¢, (x)* denotes the complex conjugate of the nth

eigenfunction), the mth moment is

E[x™] = /Q ; )\n)\:_lxm(bn(x)de. (20)

Note that Eq. (20) generally cannot be evaluated in
closed form since the eigendecompositions of most ker-
nel operators are not known. However, in certain cases,
such as the Gaussian kernel of Sec. 5.1 with eigenfunc-
tions given by Hermite polynomials, the moments can
be directly computed. In the Supplement, we derive
the mth moment for this Gaussian kernel setting.
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Unfortunately, the method of moments can be challeng-
ing to use for direct parameter learning since Eqs. (19)
and (20) rarely yield analytic forms that are solvable for
O. In low dimensions, © can be estimated numerically,
but it is an open question to estimate these moments
for large-scale problems.

5. Experiments
5.1. Simulations

We provide an explicit example of Bayesian learning
for a continuous DPP with the kernel defined by

~val] -t i 21
i) = Vi ][ e {5 | (1)

D 2
k(x,y) = Hexp{—(xdgadyd)}, X,y € RP. (22)

Here, © = {a, p4, 04} and the eigenvalues of the opera-
tor L(©) are given by (Fasshauer & McCourt, 2012),

D 1 1 mg—1
)\m(@) = ( ) )
d[[ B \na(B+ ) +1

27
(23)
o 1
where v4 = o4, Bq = (1+%)4, and m = (my,...,mp)
is a multi-index. Furthermore, the trace of L(©) can

be easily computed as

tr(L(@)):/Rdoz 3 @exp{—;p‘z}dx:a. (24)

d=1

We test our Bayesian learning algorithms on simulated
data generated from a 2-dimensional isotropic kernel
(04 = 0, pg = p for d = 1,2) using Gibbs sampling (Af-
fandi et al., 2013a). We then learn the parameters
under weakly informative inverse gamma priors on o,
p and «. Details are in the Supplement. We consider
the following simulation scenarios:

(i) 10 DPP samples with average number of points=18
using (a, p, o) = (1000,1,1)

(ii) 1000 DPP samples with average number of
points=18 using («, p, o) = (1000, 1,1)

(iii) 10 DPP samples with average number of points=77
using (a, p, o) = (100,0.7,0.05).

Fig. 3 shows trace plots of the posterior samples for
all three scenarios. In the first scenario, the parameter
estimates vary wildly whereas in the other two scenarios,
the posterior estimates are more stable. In all cases, the
zeroth and second moment estimated from the posterior
samples are in the neighborhood of the corresponding
empirical moments. This leads us to believe that the
posterior is broad when we have both a small number of

Normal Subject

Mildly Diabetic Subject 1
Bo %o® o o o ° o

Mildly Diabetic Subject 2

Severely Diabetic Subject 2 Severely Diabetic Subject 1 Moderately Diabetic Subject

. & ¥° ® e %
IR S
oom

3 o s, 0, % o% %
W87 % e ° o oo
° S el .

Figure 4. Nerve fiber samples. Clockwise: (i) Normal sub-
ject, (ii) Mildly Diabetic Subject 1, (iii) Mildly Diabetic
Subject 2,(iv) Moderately Diabetic subject, (v) Severely
Diabetic Subject 1 and (vi) Severely Diabetic Subject 2.

samples and few points in each sample. The posterior
becomes more peaked as the total number of points
increases. The stationary similarity kernel allows us
to garner information either from few sets with many
points or many sets of few points.

Dispersion Measure In many applications, we are
interested in quantifying the overdispersion of point
process data. In spatial statistics, a standard disper-
sion measure is the Ripley K-function (Ripley, 1977).
We instead aim to use the learned DPP parameters
(encoding repulsion) to quantify overdispersion. Impor-
tantly, our measure should be invariant to scaling. In
the Supplement we derive that, as the data are scaled
from x to nx, the parameters scale from («, 04, p;) to
(a,no;,mp;). This suggests that an appropriate scale-
invariant repulsion measure is v; = 0;/p;.

5.2. Applications
5.2.1. DIABETIC NEUROPATHY

Recent breakthroughs in skin tissue imaging have
spurred interest in studying the spatial patterns of
nerve fibers in diabetic patients. It has been observed
that these nerve fibers become more clustered as dia-
betes progresses. Waller et al. (2011) previously an-
alyzed this phenomena based on 6 thigh nerve fiber
samples. These samples were collected from 5 diabetic
patients at different stages of diabetic neuropathy and
one healthy subject. On average, there are 79 points
in each sample (see Fig. 4). Waller et al. (2011) ana-
lyzed the Ripley K-function and concluded that the
difference between the healthy and severely diabetic
samples is highly significant.

We instead study the differences between these samples
by learning the kernel parameters of a DPP and quan-
tifying the level of repulsion of the point process. Due
to the small sample size, we consider a 2-class study of
Normal/Mildly Diabetic versus Moderately/Severely
Diabetic. We perform two analyses. In the first, we
directly quantify the level of repulsion based on our
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Figure 3. For a continuous DPP with Gaussian quality and similarity, from left to right: Posterior samples of «, p and o,
and associated zeroth and second moments. The top row are samples from Scenario (i) (blue) and Scenario (ii) (green)
while the second row are samples from Scenario (iii). Red lines indicate the true parameter values that generated the data
and their associated theoretical moments. The y-axis scaling aims to place all scenarios on equal footing.

scale-invariant statistic, 7 = o/p (see Sec. 5.1). In the
second, we perform a leave-one-out classification by
training the parameters on the two classes with one
sample left out. We then evaluate the likelihood of
the held-out sample under the two learned classes. We
repeat this for all six samples.

We model our data using a 2-dimensional continu-
ous DPP with Gaussian quality and similarity as in
Egs. (21) and (22). Since there is no observed preferred
direction in the data, we use an isotropic kernel (o4 = o
and pg = p for d = 1,2). We place weakly informative
inverse gamma priors on («, p, o), as specified in the
Supplement, and learn the parameters using slice sam-
pling with eigenvalue bounds as outlined in Sec. 3.3.
The results shown in Fig. 5 indicate that our v measure
clearly separates the two classes, concurring with the
results of Waller et al. (2011). Furthermore, we are able
to correctly classify all six samples. While the results
are preliminary, being based on only six observations,
they show promise for this task.

5.2.2. DIVERSITY IN IMAGES

We also examine DPP learning for quantifying how
visual features relate to human perception of diversity
in different image categories. This is useful in appli-
cations such as image search, where it is desirable to
present users with a set of images that are not only
relevant to the query, but diverse as well.

Building on work by Kulesza & Taskar (2011a), three
image categories—cars, dogs and cities—were studied.
Within each category, 8-12 subcategories (such as Ford
for cars, London for cities and poodle for dogs) were
queried from Google Image Search and the top 64 re-
sults were retrieved. For a subcategory subcat, these
images form our base set Qgpcat- 10 assess human
perception of diversity, annotated sets of size six were

generated from these base sets. However, it is chal-
lenging to ask a human to coherently select six diverse
images from a set of 64 total. Instead, Kulesza &
Taskar (2011a) generated a partial result set of five im-
ages from a 5-DPP on each Qg pcat with a kernel based
on the SIFT256 features (see the Supplement). Human
annotators (via Amazon Mechanical Turk) were then
presented with two images selected at random from the
remaining subcategory images and asked to add the
image they felt was least similar to the partial result
set. These experiments resulted in about 500 samples
spread evenly across the different subcategories.

We aim to study how the human annotated sets differ
from the top six Google results, Top-6. As in Kulesza
& Taskar (2011a), we extracted three types of fea-
tures from the images—color features, SIFT descriptors
(Lowe, 1999; Vedaldi & Fulkerson, 2010) and GIST de-
scriptors (Oliva & Torralba, 2006) described in the
Supplement. We denote these features for image 7 as
feoler fIFT "and fE1ST ) respectively. For each subcate-
gory, we model our data as a discrete 6-DPP on Qgpcat
with kernel

subcat ||flfeat - f]feat”%
L3 = exp { — Z B (25)

feat feat

for feat € {color, SIFT,GIST} and 4,7 indexing the 64
images in Qgupeat- Here, we assume that each category
has the same parameters across subcategories, namely,
o2l for subcat € cat and cat € {cars, dogs, cities}.

To learn from the Top-6 images, we consider the sam-
ples as being generated from a 6-DPP. To emphasize
the human component of the 5-DPP + human annota-
tion sets, we examine a conditional 6-DPP (Kulesza
& Taskar, 2012) that fixes the five partial results set
images and only considers the probability of adding
the human-annotated image. The Supplement provides
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Figure 5. Left: Repulsion measure,

~. Right: Leave-one-out log-likelihood of each sample in Fig. 4 (in the same order)

under the two learned DPP classes: Normal/Mildly Diabetic (left box) and Moderately /Severely Diabetic (right box).

details on this conditional k-DPP.

All subcategory samples within a category are assumed
to be independent draws from a DPP on Qgpcat with
kernel L*UP<2t parameterized by a shared set of of,.
As such, each of these samples equally informs the
posterior of ofZ,. We samples the posterior of the 6-
DPP or conditional 6-DPP kernel parameters using
slice sampling with weakly informative inverse gamma

priors on the ofZ,. Details are in the Supplement.

Fig. 6 shows a comparison between o2, learned from

the human annotated samples (conditioning on the 5-
DPP partial result sets) and the Top-6 samples for
different categories. The results indicate that the
5-DPP + human annotated samples differs significantly
from the Top-6 samples in the features judged by hu-
man to be important for diversity in each category. For
cars and dogs, human annotators deem color to be a
more important feature for diversity than the Google
search engine based on their Top-6 results. For cities,
on the other hand, the SIFT features are deemed more
important by human annotators than by Google. Keep
in mind, though, that this result only highlights the di-
versity components of the results while ignoring quality.
In real life applications, it is desirable to combine both
the quality of each image (as a measure of relevance
of the image to the query) and the diversity between
the top results. Regardless, we have shown that DPP
kernel learning can be informative of judgements of
diversity, and this information could be used (for ex-
ample) to tune search engines to provide results more
in accordance with human judgement.

6. Conclusion

Determinantal point processes have become increas-
ingly popular in machine learning and statistics. While
many important DPP computations are efficient, learn-
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Figure 6. For the image diversity experiment, boxplots of
posterior samples of (rom left to right) &, oStr and
0&it. Each plot shows results for human annotated sets
(left) versus Google Top 6 (right). Categories from top to
bottom: (a) cars, (b) dogs and (c) cities.

ing the parameters of a DPP kernel is difficult. This is
due to the fact that not only is the likelihood function
non-convex, but in many scenarios the likelihood and
its gradient are either unknown or infeasible to com-
pute. We proposed Bayesian approaches using MCMC
for inferring these parameters. In addition to providing
a characterization of the posterior uncertainty, these
algorithms can be used to deal with large-scale discrete
and continuous DPPs based solely on likelihood bounds.
We demonstrated the utility of learning DPP param-
eters in studying diabetic neuropathy and evaluating
human perception of diversity in images.
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