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Abstract

Semi-supervised learning (SSL), is classifica-
tion where additional unlabeled data can be
used to improve accuracy. Generative ap-
proaches are appealing in this situation, as
a model of the data’s probability density can
assist in identifying clusters. Nonparametric
Bayesian methods, while ideal in theory due
to their principled motivations, have been dif-
ficult to apply to SSL in practice. We present
a nonparametric Bayesian method that uses
Gaussian processes for the generative model,
avoiding many of the problems associated
with Dirichlet process mixture models. Our
model is fully generative and we take ad-
vantage of recent advances in Markov chain
Monte Carlo algorithms to provide a practi-
cal inference method. Our method compares
favorably to competing approaches on syn-
thetic and real-world multi-class data.

1. Introduction

Semi-supervised learning (SSL) algorithms solve the
problem of classification under the circumstance that
only a subset of the training data are labeled. In con-
trast to the purely-supervised setting, semi-supervised
learning assumes that the probability density of the
data is important to discovering the decision bound-
ary. Semi-supervised learning is motivated by the sit-
uation where copious training data are available, but
hand-labeling the data is expensive.

From a Bayesian perspective, the natural way to per-
form semi-supervised learning is with a generative
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model of the data. One explicitly models the densi-
ties that gave rise to the observations, integrating out
the class assignments for unlabeled data. We can then
integrate out any parameters of the density model and
arrive at predictive classifications of unseen data.

We would like to perform this modeling while mak-
ing the fewest possible assumptions about the densi-
ties in question. Nonparametric Bayesian methods are
appealing in this regard, as they incorporate an infi-
nite number of parameters into the model. By using
a model with an infinite number of parameters, we do
not have to perform difficult computation to determine
the appropriate dimensionality.

Unfortunately, many nonparametric Bayesian density
models are ill-suited for the semi-supervised setting.
Specifically, the main assumption in SSL is that data
of the same class will cluster together; the labeled data
provide the appropriate class and we use the unlabeled
data to determine the cluster boundary. The most
common nonparametric Bayesian density model, the
Dirichlet Process Mixture Model (DPMM) (Escobar
& West, 1995), suffers from the problem that the mix-
ture components are located independently. There is
no tendency for mixture models to form contiguous
densities. If we take the natural approach of using a
DPMM to flexibly model each class density in a semi-
supervised learning problem, the mixtures will take
unlabeled data away from other clusters.

Due to these difficulties with specifying a flexible den-
sity model, discriminative methods are more common
than generative models for semi-supervised learning.
The Bayesian discriminative model of Lawrence and
Jordan (2005) use a Gaussian process (GP) to con-
struct a nonparametric model for binary SSL. Simi-
larly, Chu et al. (2007) and Sindhwani et al. (2007)
specify nonparametric Bayesian discriminative models
with GPs that exploit graph-based side information.
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In this paper, we present a fully-Bayesian generative
approach to semi-supervised learning that uses Gaus-
sian processes to specify the prior on class densities.
We call the model Archipelago as it performs Bayesian
clustering with infinite-dimensional density models,
but it prefers contiguous densities. These clusters can
form irregular shapes, like islands in a chain.

2. The Archipelago Model

We consider a model on a D-dimensional real
space, R

D, with K possible labels. Let x be a point
in R

D. We define K scalar functions (one for each
class) {gk(x)}Kk=1, where gk(·) : R

D → R. Conditioned
on a point x, these functions are used with a soft-
max function to construct a categorical distribution
for l ∈ 1, 2, . . . ,K, the class label of x:

p(l |x, {gk(x)}Kk=1) =
exp{gl(x)}

Λ(x)
(1)

where we use Λ(x) =
∑K

k=1 exp{gk(x)} for notational
convenience. We combine this discriminative classifier
with a density model for x that is also constructed
from the gk(x):

p(x | {gk(x)}Kk=1) =
1

Z

Λ(x) π(x)

1 + Λ(x)
(2)

where π(x) is a base density that will be explained
shortly. The constant Z is the normalization given by

Z =

∫
RD

dx
Λ(x) π(x)

1 + Λ(x)
. (3)

We combine Eqs. 1 and 2 to construct a joint likelihood
for the location and label together:

p(x, l | {gk(x)}Kk=1) =
1

Z

exp{gl(x)} π(x)

1 + Λ(x)
. (4)

For the semi-supervised learning problem, this con-
struction is appealing because Eq. 2 can be viewed
as marginalizing out the class label in Eq. 4. This
is in contrast to typical Bayesian generative methods
for SSL which would construct p(x, l) from p(x | l)p(l),
which does not necessarily allow the class label to be
easily marginalized out. We have a set of K coupled

densities which are each intractable individually, but
whose sum is tractable.

2.1. Gaussian Process Prior on gk(x)

To make the Archipelago model nonparametric, we
use K independent Gaussian process priors on the
functions {gk(x)}Kk=1. The GP allows one to spec-
ify general beliefs about functions, without choos-
ing a finite set of basis functions. The idea of the

(d)

(c)

(b)

(a)
π(x)

g2(x)g3(x)

{x̃}

g1(x)

{r}

Figure 1. The generative process for Archipelago in one
dimension. (a) Proposals are drawn from the base den-
sity π(x). (b) Next, each of the K = 3 functions is sam-
pled from the Gaussian process at the proposal locations.
(c) The functions are used to partition the unit interval
into K + 1 slices at each proposal location and uniform
variates r are drawn in the vertical coordinate. (d) If r falls
in the topmost partition, the proposal is rejected. Other-
wise, it is accepted and assigned the class label based on
the partition in which r falls.

GP is that the joint distribution over a discrete set
of function values is a multivariate Gaussian deter-
mined by the corresponding inputs. The covariance
matrix and mean vector that parameterize this Gaus-
sian distribution arise from a positive definite covari-
ance function C(·, ·) : R

D × R
D → R and a mean func-

tion m(·) : R
D → R. Typically, the covariance func-

tion is chosen so that points near to each other in the
input space have strongly correlating outputs. We will
assume that the the kth GP covariance function has
hyperparameter θk. We will take the mean functions
to be zero. See Rasmussen and Williams (2006) for a
comprehensive treatment of Gaussian processes.

2.2. The Generative Procedure

Coupling the likelihood of Eq. 4 with GP priors on
the {gk(x)}Kk=1 enables us to define a fully-generative
process for arriving at labeled data from a set of K

random coupled densities. In other words, we can de-
fine a process that is equivalent to drawing a set of
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Algorithm 1 Generate Q labeled data from the prior in Section 2

Inputs: Base density π(x), GP hyperparameters {θk}
K
k=1, number of samples to generate Q

Outputs: Q data/label pairs Q = {xq, lq}
Q
q=1

for k ← 1 . . . K do
Xk ← ∅, Gk ← ∅ ⊲ Initialize conditioning sets.

end for
Q ← ∅ ⊲ Initialize return value.
while |Q| < Q do ⊲ Until Q values accepted.

x̃ ∼ π(x) ⊲ Draw a proposal from the base density.
for k ← 1 . . . K do

gk(x̃) ∼ GP(g | x̃,Xk,Gk, θk) ⊲ Draw the function from the GP.
Λ(x̃)← Λ(x̃) + exp{gk(x̃)}
Xk ← Xk ∪ x̃, Gk ← Gk ∪ gk(x̃) ⊲ Update conditioning sets.

end for
r ∼ U(0, 1) ⊲ Draw a uniform variate on (0, 1).
for k ← 1 . . . K do

ρk ← ρk−1 + exp{gk(x̃)}
1+Λ(x̃)

⊲ Calculate the next partition.

if r < ρk then
Q ← Q∪ {x̃, k} ⊲ Accept this proposal and store.
break

end if
end for

end while

data from the density in Eq. 2 with a random Λ(x)
arising from the GP priors on {gk(x)}Kk=1, and then
labeling that data according to Eq. 1.

To generate a labeled datum, we first draw a pro-
posal x̃ from the base density π(x). We then draw
a function value from each of the GPs at the point x̃.
We denote these function draws as {gk(x̃)}Kk=1. We
use the function values to partition the unit inter-
val [0, 1] into K + 1 non-overlapping segments with
boundaries 0, ρ1, ρ2, . . . , ρK , 1 where

ρk = ρk−1 +
exp{g1(x̃)}

1 + Λ(x̃)
(5)

and ρ0 = 0. We draw a uniform random variate r

from (0, 1) and either assign it label k if ρk−1 < r < ρk,
or reject the point if r ≥ ρK . If we reject the x̃, we
make another proposal and continue until we accept.
When making these new proposals, we sample condi-
tionally from the GP, incorporating the function draws
from previous proposals. We call the set of information
already known about function gk(x) the conditioning

set, with inputs Xk and outputs Gk. We can continue
this rejection/acceptance process, generating as many
data points as we wish, “discovering” the set of func-
tions {gk(x)}Kk=1 as we iterate. This procedure is given
in Algorithm 1 and shown graphically in Figure 1.

This generative procedure is infinitely exchangeable
and the data are exact in the sense that they are not
biased by the starting state of a finite Markov chain.
Infinite exchangeability means that the probability of
a set of data is the same under any ordering. It is also
not necessary to determine the {gk(x)}Kk=1 over any

more than a finite number of points in R
D, nor is it

necessary to determine the normalization constant Z
in order to generate these data.

3. Inference

We have so far described a nonparametric generative
model for labeled data. We now use this model to
perform semi-supervised learning. The Archipelago
inference task to find the predictive distribution over
class labels of an unlabeled datum x⋆, given N labeled
data {xn, ln}

N
n=1 and P unlabeled data {xp}

P
p=1, inte-

grating out the latent function {gk(x)}Kk=1. Treating
the function gk(x) as an infinite vector gk, our objec-
tive is to integrate out these K vectors:

p(l⋆ |x⋆, {xn, ln}
N
n=1, {xp}

P
p=1 | {θk}

K
k=1) =∫

dg1 · · ·

∫
dgK p(l⋆ |x⋆, {gk}

K
k=1)

× p({gk}
K
k=1 | {xn, ln}

N
n=1, {xp}

P
p=1, {θk}

K
k=1) (6)

where the posterior distribution on {gk}
K
k=1 arises

from Eq.s 2 and 4 and is proportional to

p({gk}
K
k=1, {xn, ln}

N
n=1, {xp}

P
p=1 | {θk}

K
k=1) =

Z−N−P

K∏
k=1

GP(gk | {xn}
N
n=1, {xp}

P
p=1, θk)

×
N∏

n=1

exp{gln(xn)} π(xn)

1 + Λ(xn)

P∏
p=1

Λ(xp) π(xp)

1 + Λ(xp)
. (7)

Given a set of samples of {gk}
K
k=1, we can es-
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timate the distribution in Eq. 6 via a sum, but
acquiring samples from the posterior on the gk

is difficult for two reasons: 1) Each gk is an
infinite-dimensional object and we cannot store it
näıvely in memory, and 2) the posterior distribution
p({gk}

K
k=1 | {xn, ln}

N
n=1, {xp}

P
p=1, {θk}

K
k=1) is doubly-

intractable due to the presence of Z in Eq. 7.

In Bayesian inference, it is common to have an un-
normalized posterior distribution, where the unknown
constant is intractable, but not dependent on the
parameters; Markov chain Monte Carlo (MCMC)
methods are well-suited for this situation. Doubly-
intractable posterior distributions (Murray et al.,
2006) are those in which the likelihood function also
has an intractable constant that does depend on the
model parameters. This situation arises most com-
monly in undirected graphical models, such as Ising
models (where Z is called the partition function), but
it is also found in density models and doubly-stochastic
processes, e.g. the Log Gaussian Cox Process. In such
cases, even MCMC – the “sledgehammer” of Bayesian
inference – is difficult or impossible to apply.

Fortunately, recent advances in MCMC methods have
made it possible to perform inference in doubly-
intractable models under special circumstances. If it
is possible to generate “fantasy data” exactly from a
particular setting of the parameters, then it is pos-
sible to perform inference using the method of Møller
et al. (2006), Exchange Sampling (Murray et al., 2006),
or modeling of the latent history of the generative
procedure (Beskos et al., 2006). In general, these
methods were developed with the undirected graphical
model in mind, where it is sometimes possible to gen-
erate exact data via Coupling From The Past. In the
case of Archipelago, we follow the approach of Adams
et al. (2009) in modeling the latent history of the gen-
erative process. This approach not only resolves the
problem of double intractability, but it also results in
a Markov chain with an infinite-dimensional state that
requires only a finite amount of memory.

Given a set of data on which we place the prior of
Section 2, we are asserting that these data were gener-
ated via the procedure of Section 2.2. If we knew the
history of the generative process that resulted in our
observed data, then we would know everything neces-
sary to make a prediction at a new location x⋆. We
perform posterior inference on this latent history by
introducing a set of latent variables: 1) the number of
latent rejections M , 2) the locations of the latent rejec-
tions {xm}

M
m=1, and 3) the values of the functions at

the rejections, at the labeled data and at the unlabeled
data. We can run the generative algorithm without

calculating Z and without knowing the functions gk(x)
everywhere, and via the latent variable model we are
able to inherit these properties for inference.

Integrating out the classes of the unlabeled data, as in
Eq. 2, the joint distribution over the function values,
the number and location of the latent rejections and
the fixed data is

p({gk}
K
k=1,M, {xm}

M
m=1, {xp}

P
p=1, {xn, ln}

N
n=1) =

K∏
k=1

GP({gk(xn)}Nn=1, {gk(xp)}
P
p=1, {gk(xm)}Mm=1)

×
N∏

n=1

exp{gln(xn)} π(xn)

1 + Λ(xn)

P∏
p=1

Λ(xp) π(xp)

1 + Λ(xp)

×
M∏

m=1

π(xm)

1 + Λ(xm)
. (8)

This joint distribution is implicitly conditioned on the
GP hyperparameters {θk}

K
k=1. We have abused nota-

tion slightly by not explicitly conditioning the GP on
the input locations.

The joint distribution in Eq. 8 is proportional to the
posterior distribution over the latent state, and we
sample from it with three kinds of Markov transitions:
updating the number of latent rejections, updating the
rejection locations, and updating the function values.

3.1. Sampling the Number of Rejections

We take advantage of the infinite exchangeability of
the generative process to construct a Metropolis–
Hastings move that can add or remove rejections from
the latent history. Our model for inference is that the
data came about as the result of Algorithm 1, stopping
when there were N +P data accepted. The unlabeled
data were generated by the P labels being discarded,
and the joint distribution in Eq. 8 integrates out the
unknown label. Due to infinite exchangeability, we
can propose a reordering of the latent history at any
time and this move will always be accepted. Thus to
insert a new latent rejection, we propose moving a re-
jection that occurred after the N+P th acceptance to
be moved to sometime before it. This idea is shown
graphically in Figure 2. To delete a rejection, we make
the opposite type of transition: select one of the cur-
rent rejections at random and propose moving it to
after the N+P th acceptance.

In practice, it is not necessary to actually maintain an
ordering. We define a function b(·, ·) : N× N→ (0, 1)
and we decide randomly whether to propose adding or
removing a rejection with probabilities b(M,N + P )
and 1− b(M,N +P ), respectively. If we decide to add
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a)

b)

d)

c)

Figure 2. a) An initial state of the latent history, with three

possible classes (K = 3, shown as , , and ),

and some latent rejections (M = 6). b) Propose a new
rejection after the last acceptance by running the proce-
dure forward. c) Propose moving this new rejection into
a random location in the history. d) If accepted, we now
have a history with an additional latent rejection (M = 7).

an additional rejection, we first propose a new location
for it, x̂, by drawing it from π(x). We then draw each
of the K function values at that location, {gk(x̂)}Kk=1,
conditioning on all of the current function values. Fi-
nally, we accept or reject with Metropolis–Hastings ac-
ceptance ratio

ains =
(1− b(M + 1, N + P )) (M + N + P )

b(M,N + P ) (M + 1) (1 + Λ(x̂))
. (9)

If we are proposing a deletion, we choose an index m

uniformly from among the M rejections and remove it
with Metropolis–Hastings acceptance ratio

adel =
b(M − 1, N + P ) M (1 + Λ(xm))

(1− b(M,N + P )) (M + N + P − 1)
. (10)

In practice we have often found it reasonable to sim-
ply set b(M,N + P ) = 1

2
. More sophisticated propos-

als may yield improvements in mixing, but we have
not thoroughly explored this topic. Typically we make
several of these transitions (≈ 10) for each of the tran-
sitions in Sections 3.2 and 3.3.

3.2. Sampling the Rejection Locations

Conditioned on the current function values and the
number of rejections M , we also want to update the
locations of the rejections. We iterate over each of
the M rejections and make a Metropolis–Hastings pro-
posal with two stages. First, we draw a new loca-
tion x̂m from a proposal density q(x̂m ← xm). Sec-
ond, we draw a new set of function values at this loca-
tion, {gk(x̂m)}Kk=1, from the GP, conditioning on all of
the current function values and locations. We then ac-
cept or reject the proposal according to the acceptance
ratio

am =
q(xm ← x̂m) π(x̂m) (1 + Λ(xm))

q(x̂m ← x) π(xm) (1 + Λ(x̂m))
. (11)

3.3. Sampling the Function Values

Sampling the function is the most critical aspect of
the model: it is the function values that we depend
on to make predictions. We iterate over each of
the K functions and use Hamiltonian Monte Carlo
(HMC) (Neal, 1997) for efficient sampling. HMC aug-
ments the Markov chain with random “momenta” and
then simulates Hamiltonian dynamics in fictional time.
In this way, Metropolis–Hastings proposals are guided
using gradient information and random walk behav-
ior is avoided. We perform gradient calculations in
the “whitened” space resulting from transforming the
function values with the inverse Cholesky decomposi-
tion of the covariance matrix. This is a more natural
metric space in which to find gradients. For the kth
function, the log conditional posterior distribution is

ln p(gk |M, {xm}
M
m=1, {xn, ln}

N
n=1, {xp}

P
p=1, θk) =

−
1

2
g

T

kΣ−1
gk + g

T

k1ln=k −
N∑

n=1

ln(1 + Λ(xn)) (12)

+

P∑
p=1

ln
Λ(xp)

1 + Λ(xp)
−

M∑
m=1

ln(1 + Λ(xm)) + const

where 1ln=k is a vector whose components are 1
where ln = k, and 0 otherwise. Σ is the covariance ma-
trix resulting from application of the covariance kernel
to the concatenation of labeled, unlabeled and rejected
data locations. Eq. 12 comes from: 1) a GP prior term,
2) a labeled data acceptance term, 3) an unlabeled
data acceptance term, and 4) a rejection term.

3.4. Sampling the Hyperparameters

An appealing feature of Bayesian inference methods is
the ability to perform hierarchical inference. Here, we
sample the hyperparameters, {θk}

K
k=1, governing the

GP covariance function. Conditioned on the number
and locations of the rejections, and the function val-
ues, we do hyperparameter inference via Hamiltonian
Monte Carlo as described by Neal (1997).

We can also introduce hyperparameters φ into the base
density π(x). For example, if π(x) is a Gaussian distri-
bution, φ might be the mean and covariance parame-
ters. Conditioning on the number and locations of the
rejections, inference of φ is a standard MCMC para-
metric density estimation problem that can be solved
with Gibbs sampling or Metropolis–Hastings.

3.5. Making Predictions

With samples from the posterior distribution over the
function values, we can now approximate the integral
in Eq. 6. At each MCMC step after burn-in, we sample
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the function values {gk(x⋆)}
K
k=1 from the GP, condi-

tioned on the current state. From these we can ap-
proximate the predictive distribution via a mixture
of softmax functions. We might also be interested in
the class-conditional predictive distributions. These K

distributions are the ones that arise on data space, con-
ditioning on membership in class k, but integrating out
the latent function and hyperparameters. While not
available in closed form, it is straightforward to gen-
erate predictive fantasies. At each MCMC step after
burn-in, run the generative process forward from the
current state until a datum is accepted that is a mem-
ber of class k.

4. Empirical Results

We compared the Archipelago model and inference
method to three other multi-class Gaussian process
classification approaches: the standard softmax GP
classifier (Williams & Barber, 1998), the probit classi-
fier of Girolami and Rogers (2006), and the multiclass
extension (Rogers & Girolami, 2007) of the Null Cate-
gory Noise Model of Lawrence and Jordan (2005). We
compared these models on three two-dimensional toy
problems and two real-world datasets. Unlabeled data
were ignored in the softmax and probit models.

4.1. Toy Pinwheel Data

The toy problems were noisy pinwheels with three,
four and five classes, shown in Figures 3(a), 3(d),
and 3(g), respectively. There were 50 data points
in each set and the algorithms were run with 1, 2,
4, and 8 labeled data in each class. 300 held-out
data for each class were used to evaluate the predic-
tive distributions by error rate and perplexity. Infer-
ence for each method was performed using MCMC,
and each used an isotropic squared-exponential covari-
ance function. For each method we also sampled from
the length-scale and amplitude hyperparameters us-
ing Hamiltonian Monte Carlo (HMC) (Neal, 1997).
The Archipelago base density was a bivariate Gaus-
sian. Figure 3 shows the predictive modes for the
Archipelago and softmax models, as well as the en-
tropy of the Archipelago predictive distribution as a
function of space. Numerical results are in Table 1.

4.2. Wine Data

The wine data are thirteen-dimensional, with three
classes from Aeberhard et al. (1992) via Asuncion and
Newman (2007). As in Rogers and Girolami (2007),
we translated and scaled the inputs to have zero mean
and unit variance. We used an ARD covariance func-
tion (Rasmussen & Williams, 2006) and HMC for in-

(a) Toy3 Arch (b) Toy3 SmGP (c) Arch Entropy

(d) Toy4 Arch (e) Toy4 SmGP (f) Arch Entropy

(g) Toy5 Arch (h) Toy5 SmGP (i) Arch Entropy

Figure 3. The results of applying Archipelago to “pin-
wheel” data with one labeled datum per class (marked with
an ’x’). The top row has three classes, the middle row has
four classes and the bottom has five. The figures on the left
show the modes of the class assignments from Archipelago.
The middle column shows the class assignment modes us-
ing a softmax GP. The right column shows the entropies
of the predictive distribution produced by Archipelago.

ference of length scales and amplitude. We divided the
data into two sets of 89 for training and testing, with
the classes divided approximately evenly. We ran four
sets of experiments with each method, as with the toy
data, with 1, 2, 4, and 8 labeled data in each class.
We used a multivariate Gaussian for the Archipelago
base density. The results are given in Table 1.

4.3. Oil Pipe Data

The oil pipe data are included with software for
Williams and Barber (1998). The task is to classify
the type of flow in a pipe (laminar, hydrogenous, or
amorphous), using a set of fourteen gamma ray read-
ings. We split the 400 data into 134 training and 266
testing. We used an ARD covariance function and
followed the same procedures as in Section 4.2. The
results are given in Table 1.

5. Discussion

Archipelago combines ideas both from Gaussian pro-
cess density modeling and GP classification. When
using a kernel such as the squared-exponential, it ex-
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presses the idea that similar data should have similar
probabilities and similar class assignments. In con-
trast, an SSL approach with a mixture model for each
class must maintain both a class and mixture com-
ponent assignment for each datum, and the notion of
smoothness does not extend beyond the parametric
form of the components.

The most relevant Bayesian model to Archipelago
is the discriminative Null Category Noise Model
(NCNM) (Lawrence & Jordan, 2005) and the multi-
class extension of Rogers and Girolami (2007). The
NCNM enforces the idea of “margin” in a GP clas-
sifier by requiring a null-class transition between any
two “real” classes. The latent rejections play a simi-
lar role in Archipelago by allowing regions with mass
under π(x) to have no data. However, Archipelago
models data in the null class explicitly as part of in-
ference, to let Archipelago model arbitrarily complex
densities. In contrast to Archipelago, NCNM requires
a priori setting of the null-category width and label-
ing probability. In almost all of our tests, Archipelago
had lower test classification error than the NCNM. In
the regime with few labels, Archipelago outperformed
the other methods on test error.

In supervised classification and regression with GPs
(and in the NCNM), it is sufficient to know only the
values of the functions at the observed data. In den-
sity modeling, however, the areas where there is little
density are as important as those with significant den-
sity. Unfortunately, data are only likely to be observed
in areas of notable density, so we must have some way
to “peg down” the functions in the low-density areas.
The explicitly-modeled latent rejections, although a
part of the generative model, fulfill this need in a way
that would be difficult to motivate in a purely discrim-
inative setting.

5.1. Computational Considerations

Gaussian processes have relatively high computational
costs, and Archipelago inherits them. With a näıve
implementation, the time complexity per MCMC step
is O(K(N + P + M))3 and the space complexity
is O(K(N + P + M)2). There is a large literature
on sparse approximations to GPs, e.g. Quiñonero-
Candela and Rasmussen (2005), but we have not ex-
plored this topic. Mixing of Markov chains is an ad-
ditional concern, but we have not found this to be
a problem in practice due to our use of Hamiltonian
Monte Carlo. Figure 4 shows an autocorrelation plot
of the number of latent rejections during an MCMC
run on the Toy5 data.

As the computational complexity grows rapidly with

Table 1. Results from four methods applied to test data:
Archipelago, the softmax GP (SmGP), the probit GP
(PrGP) and the Null Category Noise Model (NCNM).

Arch SmGP PrGP NCNM

Toy3

1
err 0.167 0.347 0.290 0.612

perp 1.461 2.588 1.631 14.120

2
err 0.111 0.312 0.279 0.462

perp 1.565 2.769 1.350 4.801

4
err 0.042 0.118 0.142 0.114

perp 1.092 1.310 1.041 1.002

8
err 0.037 0.056 0.137 0.070

perp 1.070 1.065 1.043 1.000

Toy4

1
err 0.120 0.305 0.416 0.554

perp 2.478 3.436 1.239 16.160

2
err 0.092 0.188 0.253 0.429

perp 2.471 2.861 7.896 8.257

4
err 0.032 0.119 0.077 0.056

perp 1.469 1.505 1.343 1.113

8
err 0.025 0.061 0.088 0.0533

perp 1.135 1.076 1.086 1.009

Toy5

1
err 0.183 0.192 0.515 0.482

perp 3.766 4.519 3.533 294.758

2
err 0.124 0.181 0.178 0.365

perp 2.811 2.008 1.476 11.669

4
err 0.081 0.159 0.113 0.093

perp 2.345 1.730 1.375 1.210

8
err 0.051 0.095 0.073 0.051

perp 2.105 1.290 1.201 1.093

Wine

1
err 0.141 0.260 0.303 0.393

perp 1.928 2.790 1.769 31.832

2
err 0.135 0.292 0.213 0.393

perp 2.654 2.760 2.851 2.799

4
err 0.090 0.146 0.101 0.101

perp 1.198 2.440 1.387 1.153

8
err 0.0899 0.067 0.067 0.067

perp 1.084 1.250 1.224 1.045

Oil Pipe

1
err 0.538 0.568 0.432 0.650

perp 2.997 3.024 5.631 3.56K

2
err 0.297 0.331 0.308 0.365

perp 2.451 2.576 3.499 1.024

4
err 0.211 0.215 0.271 0.176

perp 1.658 1.864 2.558 1.301

8
err 0.068 0.053 0.068 0.038

perp 1.241 1.137 1.232 1.002

the number of latent rejections, minimizing these re-
jections is paramount. The number of latent rejections
relates directly to the mismatch between the base den-
sity π(x) and the true data density. Hyperparameter
inference as described in Section 3.4 can lower the com-
putational burden by adapting π(x) to the data, but
it is important to choose an appropriate parametric
family. In high dimensions, this choice is difficult to
make, and in the absence of significant domain knowl-
edge we expect that Archipelago will not work well in
high dimensions.

5.2. Future Directions and Model Variations

One advantage of Gaussian processes for density mod-
eling is that GPs can be applied to alternate domains.
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Figure 4. Autocorrelation plot of the number of rejections
in Toy5 with one labeled datum during MCMC simulation.

Positive definite kernels exist for spaces such as graphs
and permutation groups, and Archipelago can be ap-
plied directly to SSL problems in these domains.

In this paper we have assumed that the K GPs are in-
dependent. It may be useful to introduce dependency
between the latent functions using, for example, the
method of Teh et al. (2005). We have also assumed
that the number of classes K is known and that an ex-
ample from each class has been observed. It would be
interesting to consider a model where the number of
true classes can exceed the number of observed classes.
In this case, it may be useful to allow for infinite K.

5.3. Summary of Contributions

We presented a nonparametric Bayesian generative ap-
proach to the semi-supervised learning problem. It
works for any number of classes and does not require
any finite-dimensional approximation for inference. It
improves over mixture-based Bayesian approaches to
SSL while still modeling complex density functions.
In empirical tests, our model compares favorably with
Bayesian discriminative approaches, particularly when
little labeled data are available.
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