
COS-511: Learning Theory Spring 2017

Lecture 6: Deep Networks (take 1)
Lecturer: Roi Livni

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

6.1 Boosting

In this lecture we consider a fundamental property of learning theory: it is amenable to boosting. Roughly
speaking, boosting refers to the process of taking a set of rough “rules of thumb” and combining them into
a more accurate predictor.

Consider for example the problem of Optical Character Recognition (OCR) in its simplest form: given a set
of bitmap images depicting hand-written postal-code digits, classify those that contain the digit “1” from
those of “0”.

Figure 6.1: Distinguishing zero vs. one from a single pixle.

Seemingly, discerning the two digits seems a formidable task taking into account the different styles of
handwriting, errors, etc. However, an inaccurate rule of thumb is rather easy to produce: in the bottom-left
area of the picture we’d expect many more dark bits for “1”s than if the image depicts a “0”. This is,
of course, a rather inaccurate statement. It does not consider the alignment of the digit, thickness of the
handwriting etc. Nevertheless, as a rule of thumb - we’d expect better-than-random performance, or some
correlation with the ground truth.

The inaccuracy of the simplistic single-bit predictor is compensated by its simplicity. It is a rather simple
task to code up a classifier based upon this rule which is very efficient indeed. The natural and fundamental

6-1

6-2 Lecture 6: Deep Networks (take 1)

question which arises now is: can several of these rules of thumb be combined into a single, accurate and
efficient classifier?

In the rest of this note we shall formalize this question in the statistical learning theory framework. We
then proceed to use the technology developed earlier in the course, namely regret minimization algorithms
for OCO, to answer this question on the affirmative.

6.2 The problem of Boosting

We focus on learnability in the realizable model rather than agnostic learnability. More formally, we assume
the so called “realizability assumption”, which states that for a learning problem over hypothesis class H
there exists some h∗ ∈ H such that err(h∗) = 0.

Definition 6.1 (Weak learnability). The binary classification problem (H, χ, `0,1) is said to be γ-weakly-
learnable if the following holds. The exists a function m : (0, 1) → N, and an algorithm A that accepts
S = {(x(i), y)}mi=1 and returns an hypothesis in hAS ∈ H that satisfies:
if m > m(δ) and S is an IID sequence from some arbitray distribution, the with probability 1− δ,

err(hAS (S)) ≤ 1
2 − γ

This is an apparent weakening of the definition of statistical learnability that we have described earlier: the
error is not required to approach zero. The standard case of statistical learning in the context of boosting is
called “strong learnability”. An algorithm that achieves weak learning is referred to as a weak learner, and
respectively we can refer to a strong learner as an algorithm that attains statistical learning for a certain
concept class.

The central question of boosting can now be formalized: are weak learning and strong learning equivalent?
In other words, is there a (hopefully efficient) procedure that has access to a weak oracle for a concept class,
and returns a strong learner for the class?

Miraculously, the answer is affirmative, and gives rise to one of the most effective paradigms in machine
learning, as we see next.

6.2.1 AdaBoost

The AdaBoost algorithm Due to R.Schapire & Y.Freund [1], is one of the most useful and successful algo-
rithms in Machine Learning at large. We note that AdaBoost doesn’t have to know in advance the parameter
γ of the weak learners. Pseudo code for the AdaBoost algorithm is given in 1.

Lecture 6: Deep Networks (take 1) 6-3

Algorithm 1 AdaBoost
Input: H, ε, δ, γ-weak-learner algorithm: WL, sample Sm ∼D.
Set p1 ∈ δm be the uniform distribution over S.
for t = 1, 2 . . . T do

Find hypothesis ht ← hWL
S (pt, δT)

Calculate εt = errS,pt
(ht) :=

∑m
i=1 pt`0,1(ht(xi), yi),

Set αt = 1
2 log(1−εt

εt
)

Update,

pt+1(i) = pt(i)e−αtyiht(i)∑m
j=1 pt(j)e−αtyjht(j)

end for
Return: h̄(x) = sign(

∑T
t=1 αtht(x))

We next show that the training error of adaboost decreases exponentially fast with number of iterations:

Theorem 6.2. Let S be a training set and assume that at each iteration of AdaBoost, the weak learner
returns a hypothesis with εt < 1/2 − γ. Then the training error of the output hypothesis of AdaBoost is at
most

errS(hAS) ≤ exp(−2γ2T).

Proof. For each t denote ft =
∑t
i=1 αihi. The output of AdaBoost is fT , then. Denote:

Zt = 1
m

m∑
i=1

e−yift(xi)

For any target function f we have that `0,1(sgn(f(x)), y) ≤ e−yf(x), therefore

errS(sign(fT)) ≤ ZT

We will then show that ZT ≤ e−2γ2T . Since Z0 = 1 we can write

ZT = ZT
Z0

=
t−1∏
t=0

Zt+1

Zt

Therefore it suffices to show that for every t we have Zt+1
Zt
≤ e−2γ2 . Using a simple inductive argument, one

can show that:
pt(i) = e−yift(xi)∑

e−yjft(xj)

Next,

Zt+1

Zt
=

∑
e−yift+1(xi)∑
e−yjft(xj) =

∑
e−yift(xi)−yiαt+1ht+1(xi)∑

e−yjft(xj) =
∑

pt(i)e−yiαt+1ht+1(xi) =

eαt+1 ·

 ∑
yi 6=ht+1(xi)

pt(i)

 + e−αt+1 ·

 ∑
yi=ht+1(xi)

pt(i)

 =

√
1
εt+1

− 1 · εt+1 + 1√
1

εt+1
− 1

εt+1 = 2
√
εt+1(1− εt+1).

6-4 Lecture 6: Deep Networks (take 1)

By assumption, w.p 1− δ
T : εt+1 ≤ 1/2−γ, using monotinicity of the function x(1−x) in the interval [0, 1/2]

one can show that

2
√
εt+1(1− εt+1) ≤ 2

√
(1/2− γ)(1/2 + γ) ≤

√
1− 4γ2

Finally, using the inequality 1− a ≤ e−a we have that
√

1− 4γ2 ≤ e−(4γ2)/2 = e−2γ2 . Taking union bound,
we have that with probability 1− δ ZT ≤ e−2γ2T .

6.2.2 Generalization Bound

In our discussion so far we have focused only on the empirical error over a sample. To show generalization
and complete the Boosting theorem, one must show that the hypothesis class of the Adaboost algorithm
generalizes. Given a concept class C, let us denote by C(T), the hypothesis:

C(T) = {sign(
T∑
i=1

αihi(x)) : hi ∈ C, i = 1 . . . , T}

Lemma 6.3. Let C be a class of VC-dim(C) ≤ d then VC-dim(C(T)) = Õ(T ·VC-dim(C))1.

Proof. Again, we will bound the growh function of C(T). We can write each element f ∈ C(T) as fw ◦ gh1:T

were fw ∈ HT where HT is the class of half-spaces and gh1:T ∈ G where

G = {gh1:T : gh1:T (x) = (h1(x), h2(x), . . . , hT (x)), hi ∈ C}

Similar to the proof of Theorem 6.3 (and following Ex.2) we can show that

τC(T)(m) ≤ τH(m) · τG(m) ≤ τH(m)(τC)T ≤ mT+(T ·VC-dim(C))

The result now follows from Lemma 6.4

Corollary 6.4. Let S be a sample drawn IID according to some arbitrary distribution D. Assume that at
each iteration of AdaBoost, the weak learner returns a hypothesis with εt < 1/2 − γ. Then if m = |S| and
m ≥ Ω(VC-dim(C) logm

γε2 log 1/δ), then Adaboost outputs a hypothesis hAS such that w.p 1− δ

err(hAS) ≤ ε

Proof. If T > 1
γ2 logm we obtain that

errS(hAS) ≤ exp(−γ2T) < 1
m
.

Since there arem examples this means errS(hAS) = 0. Since hAS ∈ C(T) and VC-dim(C(T)) ≤ Õ(TVC-dim(C)),
the result follows from the fundemental theorem (Thm 3.5).

References

[1] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55(1):119–139, August 1997.

1Here the Õ notation, means we neglect logarithmic factors

