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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

19.1 Regularization

One aspect of Statistical Learning Theory is that learnability is captured, at least for classification, through
ERM. Namely, the ERM algorithm can be considered as a universal algorithm which either solves the learning
problem or the problem is not learnable.

ERM, is also known as a “Follow The Leader” approach where at each iteration we choose xt so that

xt = arg min
x∗∈K

t−1∑
i=1

fi(x∗)

While this approach works for stochasticaly chosen fi (with bounded Rademacher Complexity). It is easy
to show that in the online setting, this approach will fail.

Indeed, while the regret bounds achievable thorugh online learning are similar in spirit to those attained
in the statisitcal setting, we’ve seen that we need to “tailor” a different algorithms for different problems –
Linear classification is solved via Online Gradient Descent, while the expert problem has been solved using
an MW algorithm.

In this section we will try to connect these two algorithm by a generic meta-algorithm, where both algorithms
can be considered a special case. The algorithm we will consider is called ”Follow the Regulerized Leader”
or ”FTRL”.

Algorithm 1 Follow The Regulerized Leader
Inititalization regularization function R(x), η > 0
Let x1 = arg minx∈K{R(x)}.
for t = 1, 2 . . . T do

Play xt and observe cost ft(xt)
Set ∇t = ∇ft(xt).
Update

xt+1 = arg min
x∈K

{
η

t∑
s=1
∇>s x +R(x)

}

end for
return

We will consider in this lecture regularization function R(x) which are twice differentiable and are strongly
convex, this means that for all x ∈ int(K), the Hessian ∇2R(x) is strictly larger than zero. We denote the
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diameter of the set K relative to a function R)

DR = max
x,y∈K

√
R(x)−R(y)

We wll make use of general norms and their dual. The dual of a norm ‖ ·‖ is given by the following definition

‖y‖∗ = max
‖x‖≤1

x · y.

Every positive definite matrix A give rise to a norm ‖x‖A = x>Ax and its dual is given by ‖x‖A∗ = ‖x‖A−1 .
The generalized Cauchy Schwartz asserts that x · y ≤ ‖x‖‖y‖∗.

In our derivations, we will usually consider matrix norms with respect to ∇2R(x) (which we assume to be
p.s.d). For brevity, we will use the notation

‖x‖y = ‖x‖∇2R(y)

, and similarly
‖x‖∗y = ‖x‖∇−2R(y)

Definition 19.1. Denote by BR(x‖y) the Bregman divergence w.r.t a function R:

BR(x‖y) = R(x)−R(y)−∇R(y)>(x− y).

For twice differentiable functions, the mean value theorem and Taylor expansion asserts that the Bregman
divergence equal to the second derivative at an intermediate point:

BR(x‖y) = 1
2‖x− y‖2z

For some point z ∈ [x,y]. (i.e. z = αx + (1− α)y) for some 0 ≤ α ≤ 1). Thus we will denote

BR(x‖y) = 1
2‖x− y‖2x,y

Finally, we will consider projections that use the Bregman divergence as a distance instead of a norm.
Formally, the projection of a point y to a set K is given by

arg min
x∈K

BR(x‖y).

19.1.1 Follow The Regulerized Leader

The algorithm we will analyze in this section is FTRL depicted in Alg. 1. It is a meta-algorithm that
depends on choice of R(x) as we will later see we can derive from FTRL OGD as well as Hedge, by proper
choice of R.

Theorem 19.2. The RFTL algorithm depicted in Alg. 1 attains for every u ∈ K the followin bound on the
regret :

RegretT ≤ 2η
T∑
t=1
‖∇t‖∗xt,xt+1

+ DR

η
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In an upper bound on the local norms is known i.e. ‖∇t‖∗xt,xt+1
≤ GR, by proper choice of η we can attain

the regret bound:
RegretT ≤ 2DRGR

√
2T

To prove Thm. 19.2 we begin by analyzing the “stability” of the algorithm

Lemma 19.3. For every u ∈ K Alg. 1 guarantees the following regret bound

RegretT ≤
T∑
t=1
∇>t (xt − xt+1) + 1

η
D2
R

Proof. Denote

g0(x) = 1
η
R(x) gt(x) = ∇t · x.

By convexity we have that: ∑
ft(xt)− ft(x∗) ≤ ∇t · (xt − x∗)

Hence we only need to bound
∑T
t=1 gt(xt)− gt(u). As a first step we prove the following inequality

T∑
t=0

gt(u) ≥
T∑
t=0

gt(xt+1) (19.1)

The proof is by induction, since x1 = arg minx∈KR(x), the base case follows. For the induction step, assume
that statement is true for T ′, since xT ′+2 = arg min

∑T ′+1
t=0 gt(x), we have:

T ′+1∑
t=0

gt(u) ≥
T ′+1∑
t=0

gt(xT ′+2)

=
T ′∑
t=0

gt(xT ′+2) + gT ′+1(xT ′+2)

≥
T ′∑
t=0

gt(xt+1) + gT ′+1(xT ′+2)

=
T ′+1∑
t=0

gt(xt+1)

We conclude that
T∑
t=1

gt(xt)− gt(u) ≤
T∑
t=1

gt(xt)− gt(xt+1) + g0(u)− g0(x1)

=
T∑
t=1

gt(xt)− gt(xt+1) + 1
η

(R(u)−R(x1))

≤
T∑
t=1

gt(xt)− gt(xt+1) + 1
η
D2
R
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Proof of Thm. 19.2. Denote

Φt(x) = η

t∑
s=1
∇s · x +R(x)

Note that for the Bregman divergence if f and g differ by a linear term, then Bf = Bg, as a result we have
that BΦt

= BR:

Φt(xt) = Φt(xt+1) + (xt − xt+1)∇Φt(xt+1) +BR(xt‖xt+1)
≥ Φt(xt+1) +BR(xt‖xt+1)
= Φt(xt+1) +BR(xt‖xt+1)

Where the last inequlaity is true since xt+1 is the minimizer of Φt, over K. We thus have

BR(xt‖xt+1) ≤ Φt(xt)− Φt(xt+1)
≤ Φt−1(xt)− Φt−1(xt+1) +∇>t (xt − xt+1)
≤ ∇>t (xt − xt+1)

Where the last inequality is true since xt is the minimizer for Φt−1. Next, recall that the Bregman divergence
induces a norm which we will denote as:

BR(xt‖xt+1) = 1
2‖xt − xt+1‖xt,xt+1 := 1

2‖xt − xt+1‖t.

By the generelized Cauchy Schwartz we have that:

∇t · (xt − xt+1) ≤ ‖∇t‖∗t ‖xt − xt+1‖t
= ‖∇t‖∗t ·

√
2BR(xt‖xt+1)

≤ ‖∇t‖∗t ·
√

2η∇>t (xt − xt+1)

After rearranging we get:
∇>t (xt − xt+1) ≤ 2η‖∇t‖∗t

2

The result now follows from Lem. 19.3.

19.1.2 Application

19.1.2.1 Deriving OGD

To derive OGD from FTRL let us consider the regularization function R(x) = 1
2‖x‖

2. The FTRL update
rule is then:

minimize 1
2‖x‖

2 + η
∑
∇s · x

‖x‖ ≤ 1.

Then the solution satisfies xt+1 = −η
∑s
i=1∇s = xtη∇t. To derive the regert bound from the analysis of

FTRL we bound DR and ‖∇t‖∗t .

DR = 1√
2
√
‖x‖2 − ‖y‖2 ≤

√
2 max ‖x‖ ≤ 2

The norm ‖ · ‖∗ is given by the dual norm for ∇2R(z) = Id for some point in [xt,xt+1]: hence ‖∇t‖∗T =
‖∇t‖ = G.
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19.1.2.2 Deriving Hedge

We next show how to derive Hedge from FTRL. Let R(x) = x log x =
∑

xi log xi. R(x) is the negative
entropy function. Regulerizing distribution using R(x) leads to an algorithm that tries to minimize the
regret while prefering distributions with high entropy: such as unifrom distribution. The Hedge algorithm
indeed starts with the uniform distribution which has the highest entopy amongst all distributions over a
finite set. We have that ∇R(x) = 1 + log x. Considering the problem

minimize R(x) +
∑
∇s · x

s.t.
∑

xi = 1

Taking the Lagrangian, a solution will be optimal if it will satisfy

η
∑
∇t + 1 + log x− λ · 1 = 0

in turn we have
xt+1 = Π∆n

(
e−η

∑
∇t+λ

)
Thus taking the distribution proportional to e−η

∑
∇t will indeed lead to an optimal solution1 Next, the

regret term depends on maxx,y
√
R(x)−R(y) ≤ 2 maxx

√
R(x) = 2

√
logn Finally, recall that the norm

‖ · ‖t is given by the second derivative of R(z) at a point z ∈ ∆n and we have that ∇2R(z) = diag( 1
z ). Hence

‖∇t‖∗t
2 = ∇t∇−2R(z)∇t =

∑
zi∇2

t (i) ≤ max
i
∇2(i) = max

i
gt(i)2 ≤ 1

Plugging these magnitudes into Thm. 19.2 we obtain the known regret of

RegretT = O(
√
T logn).

1Note that we neglected the constraint x ≥ 0, but since the solution satisfies this condition, we get that in particular it is
optimal together with the given constraint


