
COS-511: Learning Theory Spring 2017

Lecture 2: ERM, Finite Classes and the Uniform Convergence Property
Lecturer: Roi Livni

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

2.1 PAC Model

In previous lecture, we defined a learning problem that is defined by a triple (χ,Y, C) of a domain χ a labeling
Y = {−1, 1} and a concept class C.

We’ve described what is a learning algorithm. A learning algorithm A, receives as input a sample S =
{(x1, y1), . . . , (xm, ym)} that is generated IID acording to some arbitrary distribution D and returns a hy-
pothesis h ∈ H from some hypothesis class.

We said that the objective of the learner A is to return an hypothesis hAS such that: if the true labeling is
from C (meaning, for some h ∈ C we have y = h(x) a.s.) then: with high probability (over the sample S)
the generalization error of the hypothesis hAS is small. This is rigorously defined in Def. 1.1

We next describe a few variations of the PAC model:

2.1.1 Variations on the PAC Model

proper/improper: We do not assume that the learner returns a target function h ∈ C, this is sometimes
referred to as improper learning. When the algorithm is guaranteed to return a target function h ∈ C
we will say it performs proper learning.

We will later observe that, putting computational issues aside, if a concept class is learnable it will be
learnable in the proper model. However, in later lectures, we will discuss computational issues and we’ll
observe that the improper settings allow us to consider a much richer class of learning algorithms.

Agnostic vs. Realizable In the realizable setting, we made the assumption that some h ∈ C achieves
zero error. In the agnostic setting, we do not make such an assumption. The objective is then to return
some target function hAS such that

err(hAS ) < min
h∗∈C

err(h∗) + ε.

Definition 2.1. [(agnostic) PAC Learning] A concept class C of target functions is PAC learnable (w.r.t to
H) if there exists an algorithm A and function mA

C : (0, 1)2 → N with the following property:

Assume S = ((x1, y1), . . . , (xm, ym)) is a sample of IID examples generated by some arbitrary distribution
D. If S is the input of A and m > mA

C (ε, δ) then the algorithm returns a hypothesis hAS ∈ H such that, with
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probability 1− δ (over the choice of the m training examples):

err(hAS ) < min
h∈C

err(h) + ε

The function mA
C (ε, δ) is referred to as the sample complexity of algorithm A.

Two sources of noise: In the agnostic model, the suboptimality of the class C may come from two
sources of noise.

First, the model does not assume deterministic labeling. i.e. D(h(x) = y) may not necessarily be 0 or 1.

Given non-deterministic labeling, if one has access to the distribution D, the optimal classifier (called
Bayes optimal) is always hbayes(x) = max0,1 D(y|x). In the agnostic model we do not necessarily assume
hbayes ∈ C.

2.1.2 Examples

Example 2.1 (Axis Aligned Rectangles). The first example of a hypothesis class will be of rectangles aligned
to the axis. Here we take the domain χ = R2 and we let C include be defined by all rectangles that are aligned
to the axis. Namely for every (z1, z2, z3, z4) consider the following function over the plane

fz1,z2,z3,z4(x1, x2) =
{

1 z1 ≤ x1 ≤ z2, z3 ≤ x2 ≤ z4

0 else

Then C = {fz1,z2,z3,z4 : (z1, z2, z3, z4) ∈ R4}.
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Example 2.2 (Half-spaces). A second example that is of some importance is defined by hyperplane. Here
we let the domain be χ = Rd for some integer d. For every w ∈ Rd, induces a half space by consider all
elements x such that w · x ≥ 0. Thus, we may consider the class of target functions described as follows

C = {fw : w ∈ Rd, fw(x) = sign(w · x)}
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2.2 Empirical Risk Minimization

Perhaps the simplest strategy for a learner to achieve its objective is the Empirical Risk Minimization
approach (ERM). Recall that the learner has access to a sample set S = {(x1, y1), . . . , (xm, ym)} and its
objective is to return a target function hAS with small generalization error. The learner does not have access
to the true distribution, hence one simple approach is to evaluate its error on the sample. Thus, given a
sample S we define the empirical error or training error of the hypothesis h:

errS(h) = 1
m

m∑
i=1

`0,1(h(xi), yi). (2.1)

A simple approach to learning is to apply the ERM rule to the restricted class of target functions we wish
to learn, C. An algorithm A is an ERM learner if it maintains as a hypothesis class H = C and for input S
returns a hypothesis hAS such that:

errS(hAS ) = min
h∈H

errS(h).

2.3 Finite Classes are Learnable – Through an ERM Algorithm

To motivate the ERM strategy, we will show that finite hypothesis classes are learnable and that an ERM
algorithm can learn them. The result follows from two well known principles: Hoeffding inequality (which
you will prove, a variant, in the home work assignment) and the union bound principle, which is a simple to
prove yet powerfull tool that will play a major role throughout the course:

Claim 2.2 (Union Bound). Let A1, . . . , At be some events then

P(∪ti=1Ai) ≤
t∑
i=1

P(Ai)

Theorem 2.3 (Hoeffding’s inequality). Let X1, . . . Xm be IID random variables such that 0 ≤ X ≤ 1.
Set X̄ = 1

m

∑m
i=1 Xi then

P(|X̄ − E(X)| ≥ t) ≤ 2e−2nt2
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Claim 2.4. Consider a finite class of target functions H = h1, . . . , ht over a domain χ. Then if S =
{(x1, y1), . . . , (xm, ym)} is a sample drawn IID from some arbitrary distribution, and if m > 2

ε2 log 2|H|
δ then

with probability 1− δ we have that

max
h∈H
|errS(h)− err(h)| < ε

Proof. For a fixed h ∈ H, consider the random variable errS(h) = 1
m

∑m
i=1 `0,1(h(xi), yi). Note that errS(h)

is the mean of m IID positive random variables bounded by 1 with expectation err(h) (namely the random
variables {`0,1(h(x1), y1), . . . , `0,1(h(xm), ym)}.

Applying Hoeffding’s inequality we obtain that for every S and fixed h:

PS(|errS(h)− err(h)| > ε) < 2e−
2m
ε2

Applying the union bound we obtain that

PS(∃h|errS(h)− err(h)| > ε) ≤ 2|H|e−
2m
ε2 .

Thus, if m = O( 2
ε2 log 2|H|

δ ) we obtain that with probability at least (1− δ)

max
h∈H
|errS(h)− err(h)| < ε

Corollary 2.5 (Finite Classes are learnable). Any finite hypothesis class is learnable. In particular, any
ERM algorithm can learn a finite hypothesis class with sample complexity m = O( 1

ε2 log |H|δ ).

Proof. We will prove the result in the agnostic model (which is stronger). Let D be some distribution over
χ × Y, and A an ERM algorithm. Given a sample S, let hAS be the hypothesis returned by algorithm A,
and let h∗ be the optimal hypothesis in the class. We know by definition that errS(hAS ) ≤ errS(h∗). On the
other hand, choosing m large enough, we have with probability at least (1− δ) that

|errS(h)− err(h)| ≤ ε

2 and |errS(h∗)− err(h∗)| ≤ ε

2

Thus we get that

err(h) ≤ errS(h) + ε

2 ≤ errS(h∗) + ε

2 ≤ err(h∗) + ε

2.4 VC–Dimension and Uniform Convergence

2.4.1 Unfirom Convergence (Glivenko–Cantelli)

We begin by defining the notion of uniform convergence. As we will later see uniform convergence is the
main property that justifies a use of a ERM algorithm. We will further see that uniform convergence is the
main property one needs for learnability.
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Definition 2.6 (Uniform Convergence Property). We say that a hypothesis class H has the uniform con-
vergence property if there exists a function m : (0, 1)2 → N such that for every ε, δ ∈ (0, 1) and for every
probability distribution D over χ, if S = ((x1, y1), . . . , (xm, ym)) is a sample of size m ≥ m(ε, δ) drawn IID
according to D then with probability at least (1− δ) we have that

sup
h∈C
|errS(h)− err(h)| < ε

The notion of uniform convergence is strongly related to the notion of Glivenko Cantelli class, and in fact
they are equivalent:

Definition 2.7 (Glivenko Cnatelli Class). Given a distribution D and a target function h : χ → {0, 1} we
consider the following random variable

|Dn(h)−D(h)| = | 1
n

n∑
i=1

h(xi)− E
x∼D

[h(x)] |,

where x1, . . . , xn are IID sample drawn by the distribution D.

An hypothesis class H is said to have the uniform convergence property (or a uniform Glivenko–Cantelli
Class) if for any distribution D over χ we have

sup
h∈C
|Dn(h)−D(h)| → 0 almost surely as n→∞.

As an example for a class with uniform convergence property, we consider finite classes. The next claim is
a direct corollary of Claim. 2.4:

Example 2.3. A finite Hypothesis class has the uniform convergence property.

In the next lecture we will define the VC dimension.


