
COS-511: Learning Theory Spring 2017

Lecture 18: Expert Advice (Hedge Algorithm) & Online To Batch
Lecturer: Roi Livni

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

18.1 Expert Advice

In the last lecture we’ve applied OGD algorithm to the expert advice problem to obtain a regret bound
of O(

√
nT). The first natural question is whether OGD obtain optimal rate? in terms of T and n. We

will see in the next lecture that we can in fact achieve a much better rate of O(
√
T logn). A good way to

obtain intuition as to the optimality of a solution is to consider an analogue stochastic setting: Suppose at
each iteration the adversary chooses gt IID. Given a sequence of IID examples g1, . . . ,gt, what is the best
strategy for the learning? One thing the learner can do is to apply a learning algorithm. Therefor a simple
ERM rule would be

xt+1 = arg min
x∗∈K

gt · x∗.

When discussing statistical learning theory we called this strategy ERM in online learning this is sometimes
referred to as follow the leader approach. Since we assume that the samples are chosen IID, we know by
radamacher theory that:

E [gt+1 · xt+1] ≤ min
x∗∈K

E [gt+1 · x∗] + Rt(K) +O

(
1√
t

)
We have analysed the Rademacher complexity of the class K: this is the class of `1 regulerized classifiers
and we have that Rt(K) ≤

√
logn
t . Thus, if at each iteration we choose the leader or apply an ERM rule we

have that: ∑
E(gt · xt)− min

x∗∈K
E(gt · x∗) ≤

∑
O(
√

logn
t

) = O(
√
T logn)

Therefore we see that, at least in the stochastic case OGD is sub–optimal. As we will see, we can achieve
the same regret bound as in the stochastic case, but we will need to use a different algorithm. Namely the
Multplicative Weight algorithm which we next discuss

Algorithm 1 Follow the Leader
Inititalization x1 ∈ K.
for t = 1, 2 . . . T do

Observe ft and suffer cost ft(xt).
Set xt+1 = arg minx∗∈K

∑
t′≤t ft′(x∗)

end for
return

18-1

18-2 Lecture 18: Expert Advice (Hedge Algorithm) & Online To Batch

18.2 MW Algorithm

We next consider a different algorithm called Multiplicative Weights, or Hedge to the expert advice problem.
Similar to the OGD algorithm, Hedge keeps weights over the different expert at each time setp and update
those according to the observed losses. In contrast to OGD the update is multiplicative:

Algorithm 2 Hedge
Inititalization W1 = 1 ∈ Rn % W1 = (1, 1, . . . , 1).
SET x1 = 1

nW1.
for t = 1, 2 . . . T do

Pick it ∝ xt. i.e. p(it = i) = xt(i).
incure loss gt(it).
Update Weights Wt+1(i) = Wt(i) · e−εgt(i)

Set xt+1(i) = Wt+1∑
j
Wt(j)

.

end for
return

Lemma 18.1. Let g2 denote the n-dimensional vector of pointwise square losses (i.e g2(i) = (g(i))2), let
ε > 0 and assume all losses g to be non-negative. The Hedge Algorithm satisfies for every expert i∗:

T∑
t=1

xt · gt ≤
T∑
t=1

gt(i∗) + ε

T∑
t=1

xt · g2
t + logn

ε
(18.1)

Proof. Set Φt =
∑T
t=1Wt(i) for all t ≤ T , and note that Φ1 = n.

Inspecting the sum of weights

Φt+1 =
∑
i

Wt(i)e−εgt(i)

= Φt
∑

xte−εgt(i) xt(i) = Wt(i)∑
Wt(j)

≤ Φt
∑

xt(1− εgt(i) + ε2gt(i)) ∀x ≥ 0, e−x ≤ 1− x+ x2

= Φt(1− εxt · gt + ε2xt · g2
t)

≤ Φte−εxt·gt+ε2xt·g2
t 1 + x ≤ ex

And by definition of expert i∗ we have that:

WT (i∗) = e−ε
∑T

t=1
`t(i∗).

Given that WT (i∗) is less then the sum of weights ΦT , we have that

WT (i∗) ≤ ΦT ≤ Ne−ε
∑

xt·gt+ε2
∑

xt·g2
t

Taking logarithm of both sides we get:

−ε
T∑
t=1

gt(i∗) ≤ logN − ε
T∑
t=1

xt · gt + ε2
T∑
t=1

xt · g2
t

And the result follows immediately.

Lecture 18: Expert Advice (Hedge Algorithm) & Online To Batch 18-3

Theorem 18.2. Apply Alg. 2 to the Online Expert problem, with ε =
√

logn
T then

RegretT = O(
√
T logN)

Proof. First observe that g2 ≤ 1 hence xt · g2
t ≤ 1. Plugging this into Eq. 18.1 we obtain that for every i∗:∑

xt · gt − gt(i∗) ≤ Tε+ logn
ε

The algorithm picks the action of expert i at iteration i according to xt hence incurs expected loss of xt · gt
overall we have that for our choice of ε:

RegretT ≤ Tε+ logn
ε
≤ 2
√
T logn

Currently, the MW algorithm and OGD algorithm seem like two completely different algorithms that happen
to solve different instances of OCO. In future lectures we will see how they can both be derived from a unifying
setting.

18.3 Online to Batch

We have already seen intuitively that some relation between online guarantees on the generalization bounds
in the stochastic setting. For example, we could derive the SGD algorithm from the OGD algorithm, and we
could achieve regret bounds that are similar to the performance of the ERM algorithm. We next show that
indeed we can always derive generalization bounds for the statistical setting from the online framework.

Theorem 18.3 (Online to Batch). Let A be an OCO algorithm whose regret after T iteration is guaranteed
to be RegretT (A). Let f1, . . . , fT be an IID sequence of convex functions bounded by 1 s.t. E(ft) = f . Then
for any δ > 0, with probability at least (1−δ) (over the sample of convex functions), it holds for x̄ = 1

T

∑
xt:

f(x̄) ≤ min
x∗

f(x∗) + RegretT (A)
T

+
√

8 log(2/δ)
T

(18.2)

Application to Learning Before proving the online to batch result, let us consider its application to
learning convex problems: Assume that (x, y) are drawn IID from some arbitrary distribution D, and we let
for every w L(w) = E(`(w; (x, y))), where we assume ` is a convex function in (w) for every (x, y). Then by
drawing and IID sequence of samplex {xt, yt}Tt=1 and applying on Online algorithm, we obtain (by setting
ft(wt) = `(wt, (xt, yt)) with probability (1− δ) that

L(w̄) ≤ L(w∗) +O

(
RegretT (A) log 1/δ√

T

)
In particular for every algorithm with regret O(DG

√
T), if T > 1

D2G2ε2 we have w.h.p

L(w̄) ≤ L(w∗) +O(ε)

Thus, we obtain a learning algorithm.

18-4 Lecture 18: Expert Advice (Hedge Algorithm) & Online To Batch

Note that we have seen this phenomena in the special case where we applied OGD algorithm for learning
and obtained the SGD algorithm.

Proof of Online2Batch The proof (as always) relies on bounding the expected error and concentration
result. The concentration inequality we will use is Azuma’s inequality for martingales:

Definition 18.4. A sequence of random variables X1, X2, . . . , is called a martingale is

E(Xt+1|Xt, . . . , X1) = Xt ∀t > 0

Theorem 18.5 (Azuma’s inequality). Let {Xi}Tt=1 be a martingale of T random variables that satisfy
|Xi −Xi+1| ≤ 1. Then:

P(|XT −X0| > c) ≤ e− c2
2T

For the proof we start by defining a sequence of martingales: Let us write Zt = f(xt) − ft(xt) and Xt =∑t
i=1 Zi. We first verify that Xt is indeed a martingale. Notice that by definition we have:

E
ft∼D

(Zt|Xt−1) = E(f(xt))− E
ft∼D

(ft(xt)) = 0

Where the last equality is true, since ft is independent of xt. Thus by definition of Zt we have that:

E(Xt+1|X1, . . . , Xt) = E(Zt+1|Xt) +Xt = Xt

In addition by the bound on ft we have that

|Xt+1 −Xt| = |Zt| ≤ 1

Applying Azuma’s inequality to the martingale X1, . . . , XT we have that:

P (XT > c) ≤ e− c2
T

By definition of XT , dividing by T and setting c =
√

2T log 2/δ we have that:

P

 1
T

∑
ft(xt)− f(xt)︸ ︷︷ ︸

Γ1

>

√
2 log 2/δ

T

 ≤ δ

2 .

A similar martingale can be defined to x∗ and we obtain analogously

P

 1
T

∑
ft(x∗)− f(x∗)︸ ︷︷ ︸

Γ2

< −
√

2 log 2/δ
T

 ≤ δ

2 .

Overall we obtain that

f(x̄t)f(x∗) ≤
T∑
t=1

f(xt)− f(x∗) = convexity

Γ1 − Γ2 + 1
T

∑
ft(xt)− ft(x∗) ≤

RegretT (A)
T

+ Γ1 − Γ2

Thus with probaibliyt at least 1− δ by our bounds for Γ1,Γ2 we obtain the result.

