An Automatic Tool for the Verification of
Bach-Style Chorales

Charles Peyser
Princeton University, Department of Computer Science

January 7, 2013

Note to the Reader

This paper is intended simultaneously as a user manual for my application and as my
Junior Paper, to be submitted to the Princeton Department of Computer Science. The
reader is assumed to understand the fundamentals of music theory and notation, including
scales, chords, inversions, and Roman numeral analysis. Should a refresher be needed, I
invite the reader’s attention to Appendix A, which describes the relevant musical notions
while assuming only the ability to read music in the treble and bass clefs. Deep
understanding of the Bach style is not assumed, and high-level descriptions of the rules of

the style are provided as needed in the body of the paper itself and in Appendix C.

An Automatic Tool for the Verification of Bach- Page 1 of 30
Style Chorales | Charles Peyser

Introduction

Johann Sebastian Bach was a Baroque composer writing in the early 18th century. Arguably,
Bach’s largest contribution to music was the development of the 4-part chorale style. Bach
arranged hundreds of prayers to be sung by choirs consisting of two male parts (bass and
tenor) and two female parts (alto and soprano). While the sopranos, who have the highest
part, sing the primary melody of the hymn, the other three parts sing lines called
“countermelodies” that individually are melodic and together harmonize the soprano part.
It is often said that in this style, one can read a score both horizontally (melodically) and
vertically (harmonically). The following is an excerpt from one of these chorales, complete

with Roman numeral analysis.

Chorale #300, phrase 1

0 =]
. ¢ te -
r- / i F#T:f
P YR
—9. g bl
—r : "
a i 6 > V4T3 ol v viio/V vV

(5]

This style is important for two primary reasons. First, it opened the door to the
development of a style of music called “counterpoint”, which involved multiple melodies
acting together to create harmony. Bach was a master of this style, and it is widely agreed

that his two-part inventions and three to four-part fugues are among the greatest pieces of

An Automatic Tool for the Verification of Bach- Page 2 of 30
Style Chorales | Charles Peyser

music ever written. Second, it laid the foundation for the use of “functional harmony” in
compositions of all types. Functional harmony refers to a set of rules regarding in what
sequences chords may appear in a piece of music. The rules of harmony and voice leading
solidified and used by Bach, a Baroque composer, were fundamental to the subsequent
work of the early classical composers like Hayden and Mozart, enhanced and experimented
with by late classical and early romantic composers like Beethoven, Chopin, and Brahms,
and finally rebelled against by late romantic composers like Wagner and transformed into a
broader, less rigid style by jazz artists. It can be said that the simple four-part chorales of

the Baroque era are part of what set the history of harmony into motion (Megill).

Because of its role as the foundation for future musical development, the Bach chorales are
studied in detail in beginner and intermediate music theory classes. Music students are
taught to analyze the chorales and to write compositions in the style. The style, however, is
characterized by complicated rules that are difficult to enforce and hard to check for, and it
is both tedious for instructors to check compositions for compliance and infuriating for

students to balance the multiple requirements of the style.

The motivating idea behind my project is that this is an opportunity for computerized
automation to make a difficult task easier to accomplish. A “full service” chorale checker,
which analyzes input for violations of the Bach style and produces a report which provides
useful information as to the integrity of the chorale does not yet exist and would likely be

very useful for the audience at which it is targeted, especially as education moves online.

An Automatic Tool for the Verification of Bach- Page 3 of 30
Style Chorales | Charles Peyser

Prior Work

The purpose of this section is to acquaint the reader with both similar projects attempted

in the field and the open-source tools used in this project.

Harmonia

Harmonia is a member of an emerging group of automatic tools for music theory education.
Created by software engineers at the University of Illinois and written in about 100,000
lines of C++, Harmonia is a general-purpose music theory tool targeted at automating
assignments and grading. Harmonia is presented in a clean GUI that allows instructors to
create assignments that incorporate musical scores to be analyzed in real time with student
input. Harmonia is a very recent application, and will be implemented in Fall "13 for music

theory courses at the University of Illinois. (Harmonia)

Many music theory classes aim to teach students in two ways - analysis and composition.
Harmonia is targeted at the analysis angle. Students can be asked to provide a Roman
numeral analysis of a score, and have their responses compared to an analysis submitted
by the professor to produce a grade report. Compositional elements are also targeted in
the software, but to a less comprehensive degree. For example, an assignment can be
created in Harmonia that asks the student to fill in or move certain voices in order to fit a
provided Roman numeral analysis. The automatic grading of an entire student
composition in some particular style, however, is yet to be supported. It is that problem (in
the Bach chorale style) which my application seeks to address.

An Automatic Tool for the Verification of Bach- Page 4 of 30
Style Chorales | Charles Peyser

Music21

Music21 is a set of Python modules created by Professor Michael Cuthbert and his team at
MIT, self-described as “a toolkit for computer-aided musicology”. Fundamentally, music21
is a group of Python data types that encapsulate musical data together with an elaborate
parser class that populates those data structures from any one of a number of musical
formats. In particular, a musicXML (see below) formatted file can be parsed intoa score
object, which in turn contains methods to break the score down into voice objects, chord

objects, note objects, and the like for easy analysis.

As will be described in detail below, music21 provided most of the data structures used by
my analyzer. The process described above of parsing and then breaking down score

objects proved fundamental to the completion of this tool in one semester.

Music21 is licensed under the Lesser GNU Public License, meaning that the modules are
open source and can be freely downloaded from the group’s website. Furthermore, it is
legal to use to music21 in closed-source applications so long as the version of music21 used
is freely editable by users. Thus, although I intend to freely distribute the source code for
this project, I could presumably sell the software and owe nothing to the creators of

music21 (Music21).

MusicXML

MusicXML is a widely accepted textual format for sheet music, designed to allow sheet

music to be shared by a variety of applications in a way that allows it to be dynamically

An Automatic Tool for the Verification of Bach- Page 5 of 30
Style Chorales | Charles Peyser

changed. That is, since musicXML represents sheet music by tracking its musical elements
as opposed to maintaining a graphic of the score, software that uses it can change notes,
keys, chords, and formatting with ease. Since the creation of musicXML in 2004 a large
corpus of music has been collected and stored in that format. In particular, all 361 of the
Bach chorales in musicXML format are freely available on the Internet (JSBChorales). As
such, it is a clear choice of format for applications like Harmonia and music21.
Furthermore, since a student using any standard notation software can save his or her
work as a musicXML file, it provides the bridge between the student and the software that

is necessary for the present project (MusicXML).

MuseScore, Finale, Sibelius

MuseScore, Finale and Sibelius are popular examples of musical notation packages that
provide a musician with an easy interface for writing music to a format like musicXML.
These programs typically display an interactive score to the user, who can drag and drop
notes, rests, and other musical objects into the staves. They often include other
composition tools, like audio rendering and playback from a library of synthesized
instruments. Each package has its own advantages and disadvantages; while MuseScore,
for example, is free and open source, paid software like Finale or Sibelius is more robust
and less buggy. While MuseScore was used in the development of this application, any
software that saves to musicXML format is a feasible interface between the user and the

chorale analyzer (MuseScore, Finale, Sibelius).

An Automatic Tool for the Verification of Bach- Page 6 of 30
Style Chorales | Charles Peyser

Romantext

While musicXML has been around for long enough to become widely accepted and
integrated into most relevant platforms, no standard yet exists for computer-readable
roman numeral analysis notation. This problem stems from the fact that computerized
sheet music was originally born out of a need for musicians to share and edit scores, and
was not motivated by the prospect of large-data analysis until recently. As such, the
automatic reading of roman numeral analyses has yet to become standard in the field, and
in fact the problem of automatically generating roman numeral analysis without error

remains unsolved.

) "

As such, I have chosen to use Princeton professor Dmitri Tymoczko’s “romantext” format,
primarily because music21’s romanText class can read it (Music21). I have been unable
to find a description of the format online and had to learn the convention by inspection; I

have thus included instructions as to how romantext notation works in Appendix B.

Functionality

The purpose of this section is to acquaint the reader with the specific capabilities of the
program and to provide instructions as to how to use it. The program runs in the command
line on any machine with Python 2 installed. Music21 must also be downloaded and
installed in order for my program to run. The program takes two command-line

arguments:

An Automatic Tool for the Verification of Bach- Page 7 of 30
Style Chorales | Charles Peyser

1) The name of the file containing the chorale to be verified in musicXML format.
A chorale can be saved as a musicXML file from almost any musical notation
software.

2) The name of the file containing the roman numeral analysis of the provided
chorale in romantext format (optional). If provided, the program will run checks
relevant to harmony and to the roman numeral analysis. If not provided, that entire

battery of tests will be skipped.

Suppose [were interested in checking the following score for Bach-style errors. The

chorale and analysis appear below, with errors in the chorale boxed in red:

')
| | | |
1 F ‘ 1 | 1
e e e e s e
PY) | L Il | I | I [
o/
o)
| | 4 | p— I | 4 [— m
| | 1 1 1 p— 1 | 1 1 1 | n n
Il - 1 | | | 1 | I I }
ﬁjﬁ:ﬂ o [PHe FHe === Las & o
— NN }
1 1 | I 1 — T | T = tj
5] S g —H W
o/
)
o o * > - .
m%: — _#P ™ - i T e I
! | ! I=I 1 1 ‘_ 1 | d |
1 1 | 1 1 1 1 1
1 T T H T '
o/
An Automatic Tool for the Verification of Bach- Page 8 of 30

Style Chorales | Charles Peyser

1

ml

#

I

12

ie

e
le

Page 9 of 30

An Automatic Tool for the Verification of Bach-

Style Chorales | Charles Peyser

Composer: J. S. Bach

BWV: 153.1

Title: Ach Gott, vom Himmel sieh' darein

Analyst: Andrew Jones

Proofreader: Dmitri Tymoczko and Hamish Robb

Note: please email corrections to dmitri@princeton.edu

Time Signature: 4/4

Form: chorale

Note: piece has decidedly minor-mixolydian feel

md b4 a: V

ml i b2 viio6 b3 i6 b4 V4/3 b4.5 i

m2 V6 bl.5 V6/5 b2 i b3 V || b4 viiob6/5

m3 i6 b2 V b2.5 V7 b3 VI b4 iiob

Note: reasonably common cadential figure in m4. If G# is an incomplete neighbor, it is
i6/4, otherwise III+6 with A as a regqular neighbor.

m4 i6/4 b2 V b3 1 :|| b4 G: V6

mdvarl III+6 b2 V b3 1 || b4 G: V6

m5 I bl.5 e: viio6 b2 i b3 V b3.5 V2 b4 i6 b4.5 viiob
Note: parallel fifths evaded by voice crossing in m. 6
m6 1 b2 ivé b3 V || b4 1

mévarl i b2 iio6/4 b2.5 ii/o4/3 b3 V || b4 1

m7 a: VI b2 i6 b3 V b4 i

m8 i6 b2 Vb3 i || b4 i

m9 V6 b2 i b3 iv6 b4 viio7/IV

ml® IV b2 viio7/V b3 V

[would execute the following Python command:

python choraleAnalyzer.py riemenschneider@03.xml riemenschneider@03.txt

where riemenschneider®03.xml is areference to the musicXML version of the
choraleand riemenschneider@@3. txt isareference tothe romantext file. I

would receive the error report on the next page printed to the terminal.

An Automatic Tool for the Verification of Bach- Page 10 of 30
Style Chorales | Charles Peyser

Parallel Intervals

Voice Leading Zero Order

Harmony

-— - - Chorale Analyzer- - - -
Scanning for parallel unisons
No parallel unisons found
Scanning for parallel octaves
No parallel octaves found
Scanning for parallel fifths
No parallel fifths found
Checking ranges
All parts in range
Checking distances between parts
Interval betweeen alto and soprano greater than an octave in measure
Interval between tenor and alto greater than an octave in measure 10
Interval between tenor and alto greater than an octave in measure 10
Checking for voice crossings
Tenor/Alto voice crossing in measure 6
Tenor/Alto voice crossing in measure 6
7
7

Tenor/Alto voice crossing in measure
Tenor/Alto voice crossing in measure
Checking for tritones
Tenor makes tritone in measure 3
Tenor makes tritone in measure 6
Checking for repeated bass notes
No repeated bass notes
Verifying that Roman Numeral Analysis in fact reflects the score
Incorrect chord root in measure 2 beat 1.5
No chord found for roman numeral in measure 4 beat 4
Validating chord progressions in Roman Numeral Analysis
Measure 9: The seventh degree chord must appear in first inversion.
Measure 10: The seventh degree chord must appear in first inversion.
Measure 2: Invalid progression from V to viio6/5.
Measure 3: In minor, V goes to vi6, not vi
Measure 3: Invalid progression from iio6 to i6/4.
Bachness Score: 0.874168576635
—_—— - - Analysis Complete - - -

An Automatic Tool for the Verification of Bach- Page 11 of 30
Style Chorales | Charles Peyser

We see that there are three broad categories of checks:

1) Chorale-centric checks, which use only the musicXML file. These include:
a. Parallel Intervals - checks for parallel unisons, fifths, and octaves?
b. Voice Leading - checks for other violations involving a pair of adjacent
chords. Includes checks for tritones? and repeated bass tones3.
c. Zero Order - checks involving only one chord. Includes validation of part
ranges*, distance between parts®, and voice crossings®.
2) Checks relevant to the roman numeral analysis, which use only the romantext file.
These include”:
a. Validation that chords of correct modality are used, given the key.
b. Checks for incorrect progressions, ex. V to IV.

c. Checks that appropriate chord inversions are used.

1 A parallel interval refers to an equal interval occurring between two parts in
adjacent chords. For example, the below phrase exhibits a parallel unison in the
bass and alto:

T

2 In the Bach chorale style, a sequence of two tones in a part may not make a tritone.
This is not because of the sound of the chord created, but simply because tritones
are difficult to sing precisely.
3 Repeated bass tones across adjacent chords are thought to deprive the harmony of
its sense of movement.
4 This rule arises simply from the range of the human voice. The specific note
ranges by part used are given in the “Design” section below.
5> Adjacent parts (excluding tenor/bass) are required to be within an octave of each
other at all times.
6 A voice crossing occurs when a part that is supposed to be above its neighbor is in
fact below it. For example, a voice crossing would occur if the soprano voice were
lower than the alto.
7 For lack of room here, an explanation of the Bach harmony rules is given in
Appendix C.
An Automatic Tool for the Verification of Bach- Page 12 of 30
Style Chorales | Charles Peyser

3) Roman Numeral Analysis validation, which compares the musicXML file to the

romantext file and points out inconsistencies.

It is interesting to note that Bach in fact wrote the sample chorale given above, with all of
its Bach-style violations. It is not at all unusual for Bach to violate the chorale rules in his
work; in fact, almost every Bach chorale includes some kind of Bach-style “error”. For that
reason, it is not entirely true to the style to make absolute judgments as to whether a
student chorale is in the Bach style or not based on adherence to the rules. Itis more
reasonable to measure degrees of conformity with the Bach style by determining how often

Bach violates each rule himself and weighting the rules accordingly.

In addition to the results of the checks, the program prints a “Bachness” score for the
chorale. A chorale’s Bachness is a numerical metric that seeks to give the degree to which
the chorale is consistent with the Bach rules. The Bach chorales on average have a
Bachness of 1; scores greater than 1 indicate a chorale which violates the Bach rules more

often than the chorales themselves and visa versa.

The computation of the Bachness score requires data on the chorales themselves, which
was collected by running the program on the first 70 Bach chorales®, comprising 1006

measures of music. From this data, it was possible to construct the following chart:

8 Of course, it would have been better to use all 361 of the chorales. Unfortunately, I
was only able to obtain roman numeral analysis for the first 70 chorales.
An Automatic Tool for the Verification of Bach- Page 13 of 30
Style Chorales | Charles Peyser

Error Total Violations Average Violations Per Measure

Parallel Unison 0 0
Parallel Fifth 22 0.021868787
Parallel Octave 2 0.001988072
Bass Out of Range 82 0.081510934
Tenor Out of Range 6 0.005964215
Alto Out of Range 1 0.000994036

Soprano Out of Range 0 0
Soprano/Alto Closeness 22 0.021868787
Alto/Tenor Closeness 76 0.07554672
Bass/Tenor Voice Crossing 41 0.040755467
Tenor/Alto Voice Crossing 94 0.093439364
Alto/Soprano Voice Crossing 29 0.028827038
Tritone 48 0.047713718
Repeated Bass 35 0.034791252
Incorrect Chord Inversion 38 0.03777336
Incorrect Chord Modality 79 0.078528827
Invalid Chord Progression 94 0.093439364

These data provide the foundation for the Bachness computation. For any chorale, the
program tallies up errors and produces a similar chart, tracking average violations per
measure and comparing it to the data on the Bach chorales themselves. The program then
computes the ratio of violations per measure in the student chorale to violations per
measure in Bach for each individual error type (errors which occurred zero times are
approximated as having occurred once, to avoid division by zero). Averaging these ratios

gives the submission’s Bachness.

The motivation of developing the Bachness score was to bridge the gap between automated
error checking and automated grading for student submissions. Unlike the judgement of a
human grader, Bachness is an objective measure of a chorale’s conformity with the Bach

rules that accounts for the degree to which each rule is reflected in Bach’s work.

An Automatic Tool for the Verification of Bach- Page 14 of 30
Style Chorales | Charles Peyser

Design

The purpose of this section is to describe the techniques and data structures used to
accomplish the task of chorale verification. The program is implemented in Python,
primarily using music21 data types as described above. The code is organized in a three-
tiered module-based system, as illustrated in the module interaction diagram on the next
page. Blue boxes indicate Python modules, and blue arrows indicate the primary direction
of data flow between them. The arrows are labeled with the data structure that is passed

between the modules.

An Automatic Tool for the Verification of Bach- Page 15 of 30
Style Chorales | Charles Peyser

Chorale

Chorale, rntext———

Level 2

checkParallels.py

checkVolceleading.py

checkZeroOrder.py

checkParal lelUnison
5.py

checkParallelOctave
s.py

Chordi

checkTritones.py

checkRepeatedBass.
Py

fication

checkRargespy

checkCoseness.py

Shees checkVol ceCrossing.

PY

Chorale, romanNumerals

romanNumeralks

checkProgression.py

progressionChedker.
Py

An Automatic Tool for the Verification of Bach- Page 16 of 30

Style Chorales | Charles Peyser

We see that the program is executed with a call to choraleAnalyzer. py, which parses
the musicXML file into a music21 score object (called “chorale” in the chart and in the
code), parses the romantext file into a music21 romanText object (called “rntext”), and
passes relevant data down to the second tier of modules. These modules then do some
preliminary parsing and pass data down to the third tier of modules, which contains
functions that return Python lists of strings containing error messages to the second tier
functions. The second tier functions then call printErrors () fromtheutilities.py
module, which prints those error messages to the terminal. While I do not want to belabor
the topic by describing code, | will describe at the general level the methods and data

structures used to implement each second tier family of tests.

1) checkParallels.py: Unlike other checks, [was able to not only utilize music21
data types but also music21 methods in order to accomplish parallel interval
identification. The music21 theoryAnalysis.theoryAnalyzer module
contains a number of methods that operate on the score data type and return
VoiceleadingQuartet objects, which encapsulate pairs of parts moving from
one chord to a second. In particular, the getParallelFifths(),
identifyParallelOctaves(),and identifyParallelUnisons()
methods are called on the “chorale” score objectin order to produce appropriate
error identification.

2) checkZeroOrder.py: Single-chord analysis relies on the music21
voiceLeading.verticalSlice object, which, as the name suggests, encapsulates data

regarding a vertical “cross-section” of the chorale, including its chord type and the

An Automatic Tool for the Verification of Bach- Page 17 of 30
Style Chorales | Charles Peyser

four (or fewer) tones that comprise it. The verticalSlice object is useful because it
comes with a getVerticalSlice() method which operates on score objects and returns
a Python list of verticalSlice objects corresponding to each simultaneous quartet of

tones. That s, a phrase like

1

R

will generate two verticalSlice objects, one for <B, F, B, D> and one for <C, F, B, D>.
This feature is necessary because both chords are subject to the Bach rules. Parsing
into a Python list of verticalSlice objects called “slices” is done in the second tier
module. The list is then passed to three third tier modules:
a. checkRanges.py: Flags violations of the following range restrictions:
i. Soprano: c4 to g5
ii. Alto: g3 tod5
iii. Tenor: c3 to g4

iv. Bass: f2toc4

These checks can be done easily because the music21 pitch class has a built-

in comparator.

b. checkCloseness.py: Verifies that adjacent parts are sufficiently close to each

other at all times. In particular, adjacent parts must be within an octave of

An Automatic Tool for the Verification of Bach- Page 18 of 30
Style Chorales | Charles Peyser

each other, except for the bass part, which can differ from the tenor part by
more than an octave. Validating closeness is tricky because the music21

interval class does not have a built in comparator: that is, a line like
interval.Interval(chord[1], chord[0]) > interval.Interval('P8")

will not work. The solution that was implemented after some thought
involves using the interval class’ cents attribute, which gives an integer
metric on the size of an interval (a half step is 100 cents, a whole step is 200
cents, ect.) for purposes of comparison.

c. checkVoiceCrossing.py: Returns an error message for instances of voice
crossings between adjacent parts. Since pitch objects can be compared in
music21, this is easy to implement.

3) checkVoiceLeading.py: This module covers two-chord checks which are not checks
for parallel intervals. In particular, it contains:

a. checkTritones.py: Flags tritone intervals in any part. The same verticalSlice
object that was used for validating zero-order rules was used here. While
interval objects cannot be compared using “<” and “>” in music21, they can
be checked for equality. It became known during testing however that this
check only considers intervals of the same spelling to be equal, that is, the
interval between a C and an F# would not be considered equal to the interval
between a C and a Gb, because, while they are both tritones, the first is an
augmented fourth while the second as a diminished fifth. The solution to this

problem that I implemented involves the creation of a custom check for an

interval’s equality with the tritone, implemented by maintaining a list of all

An Automatic Tool for the Verification of Bach- Page 19 of 30
Style Chorales | Charles Peyser

varieties of tritone intervals and trying the music21 interval equality check
on each element in the list.

b. checkRepeatedBass.py: Points out repeated bass tones. Identifying
repeated bass tones is tricky because it is difficult to distinguish between
connected tones and separate tones in a verticalSlice reduction. For example,
the following phrase would generate two verticalSlice objects (because of the
two tones in the alto part), and the C in the bass would look like a repeated

tone.

s

[was unable to find a data structure in music21 which addressed this
problem. The solution that I implemented involves the use of the chordify
method, which acts on the score object “chorale” to produce a Python list of
chord objects which comprise the chorale. From that list a list of bass tones
was constructed, maintaining as properties the measure number and the
number of beats from the beginning of the chorale (this is computed by
adding the beat to the time signature times the measure number). These

properties had to be explicitly tracked because music21 does not support the

An Automatic Tool for the Verification of Bach- Page 20 of 30
Style Chorales | Charles Peyser

extraction of a part from a list of chords in a way that preserves beat and
measure®. Finding repeated bass notes given such a construction is matter
of comparing each adjacent pair in that list and determining if, for the first
note, the number of beats from the beginning of the chorale plus the duration
of the note is less than the number of the beats from the beginning of the
chorale of the second note. Under that condition, the bass note can be
identified as having been repeated.

4) checkHarmony.py: This module consists of both the comparison of the provided
Roman numeral analysis to the chorale and the validation of the chord progressions
in that Roman numeral analysis. This module was difficult to create because
music21 only provides basic support of the romantext format, does not provide any
data structures for the comparison of a roman numeral analysis to a Bach chorale,
and does not provide methods for comparing an analysis to the Bach rules of
harmony. The module I created does some initial parsing, so that it passes a Python
list of RomanNumeral objects down to verifyRNA.py rather than a romantext file.
Two checks are implemented:

a. verifyRNA.py: This module points out inconsistencies between the provided
roman numeral analysis and chorale. I define a correct Roman numeral
analysis as a set of Roman numerals, each of which line up with a chord that
it correctly describes. The implemented procedure for validating a Roman

numeral analysis involves the creation of a pair of Python lists of two-

9 This likely arises from the fact that music21 is intended to address music which
generally is not chord-to-chord, by nature. That is, the separation of parts from a
sequence of chords is a counterintuitive notion outside of the chorale style.
An Automatic Tool for the Verification of Bach- Page 21 of 30
Style Chorales | Charles Peyser

element lists. The first, called “numlList”, is derived entirely from the list of
RomanNumeral objects. It has as its first element a decimal value in the form
m.b where m is a measure number and b is a beat number, and as its second
element the music21 RomanNumeral object that occurs at that measure and
beat. Note that not all beats in a measure are present in “numList”; only
those at which a Roman numeral occurs are represented in the list. The
second list, called “chordList”, is defined entirely from the Python list of
chord objects derived from the score object “chorale” using the chordify
method. It has as its first element a similar decimal value representing
measure and beat and as its second element a chord object representing the
chord that occurs at that measure and beat in the chorale. The two lists
interface in a nested for loop that, for each RomanNumeral object in numList,
searches chordList for a chord with the same beat and measure. If no chord
is found, an error message is returned. If a chord is found, the chord and
roman numeral are compared by a helper method which checks that that
they represent the same chord in the same inversion.

b. checkProgression.py: My implementation for the validation of the chord
progression in a roman numeral analysis relies on a rather elaborate object
called a progressionChecker, which I have defined in the module
progressionChecker.py. The module is complex and went through several
rounds of development, as it was difficult to create a data structure to
encapsulate a set of rules as general as functional harmony, and which

remains invariant under modulation. The notion behind the

An Automatic Tool for the Verification of Bach- Page 22 of 30
Style Chorales | Charles Peyser

progressionChecker object is that for our purposes a chord progression can
be checked by considering only each numeral on its own and each adjacent
pair of numerals. As such, a progressionChecker can be “loaded” with either
one RomanNumeral object or two, and can validate the correctness of that
input with a call to its isValid() method. More specifically, a
progressionChecker object contains as instance variables a large group of
functions (the possibility of having functions as data types is a convenient
feature of Python for this application), each which check either a single
numeral or a pair of numerals for some violation in particular. Initialization
occurs in two parts. First the class constructor is called with only the mode of
the chorale as an argument. In the constructor that subset of the checker
functions that is relevant to the given modality is selected and used to
populate two Python lists, “singleChecks” and “doubleChecks”, which
respectively contain methods to check single numerals and methods to check
pairs of numerals. Then, a call is made to the class’s setChord or setChords
method in order to load up the class with either a single numeral or a pair of
numerals. Which of those two methods is called determines which set of
tests, singleChecks or doubleChecks, will be run when isValid() is called.

The module checkProgression.py itself is essentially client code to the
progressionChecker data type, loading up the object sequentially with each
numeral or pair of numerals and calling isValid(). Modulations are handled
by recursive calls that create new progressionChecker objects and append

the generated list of error messages to those generated for the previous key.

An Automatic Tool for the Verification of Bach- Page 23 of 30
Style Chorales | Charles Peyser

While not ran during execution of the chorale analyzer itself, the testBach. py module
merits brief discussion. The module is a script that runs the chorale analyzer on a given
number of Bach chorales and computes the total number of violations of each rule. It
makes use of the errorTracker object (definedinutilities.py), which does string
parsing on the output of the program to populate local fields that represent the number of

errors occurring over a large set of chorales.

Evaluation

Ideally, testing for a program such as mine would involve running the code on a large
number of student-written chorales and comparing the application’s output to that of a
human grader. That way, it would not only be possible to confirm that each of the checks in
fact work but also to compare the ability of the program to identify errors to that of a
typical graduate student teacher’s assistant. It would also be possible to demonstrate the
objectivity of the Bachness score as a grading metric in comparison to judgments made by

human graders.

Unfortunately, because Princeton’s relevant music theory class does not return grades on
its chorale-style composition assignment until after the end of the semester, I was unable to
obtain the body of data necessary to conduct these tests in time for this paper’s deadline.
Given this limitation, [developed a battery of tests that involves the introduction of
erroneous music into an arbitrary selection of actual Bach chorales. One chorale (and

corresponding roman numeral analysis) was created for each family of checks, and the

An Automatic Tool for the Verification of Bach- Page 24 of 30
Style Chorales | Charles Peyser

output of the program on that input was compared against the list of relevant errors

deliberately written into the chorale. The tests and results are as follows:

1. Parallel Intervals: Changes were made to Bach’s 10t chorale that introduced two
instances each of parallel unisons, parallel fifths, and parallel octaves over a number
of pairs of parts. The program correctly identified all six errors.

2. Ranges: Changes were made to Bach’s 6t chorale that, for each of the four parts,
were above and below the ascribed range once. The program correctly identified all
eight errors, although by the nature of the implementation it identified a violating
part only once per measure, even if that part violated the rule on multiple
consecutive notes.

3. Distances Between Parts: Changes were made to Bach’s 22rd chorale that violated
the octave limitation on distances between parts. The rule was violated three times
between the soprano and alto parts and three times between the alto and tenor
parts. The program correctly identified all six errors.

4. Voice Crossings: Changes were made to Bach’s 46t chorale that caused voice
crossings between each adjacent part in several locations. The program correctly
identified all seven errors.

5. Tritones: Changes were made to Bach’s 16t chorale that introduced a large number
of tritones. Both ascending and descending tritones were included, of both the
augmented 4th and diminished 5t variety. The program correctly identified all
twelve errors.

6. Repeated Bass: Changes were made to repeat bass tones. Bass tones were repeated

in the same measure and across measures. The program correctly identified all
An Automatic Tool for the Verification of Bach- Page 25 of 30
Style Chorales | Charles Peyser

Seven errors.

7. Harmonic Progressions: Changes were made to the roman numeral analysis of
Bach’s 45t chorale. These changes introduced a number of harmonic errors,
including incorrect chord modalities given key, incorrect use of borrowed chords,
and incorrect inversions. A resolution IV/V to V/V was included to ensure that the
program tolerates a borrowed chord preceded by its own subdominant. The
program correctly identified eleven of the twelve errors. The error that the
program failed to identify occurred over a modulation. Because of the initialization
ofanew progressionChecker object at each modulation, the program does not

check for two-chord errors that occur as the key changes.

Other Known Limitations

The previous section identified a limitation of the program. This section describes known

bugs and limitations.

1. The user will find that the program runs substantially slower than would be ideal,
taking between five and ten minutes on twenty measures of music. The culprit is
the getVLQs method inside the theoryAnalysis.theoryAnalyzer in
music21 that, as the name suggests, retrieves all possible VoicelLeadingQuartet
objects from the score and is integral to the process of searching the chorale for
parallel intervals. The music21 developers have been made aware of the speed
issue with this method. In consultation with my advisor, I have included an option

in execution that skips the checks for parallel intervals. If a third argument (of any

An Automatic Tool for the Verification of Bach- Page 26 of 30
Style Chorales | Charles Peyser

kind) is provided to the program, that condition will be activated and execution will
complete in several seconds without printing parallel intervals. I hope to release an
update of the software that uses a custom getVLQs method to retrieve only the
data that are needed for parallel interval checking.

2. Testing revealed some amount of unpredictable behavior in the verifyRNA. py
module, which, as described above, checks consistency between the provided
chorale and roman numeral analysis. In particular, ornamental objects such as
decorated bar lines were shown to disrupt the modules inner measure counting,
leading to a number of false error identifications. Further investigation revealed
that the measure renumbering was in fact a failure of the MuseScore
implementation, which breaks measures that include such ornaments into two in
the musicXML <measure number> header read by the music21 parser. In
consultation with my advisor, I determined that such implementation details are
outside of my control as a programmer, and I will content myself with warning the

user of possible issues with this function in particular.

Future Work

With only a few months to design and write this program, there’s quite a bit that I wish that

[could have done to make the program more useful. In particular:

1) While the program covers what are widely considered the most essential of the

Bach rules, there are a few checks that [would like to have added. For example, |

An Automatic Tool for the Verification of Bach- Page 27 of 30
Style Chorales | Charles Peyser

think that it would be valuable to be able to check that the leading tone is always
resolved down by step, that two leaps do not occur simultaneously in one part, and
that the numerals in a Roman numeral analysis not only each represent a chord in a
chorale, but together cover all of the chords in the chorale.

2) An automated chorale analyzer opens the door to rigorous statistical analysis of the
Bach chorales themselves, which can inform grading standards for student
compositions. The “Bachness” score is an example of this, but there is potential for
much more sophisticated implementation. For example, chord progressions could
be compared against gathered data so that error messages like “illegal progression
from IV6 to iv” could be replaced by “Bach uses progresses from IV6 to iv in only
0.5% of cases; consider revising”.

3) If this program is ever to be implemented for a non-technical population at the
classroom level, it may require a GUI. I originally envisioned a program integrated
with some open-source musical notation software (like MuseScore) such that, with
the push of a button, the input that is in the score at that moment is checked for
errors. [imagine that the integration of my program with a GUI would not be all
that complicated; the only real change to the current code would have to be in the
printErrors() methodinutilities.py, which would not flag errors in the
score rather than print them to the terminal. That is, it is an immediate implication
of the design decision to interface with the user through musicXML and romantext
formatted data that error checking is entirely abstracted from the method of input.
Furthermore, the decision to modularize the code into individual, non-codependent

families of checks opens the door to real-time partial chorale validation. In other

An Automatic Tool for the Verification of Bach- Page 28 of 30
Style Chorales | Charles Peyser

words, an online program could practically implement checks as needed according
to user input, rather than run the entire program at each change of a note. It is thus
conceivably possible to implement a GUI that checks input even as it is being

entered.

While there is certainly much that can be done to improve the tool, I expect to see the

program utilized in its current state. In particular, Dr. Andrew Lovett of the Princeton
Department of Music has expressed his intention to implement the tool in the relevant
music theory class at Princeton, and Dr. Michal Cuthbert at MIT has expressed interest

in publishing the code as a sample application on music21’s website.

Acknowledgements

[owe deep thanks to Dr. Robert Dondero of the Department of Computer Science at
Princeton, who spent a great deal of time helping me to understand the programming
challenges associated with this project in his role as the advisor to my independent
work. I also owe thanks to Dr. Dmitri Tymoczko of the Department of Music at
Princeton, who in his classes inspired my interest in computational music theory and
who made himself available by email throughout the semester to answer questions
regarding design and implementation. Finally, this project could not have even been

attempted without the work of Michael Cuthbert and the music21 team.

An Automatic Tool for the Verification of Bach- Page 29 of 30
Style Chorales | Charles Peyser

Works Cited

"Finale Music Notation Software Products for Music Composition." Finale. N.p., n.d. Web.
06 Jan. 2014. <http://www.finalemusic.com/>.

Harmonia. N.p., n.d. Web. 30 Dec. 2013.
<http://camil.music.illinois.edu/software/harmonia/>.

"JSBChorales.net: Bach Chorales." JSBChorales.net: Bach Chorales. N.p., n.d. Web. 30 Dec.
2013. <http://www.jsbchorales.net/index.shtml>.

"MuseScore." MuseScore. N.p., n.d. Web. 06 Jan. 2014. <http://musescore.org/>.

"MusicXML for Exchanging Digital Sheet Music." MusicXML. N.p., n.d. Web. 30 Dec. 2013.
<http://www.musicxml.com/>.

"Sibelius - the Leading Music Composition and Notation Software." Sibelius - the Leading
Music Composition and Notation Software. N.p., n.d. Web. 06 Jan. 2014.
<http://www.sibelius.com/home/index_flash.html>.

Tymoczko, Dmitri. "Review of Michael Cuthbert, Music21: A Toolkit for Computer-aided
Musicology (http://web.mit.edu/music21/)." MTO 19.3: Tymoczko, Review of
Cuthbert, Music21. N.p., June 2013. Web. 30 Dec. 2013.

<http://mtosmt.org/issues/mto.13.19.3 /mto.13.19.3.tymoczko.php>.

An Automatic Tool for the Verification of Bach- Page 30 of 30
Style Chorales | Charles Peyser

Appendix A: Basic Music Theory

This section will cover the fundamentals of music theory that are necessary to understand this
project. | will address the following topics:

1. Intervals
2. Scales and Key
3. Chords

Intervals

The musical distance that separates two tones is said to be the interval between those tones.
Intervals are categorized according to the seven tones in a Pythagorean scale. That s, in the
absence of a key signature, we can make the following designations:

&
— & - 1
o $ ¢ 4 & &
Second Third Fourth Fifth Sixth Seventh Octave

These designations are known as interval “numbers”. An interval number by itself, however,
leaves ambiguity as to the precise distance between two tones. Consider that a “third”
describes both of the following intervals.

A A
IA
— %_’%4_’:
)
A third Also a third

For this reason, musicians speak of interval “qualities” as well as numbers. In the example
above, the third separating a G and a B would be called a “major” third, while the interval
separating a G and a Bb would be called a “minor” third. The following table quantifies
intervals by the number of semitones (the distance between two adjacent keys on a piano) they
contain. Note that there is redundancy — an augmented fifth is the same as a minor sixth but for
notation. Also note that this list is not exhaustive and that more obscure interval designations
exist for particular circumstances.

Interval Number Interval Quality Semitones Example
Second Minor 1 g _
Major 2 g |
Third Minor 3 __
Major 4 g |
Fourth Diminished 4 A
Perfect 5 _
Augmented 6 .
(tritone) m -
ANV -]
D) :
Fifth Diminished 6 A
(tritone) g
Perfect 7 g
Augmented 8

C,@N:)
o

Sixth Minor 8
Major 9

Seventh Minor 10
Major 11

Octave (Perfect) 12

Scales and Key

A “scale” is an unordered collection of tones. For example, the following scale (one version of
the “diatonic” scale) contains all of the main notes in the melody of “Let it Be”, by The Beatles,
and “Stairway to Heaven” by Led Zeppelin:

A B,CD,EFG

While in general scales can contain any tones, this scale conveniently contains no accidentals
(black keys on the piano).

A “mode” is an ordered scale. That is, a mode is a scale with one note designated as the “tonic”
or musical center of the arrangement, and the others by the number of the interval they make
with the tonic. The Beatles in “Let it Be”, for example, choose a mode by designating C as the
tonic in the scale above, which makes the “key” of the piece C major and provides the bright,
happy sound characteristic of major compositions. Led Zeppelin in “Stairway to Heaven”
designates A as the tonic, which makes the key A minor and provides the somber, melancholy
sound characteristic of minor compositions. While both pieces use the same scale, the method
of orienting the scale through choice of mode gives them drastically different tones. Note that

while the terms “scale” and “mode” have different meanings, the term “scale” is frequently
substituted for “mode” when the meaning is understood.

While there are tens of scales and hundreds of modes available to composers and musicians,
the development of music from the beginning of the Baroque era at the beginning of the 17
century until the advent of jazz at the beginning of the 19" century was primarily concerned
with the major and minor modes of the diatonic scale. Familiarity with these two modes will
suffice for the purposes of this project. Use the following chart to facilitate an understanding of
the minor and major modes. Note that the mode is named by its tonic, so that a major scale
with a tonic of F# would be called “F# major”.

Major Example:
A
»
al . ' .
” o
D)
Scale 1 2 3 4 5 6 7
Degree (tonic)** | (supertonic) | (mediant) | (subdominant) | (dominant) | (submediant) | (leading
tone)
Interval m?2 M2 M2 m?2 M2 M2 M2
from
preceding
tone *
Interval N/A M2 M3 P4 P5 M6 M7
from
tonic
Minor Example:
A . P
o) V. »
% »
ANIY ot
D)
Scale 1 2 3 4 5 6 7
Degree (tonic) (supertonic) | (mediant) | (subdominant) | (dominant) | (submediant) | (subtonic)

Interval M2 M2 m?2 M2 M2 m?2 M2
from
preceding
tone

Interval N/A M2 m3 P4 P5 m6 m7
from
tonic

* When notating interval qualities, “M” is shorthand for major, “m” for minor, and “P” for
perfect. It will also be useful to recognize “d” for diminished and “A” for augmented.

** Special names are given to each of the scale degrees. It is important to recognize tonic,
subdominant, dominant, and leading tone, as they are often used in context of chords in a scale
(see below). Supertonic, mediant, submediant, and the minor subtonic are more obscure
terms.

Chords

So far we have covered the basic theoretical elements of musical melody, explaining how notes
are chosen from a subset of the available tones called a scale. Like melody, harmony is chosen
out of a scale, the difference being that instead of selecting single notes to form a tune,
multiple notes are taken to form a chord. As a guitar player, you may already be familiar with
the rules for the construction of chords. In order to understand the Bach style, however, we
will need to understand how chords fit into the context of a key.

The most fundamental chords involve three tones: the base, the third, and the fifth. Such
chords are called “triads”. The following chart gives the names and rules for construction of the
four types of triads:

Name Interval from base to 3™ Interval from base to 5 Example

Major Major Perfect F major (F):

Minor Minor Perfect D minor (Dm):

Diminished Minor Diminished E diminished (EO):
A
Augmented Major Augmented A augmented (A"):
A I

S

A

Note the shorthand conventions for chord notation. Major chords are notated by a capital
letter (D major = “D”, G sharp major = “G#”), minor chords with an “m” (A minor = “Am”),
diminished chords with a small circle (B diminished = “B®”) and augmented chords with a small
plus (E flat augmented = “Eb")”.

The order of tones in a chord does not change its identity. That is, all of the following are C
major chords:

C c* c,

We distinguish between such chords by defining chord “inversions”. A chord in “root position”
has the base at the bottom, as is notated normally (ex. first chord above). A chord in “first
inversion” has the third at the bottom, and is notated with a small 6 (ex. second chord above).
A chord in “second inversion” has the fifth at the bottom, and is notated with a 64(ex. third
chord above).

Now, consider a simple C major scale, with each scale degree turned into a chord by adding a
third and a fifth, as appropriate in the scale.

aaiff‘

Scale Degree: 1 2 3 4 5 6 7

Chord: C major D minor E minor F major G major A minor B diminished

This pattern of chord qualities will always be true of chords in a major scale. That is, the chords
will always follow the pattern: major, minor, minor, major, major, minor, diminished. We can
thus generalize across keys and use the following “Roman numeral notation” to describe

chords:
Scale Degree Example in C major Roman Numeral
Designation
1 C major |
2 D minor ii
3 E minor iii
4 F major v
5 G major Vv
6 A minor Vi
7 B diminished vii®

A similar pattern and set of Roman numeral designations can be derived for minor:

A | I
D, !
b |
V = —_—
o) | |
Scale Degree: 1 2 3 4 5 6 7
Chord: Cminor Ddiminished Eb major F minor G minor Ab major Bb major

Scale Degree Example in C minor Roman Numeral

Designation
1 C minor i

2 D diminished i°
3 Eb major i
4 F minor iv
5 G minor (major)* v (V)
6 Ab major VI
7 Bb major Vil

* In minor keys, the fifth is often made major by sharping the seventh degree of the scale. See

the discussion of chord progressions below.

Roman numeral notation allows us to analyze musical compositions. Consider the following

Roman numeral analysis of an excerpt from a Strauss piano piece.

| | J |
v]] - 5 = & L — | i >
{.\I b N2 '7I 2 ~7 | | ~
5) " 'F
mp ‘F Lo, r
aw S -y Tl Tl =
ra T J - —— — T = —-f »
7 d‘:‘f’% - i‘:‘f’ - Fo— t - ——
b | il 1
- 2 - 2 L 2
(I with added 6th?) :‘ .
D: I vid III+7 ii6 N
o
) | 5] 7 =]
A 4 ———
F a9 £ 1 13 1 1 1 1 1N
7 - —— — ’f ""}
Sour = w = =
T T, LT
2 2
) P o Y] -1 -
L o A = -~ — . 2 T —
T |l T T | d_F_F - ra
Lt ‘ b T T I 1
i 2 = 2 = = X o
1;// - -
6 - 9 - 8
viia7o vi III+7 iis Vv

Ignore symbols above which have not been covered — we seek here to cover only those

elements of Roman numeral analysis relevant to the project at hand.

Appendix B: Romantext Notation

The purpose of this section is to provide a functional description of Dmitri Tymoczko’s
romantext format for roman numeral analysis. While romantext format is yet to be
documented in an easy to find place, it has the benefit of being extremely simple.

Romantext notation assigns each measure to a single line. For each measure, each chord is
enumerated by its beat within the measure followed by its roman numeral. We also notate
keys and key changes with upper case letters for major keys and lower case letters for minor
keys. Designation of a key must occur only at the beginning of a piece and at a key change.
Consider the following phrase:

\

|
|

: 01.,
e de)|
SES====ut

In romantext format, we could write its roman numeral analysis as

\

o

“_ 0

mO@ bl C: I b2 V b3 I b4V
ml bl V b2 I

The following list enumerates other details in the romantext format:

1. Fractional beats are notated with a decimal after the beat number. For example, a
chord occurring on the fifth eighth note in a 4/4 measure would be denoted with b2 . 5;
one occurring on the fifth sixteenth note would be denoted with b1 . 25.

2. First inversion is notated as expected: a first inversion | chord would be I6. Other
inversions (which involve more than one number) are notated with a “/”. For example,
a second inversion | chord would be I16/4, and a third inversion V7 chord would be
Va/2.

3. Borrowed chords are also represented with “/”. For example, a first inversion D7 chord
in the key of CisV6/5/V.

4. Diminished chords are represented with an “0”, asin viio06. Augmented chords are
represented with a “+”.

5. One may include multiple versions of an analysis. For example, the following line occurs
in Mia Tsui’s analysis of BWV 151.5:

m5 I b2 V4/3 b3 16 b4 vi
mS5varl I b2 V4/3 b3 I6 b4 vi b4.5 IVe

6. Notes may be included in the analysis. They appear on their own lines and begin with
the designation “Note:”.

| found it easiest to learn this form of notation simply by inspection. For that purpose, I've
included here an analysis of Bach’s 24" Chorale, by Professor Tymoczko.

Composer: J. S. Bach

BWV: 415

Title: Valet will ich dir geben

Analyst: Dmitri Tymoczko

Proofreader: Hamish Robb

Note: please email corrections to dmitri@princeton.edu

Time Signature: 4/4
Form: chorale

md b4 D: I

Note: viio6-IV6-I is a variant of "V-IV6/4-I" which appears at multiple points in the
chorales

ml I b2 I6 b2.5 I b3 IV b4 viiob

m2 IV6E b2 I b3 I || b4 I

m3 viio7/vi b2 vi b3 viio7/V b4 V

md I :|| b4 I

m5 I b2 vi b3 V6/V A: V6 b3.5 V7 b4 vi7 b4.5 viio

mé I b2 V6/vi b3 vi || b4 vi

m7 viio6 b2 I6 b3 V b4.5 V7

m7varl viio6 b2 I6 b3 V b3.5 ii6/5 b4 V b4.5 V7

Note: Riemenschneider has a first-inversion chord on beat 4 of m. 8
m8 I || b4 I6 D: V6

mB8varl I || b4 I6 D: V6

m9 I b2 I6 b2.5 V7/IV b3 IV b3.5 pii/04/3 b4 I6 b4.5 e: ii/fo2

ml® V6/5 b2 i b3 V || b4 G: V6/5

mll I b2 iii D: vi b3 1ii6/5 b3.5 1ii7 b4 V b4.5 V7

mli2 I

Appendix C: Bach Rules of Harmony

The purpose of this section is to outline the harmonic rules implemented in the program. This
information is included here for lack of space in the body of the paper itself.

At the basic level, the Bach style employs functional harmony, which is a set of rules governing
two-chord sequences. In particular, the following charts outline permitted progressions in
major and minor respectively:

- " r6 e 6
to vi or IV to VI,IV®, or iv

t I -~ to i® -
ok / ‘ o ¥ ¥
I—\l—l\' - - vu°(\Y% i—VI—-iv—1ii® - vii°® - \

s ey XTs

These diagrams are taken from Professor Dmitri Tymoczko’s notes for MUS105, an introductory music
theory class taught at Princeton. A progression may move rightward by any amount towards the V
chord, but may regress leftward only by the arrows. The first two chords comprise the “tonic” harmonic
area, while the subsequent pairs of chords are called the “subdominant” and “dominant” regions, as
indicated. The Bach chorales, and subsequent works that employ some derivative of this functional
harmony, can be said (very) generally to repeatedly move from the tonic region to the dominant region,
sometimes passing through the subdominant region, before returning to the tonic.

The program checks that the rules of functional harmony are followed in the given chorale, both in that
movements from chord to chord are valid and also in that chords are of the correct modality (ex. i’
instead of ii in minor, IV instead of ivin major). The program also makes the following related
validations:

1. lllegal single-chord inversions are avoided. In particular, the second degree chord in minor does
not appear in root position. In both major and minor, the sixth degree chord must be in root
position, and the seventh degree chord must appear in first inversion.

When vi resolves to the tonic, that tonic chord must be in fist inversion.
In minor, V goes to IV6 or vi6, rather than IV or vi.

Appendix D: Testing Log

The following is a list of the mistakes inserted into the testing chorales, as described above:

1. Parallel Intervals: Taken from #10 (ALL FOUND)
P5 TA in measure 2 beginning
PU SA in measure 4 beginning
P8 BA in measure 5 beginning
P8 TS in measure 6 whole measure
P5 TA in measure 7 beginning
PU SA in measure 10 beginning
2. Ranges: Taken from #6 (ALL FOUND)
Sop measure 1

Sop measure 2
Alto measure 3
Alto measure 4
Ten measure 5
Ten measure 6
Bass measure 7
Bass measure 7
3. Part Dist: Taken from #22 (ALL FOUND)
SA measure 1
AT measure 2
SA measure 3
AT measure 5
SA measure 6
AT measure 7
4. Voice Crossings: Taken from #46 (ALL FOUND)
AT measure 1
SA measure 2
AT measure 3
AT measure 4
SA measure 5
BT measure 7
BT measure 8
5. Tritones: Taken from #16 (ALL FOUND)
A measure 2 (twice)
S measure 3 (twice)
S measure 5 (twice)
B measure 5
T measure 6
A measure 8
B measure 10
B measure 11
T measure 12
6. RepeatedBass:
measure 1
measure 3
measure 4
measure 6
measure 7
measure 8
measure 9
7. Harmony: Taken from #45
mO: Major/Minor i (m)
m1: Major/Minor iv (m)
m?2: lllegal root position ii in minor
m3: lllegal root position ii in minor
m3: lllegal V to ive
m4: lllegal first inversion vi
mb5: lllegal root position vii
m6: Major/Minor ii7 (M)
m7:vitoiinstead of i6 NOT FOUND
m8:illegal V/V to i
m11: Tolerate proceeding by own subdominant
m11: lllegal V/V to V/II

The following is the output of the program on those chorales:

Cals-MacBook-Pro:chassis calpeyser$ python choraleAnalyzer.py TestChorales/parallels.xml
TestChorales/parallels.txt

music21: Certain music21 functions might need these optional packages: matplotlib, numpy, scipy; if you run into
errors, install it by following the instructions at http://mit.edu/music21/doc/html/installAdditional.html

Scanning for parallel unisons
Parallel unison found!
Measure Number: 4
First Voice:
First Note: D in octave 5 Quarter Note
Second Note: Cin octave 5 Eighth Note
Second Voice:
First Note: D in octave 5 Quarter Note

Second Note: Cin octave 5 Quarter Note

Parallel unison found!
Measure Number: 10
First Voice:
First Note: B in octave 4 Quarter Note
Second Note: A in octave 4 Quarter Note
Second Voice:
First Note: B in octave 4 Quarter Note

Second Note: A in octave 4 Quarter Note

Scanning for parallel octaves
Parallel octave found!

Measure Number: 6

First Voice:

First Note: Ain octave 4 Half Note

Second Note: B in octave 4 Quarter Note
Second Voice:

First Note: Ain octave 3 Half Note

Second Note: B in octave 3 Quarter Note

Parallel octave found!
Measure Number: 6

First Voice:

First Note: B in octave 4 Quarter Note

Second Note: C in octave 5 Quarter Note
Second Voice:

First Note: B in octave 3 Quarter Note

Second Note: Cin octave 4 Quarter Note

Parallel octave found!
Measure Number: 4
First Voice:
First Note: Fin octave 4 Quarter Note
Second Note: C in octave 4 Quarter Note
Second Voice:
First Note: Fin octave 3 Quarter Note

Second Note: C in octave 3 Quarter Note

Parallel octave found!
Measure Number: 5

First Voice:

First Note: Cin octave 4 Quarter Note

Second Note: D in octave 4 Eighth Note
Second Voice:
First Note: Cin octave 3 Quarter Note

Second Note: D in octave 3 Quarter Note

Scanning for parallel fifths
Parallel fifth found!
Measure Number: 2
First Voice:
First Note: A in octave 4 Quarter Note
Second Note: G in octave 4 Eighth Note
Second Voice:
First Note: D in octave 4 Quarter Note

Second Note: Cin octave 4 Quarter Note

Parallel fifth found!
Measure Number: 7
First Voice:
First Note: G in octave 4 Quarter Note
Second Note: A in octave 4 Quarter Note
Second Voice:
First Note: Cin octave 4 Quarter Note

Second Note: D in octave 4 Eighth Note

Checking ranges

Bass out of range in measure 13

Checking distances between parts
Interval between tenor and alto greater than an octave in measure 10
Interval between tenor and alto greater than an octave in measure 10
Interval between tenor and alto greater than an octave in measure 10

Interval between tenor and alto greater than an octave in measure 10

Checking for voice crossings
Alto/Soprano voice crossing in measure 4

Bass/Tenor voice crossing in measure 6

Checking for tritones
Tenor makes tritone in measure 7

Tenor makes tritone in measure 9

Checking for repeated bass notes

Repeated bass note (E3) in measure 2

Verifying that Roman Numeral Analysis in fact reflects the score
Incorrect chord root in measure 4 beat 2.5

Incorrect chord root in measure 9 beat 3.5

Validating chord progressions in Roman Numeral Analysis
Measure 2: In a minor key, a chord on scale degree 7 must be diminished
Measure 2: In a minor key, a chord on scale degree 6 must be major
Measure 2: The sixth degree chord cannot appear in first inversion.
Measure 6: In a minor key, a chord on scale degree 7 must be diminished
Measure 7: In a minor key, a chord on scale degree 7 must be diminished
Measure 7: The seventh degree chord must appear in first inversion.

Measure 9: In a minor key, a chord on scale degree 5 must be major

Measure 2: Invalid progression from VII6 to IIl.
Measure 7: Invalid progression from VIl to iv6.
Measure 9: Invalid progression from v to Ill.
Measure 12: In minor, V goes to iv6, not iv

Measure 12: Invalid progression from VI to Ill.

Cals-MacBook-Pro:chassis calpeyser$ python choraleAnalyzer.py TestChorales/ranges.xml TestChorales/ranges.txt

music21: Certain music21 functions might need these optional packages: matplotlib, numpy, scipy; if you run into
errors, install it by following the instructions at http://mit.edu/music21/doc/html/installAdditional.html

Scanning for parallel unisons

No parallel unisons found

Scanning for parallel octaves

No parallel octaves found

Scanning for parallel fifths
Parallel fifth found!
Measure Number: 3
First Voice:
First Note: Fin octave 4 Quarter Note
Second Note: E in octave 5 Dotted Quarter Note
Second Voice:
First Note: B-flat in octave 2 Quarter Note

Second Note: A in octave 2 Quarter Note

Parallel fifth found!
Measure Number: 7
First Voice:
First Note: G in octave 4 Quarter Note
Second Note: F in octave 4 Quarter Note
Second Voice:
First Note: Cin octave 3 Quarter Note

Second Note: B-flat in octave 1 Quarter Note

Checking ranges
Soprano out of range in measure 2
Soprano out of range in measure 3
Alto out of range in measure 4
Alto out of range in measure 5
Tenor out of range in measure 6
Bass out of range in measure 7

Bass out of range in measure 8

Checking distances between parts

Interval betweeen alto and soprano greater than an octave in measure 3

Interval betweeen alto and soprano greater than an octave in measure 3

Interval betweeen alto and soprano greater than an octave in measure 3

Interval betweeen alto and soprano greater than an octave in measure 3

Interval between tenor and alto greater than an octave in measure 4

Interval between tenor and alto greater than an octave in measure 4

Interval betweeen alto and soprano greater than an octave in measure 5

Checking for voice crossings

Alto/Soprano voice crossing in measure 2
Alto/Soprano voice crossing in measure 4
Alto/Soprano voice crossing in measure 4
Tenor/Alto voice crossing in measure 5
Tenor/Alto voice crossing in measure 6
Tenor/Alto voice crossing in measure 6
Bass/Tenor voice crossing in measure 8

Bass/Tenor voice crossing in measure 8

Checking for tritones

No tritones found

Checking for repeated bass notes

No repeated bass notes

Verifying that Roman Numeral Analysis in fact reflects the score
No chord found for roman numeral in measure 0 beat 4
No chord found for roman numeral in measure 1 beat 1
No chord found for roman numeral in measure 1 beat 2
No chord found for roman numeral in measure 1 beat 3
No chord found for roman numeral in measure 2 beat 2.5
Incorrect chord root in measure 3 beat 2.5
No chord found for roman numeral in measure 3 beat 3.5
No chord found for roman numeral in measure 5 beat 2
No chord found for roman numeral in measure 5 beat 2.7
No chord found for roman numeral in measure 5 beat 3
No chord found for roman numeral in measure 5 beat 3.5
Incorrect chord root in measure 6 beat 1.5

No chord found for roman numeral in measure 7 beat 4.7

Validating chord progressions in Roman Numeral Analysis
Measure 7: In a major key, a chord on scale degree 2 must be minor

Measure 5: Invalid progression from ii6 to vi.

Cals-MacBook-Pro:chassis calpeyser$ python choraleAnalyzer.py TestChorales/PartDist.xml
TestChorales/PartDist.txt

music21: Certain music21 functions might need these optional packages: matplotlib, numpy, scipy; if you run into
errors, install it by following the instructions at http://mit.edu/music21/doc/html/installAdditional.html

Scanning for parallel unisons

No parallel unisons found

Scanning for parallel octaves

No parallel octaves found

Scanning for parallel fifths

No parallel fifths found

Checking ranges
Bass out of range in measure 3
Alto out of range in measure 5
Bass out of range in measure 5

Bass out of range in measure 15

Checking distances between parts
Interval betweeen alto and soprano greater than an octave in measure 1

Interval between tenor and alto greater than an octave in measure 2

Interval between tenor and alto greater than an octave in measure 2
Interval betweeen alto and soprano greater than an octave in measure 3
Interval between tenor and alto greater than an octave in measure 5
Interval betweeen alto and soprano greater than an octave in measure 6
Interval between tenor and alto greater than an octave in measure 7

Interval between tenor and alto greater than an octave in measure 7

Checking for voice crossings
Tenor/Alto voice crossing in measure 3
Alto/Soprano voice crossing in measure 5
Tenor/Alto voice crossing in measure 6

Alto/Soprano voice crossing in measure 7

Checking for tritones

Tenor makes tritone in measure 6

Checking for repeated bass notes

No repeated bass notes

Verifying that Roman Numeral Analysis in fact reflects the score

Incorrect chord root in measure 7 beat 2.5

Validating chord progressions in Roman Numeral Analysis
Measure 6: In a minor key, a chord on scale degree 2 must be diminished
Measure 6: In a minor key,the second degree chord must appear in first inversion
Measure 7: In a minor key, a chord on scale degree 5 must be major
Measure 11: The seventh degree chord must appear in first inversion.

Measure 12: Invalid progression from V to iii.

Cals-MacBook-Pro:chassis calpeyser$ python choraleAnalyzer.py TestChorales/VoiceCrossing.xml
TestChorales/VoiceCrossing.txt

music21: Certain music21 functions might need these optional packages: matplotlib, numpy, scipy; if you run into
errors, install it by following the instructions at http://mit.edu/music21/doc/html/installAdditional.html

Scanning for parallel unisons

No parallel unisons found

Scanning for parallel octaves

No parallel octaves found

Scanning for parallel fifths
Parallel fifth found!
Measure Number: 7
First Voice:
First Note: E in octave 4 Quarter Note
Second Note: F-sharp in octave 4 Eighth Note
Second Voice:
First Note: A in octave 2 Quarter Note

Second Note: B in octave 3 Eighth Note

Checking ranges
Tenor out of range in measure 2
Tenor out of range in measure 4
Tenor out of range in measure 5
Bass out of range in measure 8

Bass out of range in measure 9

Checking distances between parts

Interval between tenor and alto greater than an octave in measure 6

Checking for voice crossings
Tenor/Alto voice crossing in measure 2
Tenor/Alto voice crossing in measure 2
Alto/Soprano voice crossing in measure 3
Alto/Soprano voice crossing in measure 3
Tenor/Alto voice crossing in measure 4
Tenor/Alto voice crossing in measure 4
Tenor/Alto voice crossing in measure 5
Tenor/Alto voice crossing in measure 5
Alto/Soprano voice crossing in measure 6
Bass/Tenor voice crossing in measure 8
Bass/Tenor voice crossing in measure 8
Bass/Tenor voice crossing in measure 9

Bass/Tenor voice crossing in measure 9

Checking for tritones

No tritones found

Checking for repeated bass notes

No repeated bass notes

Verifying that Roman Numeral Analysis in fact reflects the score
No chord found for roman numeral in measure 0 beat 4
No chord found for roman numeral in measure 1 beat 1
No chord found for roman numeral in measure 1 beat 2

No chord found for roman numeral in measure 1 beat 3

No chord found for roman numeral in measure 1 beat 3.5

Incorrect chord root in measure 3 beat 4.5

Incorrect chord root in measure 5 beat 2.5

No chord found for roman numeral in measure 5 beat 3.5

No chord found for roman numeral in measure 6 beat 1.5

Incorrect inversion in measure 6 beat 2.5

Incorrect chord root in measure 6 beat 4.5

Incorrect chord root in measure 7 beat 1.5

Incorrect inversion in measure 7 beat 2.5

No chord found for roman numeral in measure 7 beat 3.5

Incorrect chord root in measure 7 beat 4.5

Incorrect chord root in measure 8 beat 1.5

Incorrect chord root in measure 8 beat 2.5

Validating chord progressions in Roman Numeral Analysis
Measure 1: The seventh degree chord must appear in first inversion.

Measure 7: Invalid progression from IV to iii6.

Cals-MacBook-Pro:chassis calpeyser$ python choraleAnalyzer.py TestChorales/harmony.xml
TestChorales/harmony.txt NoParallels

music21: Certain music21 functions might need these optional packages: matplotlib, numpy, scipy; if you run into
errors, install it by following the instructions at http://mit.edu/music21/doc/html/installAdditional.html

Checking ranges
Bass out of range in measure 1
Bass out of range in measure 3
Bass out of range in measure 6

Bass out of range in measure 8

Checking distances between parts
Interval betweeen alto and soprano greater than an octave in measure 11

Interval betweeen alto and soprano greater than an octave in measure 11

Checking for voice crossings
Bass/Tenor voice crossing in measure 3
Tenor/Alto voice crossing in measure 12

Tenor/Alto voice crossing in measure 12

Checking for tritones

No tritones found

Checking for repeated bass notes

No repeated bass notes

Verifying that Roman Numeral Analysis in fact reflects the score

Incorrect dominant seventh identification, or some part of dominant seventh chord not present in measure 2 beat
1.5

Incorrect dominant seventh identification, or some part of dominant seventh chord not present in measure 3 beat
2.5

Incorrect dominant seventh identification, or some part of dominant seventh chord not present in measure 6 beat
3.5

Incorrect dominant seventh identification, or some part of dominant seventh chord not present in measure 9 beat
3.5

Incorrect chord root in measure 11 beat 2.5

Validating chord progressions in Roman Numeral Analysis
Measure 0: In a minor key, a chord on scale degree 1 must be minor
Measure 1: In a minor key, a chord on scale degree 6 must be major
Measure 2: In a minor key, a chord on scale degree 2 must be diminished

Measure 2: In a minor key,the second degree chord must appear in first inversion

Measure 3: In a minor key, a chord on scale degree 2 must be diminished
Measure 3: In a minor key,the second degree chord must appear in first inversion
Measure 4: The seventh degree chord must appear in first inversion.
Measure 4: In a minor key, a chord on scale degree 6 must be major
Measure 4: The sixth degree chord cannot appear in first inversion.
Measure 5: In a major key, a chord on scale degree 7 must be diminished
Measure 5: The seventh degree chord must appear in first inversion.
Measure 6: In a major key, a chord on scale degree 2 must be minor
Measure 8: The seventh degree chord must appear in first inversion.
Measure 10: The seventh degree chord must appear in first inversion.
Measure 12: In a minor key, a chord on scale degree 7 must be diminished
Measure 12: The seventh degree chord must appear in first inversion.
Measure 12: The seventh degree chord must appear in first inversion.
Measure 13: In a minor key,the second degree chord must appear in first inversion
Measure 13: In a minor key, a chord on scale degree 1 must be minor
Measure 2: Invalid progression from V7 to ii.

Measure 3: In minor, V goes to IV6, not iv6 or IV

Measure 3: Invalid progression from V7 to ii.

Measure 3: Invalid progression from ii to i6.

Measure 4: Invalid progression from viio to vi6.

Measure 7: Invalid progression from IV to vi.

Measure 8: Invalid progression from V/V to i6.

Measure 11: Invalid progression from V/V to V/II.

Measure 11: Invalid progression from V/Il to i.

Appendix E: Code

This section contains the Python code used to implement the chorale checker. This code will be
made available online.

LEVEL 1 MODULES

choraleAnalyzer.py
import os
import sys
from music2l import *
from checkParallels import *
from checkZeroOrder import *
from checkVoicelLeading import *
from checkHarmony import *
from utilities import *

import subprocess, glob

there must be at least one command line argument
if len(sys.argv) < 2:
print "Required input: musicXML file."

exit();

list for error storage

assignList();

parse and store MusicXML file

chorale = converter.parse(sys.argv[l]);

parse and store Roman Numeral Analysis
harmonyFlag = False;
if len(sys.argv) > 2:

rntext = converter.parse(sys.argv[2]);

harmonyFlag = True;

parallelsFlag = True;
if len(sys.argv) ==

parallelsFlag = False;

if parallelsFlag:

checkParallels(chorale)

checkZeroOrder (chorale);
checkVoicelLeading(chorale);
if (harmonyFlag == True):

checkHarmony (chorale, rntext);

read output

errorTracker = errorTracker();

utilities.py has already taken care of writing to
now we read

outputLines = retrievelist();

for 1ine 1in outputlLines:

errorTracker.processError(line);

Count measures

chordification = chorale.chordify();

measureCounter 0;

'errors'.

for i in range(len(chordification)):
if str(type(chordification[i])) == "<class 'music2l.stream.Measure'>":

measureCounter += 1;

compute and print Bachness

print("Bachness Score: " +
str(errorTracker.computeBachness(measureCounter)));

print("-------------------- Analysis Complete---------------- ")

LEVEL 2 MODULES

checkParallels.py
Function checks for parallels by calling relevant functions.

Prints

from checkParallelFifths import *
from checkParallelOctaves import *
from checkParallelUnisons import *

from utilities import printErrors

def checkParallels(chorale):

find parallel unisons

printErrors(checkParallelUnisons, chorale, "Scanning for parallel
unisons", "No parallel unisons found");

find parallel octaves

printErrors(checkParallelOctaves, chorale, "Scanning for parallel
octaves", "No parallel octaves found");

find parallel fifths

printErrors(checkParallelFifths, chorale, "Scanning for parallel fifths",

"No parallel fifths found");
checkZeroOrder.py
Function performs zero-th order analysis. Checks each chord for internal
violations of the style.
from checkRanges import *
from checkCloseness import *
from checkVoiceCrossing import *

from utilities import printErrors
def checkZeroOrder(chorale):

slices is a list of VerticalSlice objects, each of which

contains one chord of the chorale. Note that in each slice,
object, the parts are numbered as follows: O-soprano, l-alto,
2-tenor, 3-bass

slices = theoryAnalysis.theoryAnalyzer.getVerticalSlices(chorale);

check ranges

printErrors(checkRanges, slices, "Checking ranges", "All parts in
range");

check part distances

printErrors(checkCloseness, slices, "Checking distances between parts",
"All parts sufficiently close together");

check voice crossings

printErrors(checkVoiceCrossing, slices, "Checking for voice crossings",
"No voice crossings found");

checkVoiceleading.py

Function performs voice leading analysis. Checks each chord for internal

violations of the style.

from checkTritones import *
from checkRepeatedBass import *

from utilities import printErrors

def checkVoicelLeading(chorale):

chordification = chorale.chordify();

slices = theoryAnalysis.theoryAnalyzer.getVerticalSlices(chorale);

check for tritones

printErrors(checkTritones, slices, "Checking for tritones", "No tritones
found") ;

check for repeated bass tones

printErrors(checkRepeatedBass, chordification, "Checking for repeated
bass notes", "No repeated bass notes");

could add check2leap, checkDimInt

checkHarmony.py
Function performs basic harmonic analysis. Checks each chord for internal
violations of the style.
from music2l import *
from verifyRNA import verifyRNA
from checkProgression import *

from utilities import printErrors

def checkHarmony(chorale, rntext):

slices is a list of VerticalSlice objects, each of which
contains one chord of the chorale. Note that in each slice,
object, the parts are numbered as follows: O-soprano, l-alto,

2-tenor, 3-bass

slices = theoryAnalysis.theoryAnalyzer.getVerticalSlices(chorale);

roman is a stream object which contains the roman numeral analysis
inputed by the student

rom = rntext[1];

choraleAndRoman = [chorale, rom];

printErrors(verifyRNA, choraleAndRoman, "Verifying that Roman Numeral
Analysis in fact reflects the score", "Roman Numeral Analysis appears to be
correct");

printErrors(checkProgression, rom, "Validating chord progressions in
Roman Numeral Analysis", "Chord Progression Valid");

LEVEL 3 MODULES

checkParallelUnisons.py
Funciton checks for parallel unisons. Returns an error message to
be printed, if any.

from music2l import *

def checkParallelUnisons(chorale):
output is a list of strings which give error messages

output = [1;
identifyParallelUnisons() is a music2l method which stores all
parallel unisons in VLQTheoryResult objects

theoryAnalysis.theoryAnalyzer.identifyParallelUnisons(chorale);

get list, put in parallelUnisons

parallelUnisons = chorale.analysisData['ResultDict']['parallelUnisons'];

iterate through list, produce error message for each

VLQTheoryResult object. Note: A VLQTheoryResult object

contains a VoicelLeadingQuartet object, which can be used like
in other methods.

if not parallelUnisons:

return output;

for unison in parallelUnisons:
output.append('Parallel unison found!' +

"\n Measure Number: ' +
str(unison.vlqg.vlnl.measureNumber) +

"\n First Voice: ' +

"\n First Note: ' + str(unison.vlqg.vlnl.fullName)
+

"\n Second Note: ' + str(unison.vlqg.vln2.fullName)
+

"\n Second Voice: ' +

"\n First Note: ' + str(unison.vlqg.v2nl.fullName)
+

"\n Second Note: ' + str(unison.vlqg.v2n2.fullName)
+

|\n|)

return output;
checkParallelFifths.py
Function checks for parallel fifths. Returns an error message to
be printed, if any.

from music2l import *

def checkParallelFifths(chorale):
output is a list of strings which give error messages

output = [1;

parallelFifths is a 1ist of VoicelLeadingQuartet objects, each

which gives a pair of intervals in illegal relationship to

eachother.

parallelFifths =
theoryAnalysis.theoryAnalyzer.getParallelFifths(chorale);

iterate through list, produce error message for each
VoicelLeadingQuartet

object.
if not parallelFifths:

return output;

for fifth in parallelFifths:

output.append('Parallel fifth found!' +

‘\n Measure Number: ' + str(fifth.vlnl.measureNumber) +
‘\n First Voice: ' +

"\n First Note: ' + str(fifth.vlnl.fullName) +

"\n Second Note: ' + str(fifth.vln2.fullName) +

‘\n Second Voice: ' +

"\n First Note: ' + str(fifth.v2nl.fullName) +

"\n Second Note: ' + str(fifth.v2n2.fullName) +
‘\n'")

return output;
checkParallelOctaves.py
Function checks for parallel octaves. Returns an error message to
be printed, if any.

from music2l import *
def checkParallelOctaves(chorale):
output is a list of strings which give error messages

output = [1;

parallelFifths is a 1ist of VoicelLeadingQuartet objects, each

which gives a pair of intervals in illegal relationship to
eachother.

parallelOctaves =
theoryAnalysis.theoryAnalyzer.getParallelOctaves(chorale);

iterate through list, produce error message for each
VoicelLeadingQuartet

object.

if not parallelOctaves:

return output;

for octave in parallelOctaves:

output.append('Parallel octave found!' +

‘\n Measure Number: ' + str(octave.vlnl.measureNumber)
+
‘\n First Voice: ' +
"\n First Note: ' + str(octave.vlnl.fullName) +
"\n Second Note: ' + str(octave.vln2.fullName) +
‘\n Second Voice: ' +
"\n First Note: ' + str(octave.v2nl.fullName) +
"\n Second Note: ' + str(octave.v2n2.fullName) +
‘\n'")
return output;
checkTritones.py

Funciton checks for tritones. Returns an error message to
be printed, if any.

from music2l import *

intA = interval.Interval('A4');

intB

intC

intD

inte

def

def

def

def

interval.Interval('D5");

= interval.Interval('A-4");

interval.Interval('D-5");

rvalList = [intA, intB, intC, 1intD];

failedSopranoTritone(firstChord, secondChord):

if interval.Interval(firstChord[0], secondChord[0]) in intervallList:
return True;

else:

return False;

failedAltoTritone(firstChord, secondChord):

if interval.Interval(firstChord[1l], secondChord[1l]) in intervallList:
return True;

else:

return False;

failedTenorTritone(firstChord, secondChord):

if interval.Interval(firstChord[2], secondChord[2]) in intervallList:
return True;

else:

return False;

failedBassTritone(firstChord, secondChord):
if interval.Interval(firstChord[3], secondChord[3]) in intervallList:
return True;

else:

return False;

def checkTritones(slices):
output is a list of strings which give error messages

output = [1;

iterate until second to last chord. Check chord with subsequent chord
for count in range(@,len(slices) - 2):

firstChord = slices[count].getChord();

secondChord = slices[count + 1].getChord();

if (failedSopranoTritone(firstChord, secondChord)):

output.append('Soprano makes tritone in measure ' +
str(firstChord[0] .measureNumber)) ;

if (failedAltoTritone(firstChord, secondChord)):

output.append('Alto makes tritone in measure ' +
str(firstChord[1] .measureNumber));

if (failedTenorTritone(firstChord, secondChord)):

output.append('Tenor makes tritone in measure ' +
str(firstChord[2] .measureNumber));

if (failedBassTritone(firstChord, secondChord)):

output.append('Bass makes tritone in measure ' +
str(firstChord[3] .measureNumber));

return output;
checkRepeatedBass.py
Funciton checks for repeated bass notes. Returns an error message to
be printed, if any.

from music2l import *

def checkRepeatedBass(chordification):

output is a list of strings which give error messages

output = [1;

We create a list of measures. While were at it, find time
signature

measures = [];

for i in range(len(chordification)):

if str(type(chordification[i])) == "<class
'music2l.stream.Measure'>":

measures.append(chordification[i]);

timeSignature = measures[1l].bestTimeSignature().numerator;

We now create a list of notes, maintaining measureNum
as a property. Also maintain beat in bt property.
bassNotes = [];
for m in range(len(measures)):
for n in range(len(measures[m])):
if str(type(measures[m][n])) == "<class 'music2l.chord.Chord'>":
bassNote = measures[m] [n][-11;
bassNote.measureNum = m;
bassNote.bt = measures[m][n].beat + timeSignature*m;

bassNotes.append(bassNote);

Go note to note, and identify repeated bass notes
for i in range(len(bassNotes) - 1):

firstNote = bassNotes[i];

secondNote = bassNotes[i+1];

if firstNote.pitch == secondNote.pitch:

if firstNote.bt + firstNote.duration.quarterLength <
secondNote.bt:

output.append("Repeated bass note (" + str(secondNote.pitch)
+ ") 1in measure " + str(secondNote.measureNum)) ;

return output;

checkRanges.py

Verifies that each part is inside of expected range

from music2l import *

from utilities import removeDuplicates

def failedSopranoRange(chord):
if chord[@].pitch > pitch.Pitch('g5"):
return True;
elif chord[0].pitch < pitch.Pitch('c4'):
return True;
else:

return False;

def failedAltoRange(chord):
if chord[1l].pitch > pitch.Pitch('d5"):
return True;
elif chord[1l].pitch < pitch.Pitch('g3"'):
return True;
else:

return False;

def failedTenorRange(chord):
if chord[2].pitch > pitch.Pitch('gd"):

return True;

elif chord[2].pitch < pitch.Pitch('c3"'):
return True;
else:

return False;

def failedBassRange(chord):
if chord[3].pitch > pitch.Pitch('cd4"'):
return True;
elif chord[3].pitch < pitch.Pitch('f2"):
return True;
else:

return False;

def checkRanges(slices):
output is a list of strings which give error messages

output = [1;

since VerticalSlice is not represented in a measure, use
bass note to determine measure
for slice in slices:
chord = slice.getChord();
if (failedSopranoRange(chord)):
output.append('Soprano out of range in measure ' +
str(chord[3].measureNumber));
if (failedAltoRange(chord)):
output.append('Alto out of range in measure ' +
str(chord[3].measureNumber));
if (failedTenorRange(chord)):

output.append('Tenor out of range in measure ' +

str(chord[3].measureNumber));
if (failedBassRange(chord)):
output.append('Bass out of range in measure ' +

str(chord[3] .measureNumber)) ;

return removeDuplicates(output);

checkCloseness.py

Verifies that distance between parts is not too large

from music2l import *

Distance between bass and soprano cannot be greater than
a 12th
#def failedTenorSopranoDistance(chord):

if interval.Interval(chord[3], chord[1l]).cents >
interval.Interval('P12').cents:

return True;
else:
return False;

Distance between alto and soprano cannot be greater than an octave
def failedAltoSopranoDistance(chord):

if interval.Interval(chord[1], chord[0]).cents >
interval.Interval('P8').cents:

return True;
else:

return False;

def failedTenorAltoDistance(chord):

if interval.Interval(chord[2], chord[1l]).cents >
interval.Interval('P8').cents:

return True;
else:

return False;

def checkCloseness(slices):
output is a list of strings which give error messages

output = [1;

since VerticalSlice is not represented in a measure, use
chord notes to determine measure
for slice in slices:
chord = slice.getChord();
if (failedTenorSopranoDistance(chord)):

output.append('Interval between tenor and soprano greater than a
12th in measure ' + str(chord[3].measureNumber));

if (failedAltoSopranoDistance(chord)):

output.append('Interval betweeen alto and soprano greater than an
octave in measure ' + str(chord[l].measureNumber));

if (failedTenorAltoDistance(chord)):

output.append('Interval between tenor and alto greater than an
octave in measure ' + str(chord[2].measureNumber));

return output;
checkVoiceCrossing.py

Verifies that there are no voice crossings

from music2l import *

def failedBassTenorCross(chord):
if chord[3].pitch > chord[2].pitch:
return True;

else:

return False;

def failedTenorAltoCross(chord):
if chord[2].pitch > chord[1l].pitch:
return True;
else:

return False;

def failedAltoSopranoCross(chord):
if chord[1].pitch > chord[0O].pitch:
return True;
else:

return False;

def checkVoiceCrossing(slices):
output is a list of strings which give error messages

output = [1;

iterate through list and check for errors
if not slices:

return output;

for slice in slices:
chord = slice.getChord();
if (failedBassTenorCross(chord)):
output.append('Bass/Tenor voice crossing in measure '
+ str(chord[3] .measureNumber)) ;
if (failedTenorAltoCross(chord)):

output.append('Tenor/Alto voice crossing in measure

+ str(chord[2] .measureNumber)) ;

if (failedAltoSopranoCross(chord)):
output.append('Alto/Soprano voice crossing in measure '

+ str(chord[1] .measureNumber)) ;

return output;

verifyRNA.py

Verifies correctness of a roman numeral analysis

from music2l import *

def compareRomanToChord(rom, ch):

if (ch.root().name != rom.root().name):
return "Incorrect chord root";

elif (ch.inversion() != rom.inversion()):
return "Incorrect inversion";

elif (ch.quality != rom.quality and ch.quality != 'other'):
return "Incorrect chord quality";

elif (ch.isDominantSeventh() != rom.isDominantSeventh()):

return "Incorrect dominant seventh identification, or some part of
dominant seventh chord not present";

else:

return "No error";

def verifyRNA(choraleAndNum) :
output is a list of strings which give error messages

output = [1;

decompose input
chorale = choraleAndNum[0O];

num = choraleAndNum[1];

obtain chord breakdown

chordification = chorale.chordify();

obtain the type of a RomanNumeral object, for type checking
SampleRomanNumeral = roman.RomanNumeral('I"');

TypeRomanNumeral = type(SampleRomanNumeral);

obtain the type of a chord object, for type checking

TypeChord = chord.Chord;

create numeral list as follows:
0: measure.beat as number
1: RomanNumeral object
numList = [];
for omeasure in range(len(num)):
for romanNumeral in range(len(num[omeasure])):
if type(num[omeasure] [romanNumeral]) == TypeRomanNumeral:
entry = [];

time = num[omeasure] [romanNumeral].measureNumber +
(0.1)*num[omeasure] [romanNumeral] .beat;

time = round(time, 4);
entry.append(time);
entry.append(num[omeasure] [romanNumeral]);

numList.append(entry);

create chord list as follows
0: measure.beat as number
1: Chord object

chordList = [];

for omeasure in range(len(chordification))[1:]:

for ochord in range(len(chordification[omeasure])):
if type(chordification[omeasure] [ochord]) == TypeChord:
entry = [1;

time = chordification[omeasure] [ochord] .measureNumber +
(0.1)*chordification[omeasure] [ochord] .beat;

round to cutoff extra decimal values

time = round(time, 4);

add to chordList

entry.append(time);
entry.append(chordification[omeasure] [ochord]);

chordList.append(entry);

I define a correct roman numeral analysis as one in which each
numeral lines up with an appropriate chord. Verify by going
by going through numList. Use a boolean to make sure there
is a chord for each roman numeral
for i in range(len(numList)):
numeralPair = numList[i]
foundChord = False;
for j in range(len(chordList)):
chordPair = chordList[j];
if (chordPair[0] == numeralPair([0]):
foundChord = True;
One chord case:

if (j == len(chordList) - 1 or i == len(numList) - 1 or
numList[i+1][0] <= chordList[j+1][0]):

err = compareRomanToChord(numeralPair[1l], chordPair[l]);
if (err != "No error"):

spl = str(chordPair[0]).split('.");

if len(spl[1l]) > 1:

spl[1l] = spl[l][0] + "." + spl[1][1];

output.append(err + " in measure " + spl[O] + "
beat " + spl[1]);

Two chord case:
else:
err = compareRomanToChord(numeralPair[1l], chordPair[l]);

err2 = compareRomanToChord(numeralPair[1],
chordList[j+11[1]1);

if (err != "No error" and err2 != "No error"):
spl = str(chordPair[0]).split('.");
if len(spl[1l]) > 1:
spl[1] = spl[1][0] + "." + spl[1][1];

output.append(err + " in measure " + spl[O] + "
beat " + spl[1l]);

if (foundChord == False):
spl = str(numeralPair[0]).split('.");
if len(spl[1l]) > 1:
spl[1] = spl[1][0] + "." + spl[1][1];

output.append("No chord found for roman numeral in measure " +
spl[@] + " beat " + spl[l]);

return output;

checkProgression.py
Funciton checks for repeated bass notes. Returns an error message to
be printed, if any.
from music2l import *

from progressionChecker import *

def checkProgressionPairs(rom, dim = 2):
output is a list of strings which give error messages

output = [1;

romlD is a one dimensional list of roman numerals
if (dim == 1):

romlD = rom;

if (dim == 2):
romlD = [1;
for x in range(len(rom)):
for y in range(len(rom[x])):
if type(rom[x][y]) == roman.RomanNumeral:

romlD.append(rom[x][y]);

create a progressionChecker object with the right starting mode

checker = progressionChecker (romlD[0].key.mode);

Pairs of chords: iterate until second to last chord.
for i in range(len(romlD) - 1):
if modulation, recursively call checkProgression
if (romlD[i].key != romlD[i+1].key):
return output + checkProgressionPairs(romlD[i+1:], 1);
else:
checker.setChords(romlD[i], romlD[i+1]);
err = checker.isValid()
if (len(err) != 0):
for errorString in err:

output.append(errorString);

return output;

def checkProgressionSingles(rom, dim = 2):
output is a list of strings which give error messages

output = [1;

romlD is a one dimensional list of roman numerals
if (dim == 1):

romlD = rom;

if (dim == 2):
romlD = [1;
for x in range(len(rom)):
for y in range(len(rom[x])):
if type(rom[x][y]l) == roman.RomanNumeral:

romlD.append(rom[x][y]);

create a progressionChecker object with the right starting mode

checker = progressionChecker (romlD[0] .key.mode);

Pairs of chords: iterate until second to last chord.
for i in range(len(romlD)):
if modulation, recursively call checkProgression
if (i < len(romlD) - 1):
if (romlD[i].key != romlD[i+1].key):

return output + checkProgressionSingles(romlD[i+1:], 1);

checker.setChord(romlD[i]) ;
err = checker.isValid()
if (len(err) != 0):

for errorString in err:

output.append(errorString);

return output;

return errors in roman numeral analysis. Covers only those errors which

can be determined from the roman numeral analysis itself.

def checkProgression(rom):

return checkProgressionSingles(rom) + checkProgressionPairs(rom);

progressionChecker.py
A progression checker contains the data for harmonic rules, and provides
methods for validating chord sequences.

from music2l import *

class progressionChecker:

MIdest = [True , True , True , True , True , True , True];
Miidest = [False, True , False, False, True , False, True];
Miiidest = [True , False, True , True , True , True , False];
MIVdest = [True , True , False, True , True , False, True];
MVdest = [True , False, False, True , True , True , False];
Mvidest = [True , True , False, True , True , True , True];
Mviidest = [True , False, False, False, True , False, True];

midest [True , True , True , True , True , True , True 1;

miidest = [False, True , False, False, True , False, True 1;
mIIIdest = [True , False, True , True , True , True , Falsel;
mivdest = [True , True , False, True , True , False, True 1;
mVdest = [True , False, False, True , True , True , False];
mVIdest = [True , True , False, True , True , True , True 1;
mviidest = [True , False, False, False, True , False, True 1;

gives the appropriate modality for each scale degree

Mmodalities = ['major', 'minor', 'minor', 'major', 'major', 'minor',
"diminished'];

mmodalities = ['minor', 'diminished', 'major', 'either', 'major',
'major', 'diminished']

we first define a couple of simple checks. These in particular

return strings, not booleans. Some are mode specific.

One chord checks

def modalityErr_Major(self):

if self.num.quality != self.Mmodalities[self.num.scaleDegree - 1] and
self.Mmodalities[self.num.scaleDegree - 1] != 'either':
return ('Measure ' + str(self.num.measureNumber) + ': In a major

key, a chord on scale degree ' + str(self.num.scaleDegree) + ' must be ' +
str(self.Mmodalities[self.num.scaleDegree - 11));

def modalityErr_Minor(self):

if self.num.quality != self.mmodalities[self.num.scaleDegree - 1] and
self.mmodalities[self.num.scaleDegree - 1] != 'either':
return ('Measure ' + str(self.num.measureNumber) + ': In a minor

key, a chord on scale degree ' + str(self.num.scaleDegree) + ' must be ' +
str(self.mmodalities[self.num.scaleDegree - 11));

def twolnversion_Minor(self):

if self.num.scaleDegree ==
if self.num.inversion() != 1:

return('Measure ' + str(self.num.measureNumber) + ': In a
minor key,the second degree chord must appear in first inversion');

def sixInversion_MajorMinor(self):

if self.num.scaleDegree == 6:
if self.num.inversion() == 1:
return('Measure ' + str(self.num.measureNumber) + ': The

sixth degree chord cannot appear in first inversion. ');

def sevenInversion_MajorMinor(self):

if self.num.scaleDegree == 7:
if self.num.inversion() != 1:
return('Measure ' + str(self.num.measureNumber) + ': The

seventh degree chord must appear in first inversion. ');

Two chord checks

def sixToOne_MajorMinor(self):

if self.numl.scaleDegree == 6 and self.num2.scaleDegree == 1 and not
self.ofl and not self.of2:
if self.num2.inversion() != 1:
return ('Measure ' + str(self.num2.measureNumber) + ': When

vi resolves to the tonic, it must be I6');

def fiveTo _Minor(self):

if self.numl.scaleDegree == 5 and not self.ofl:
if self.num2.scaleDegree == 4 and not self.of2:
if self.num2.quality == 'minor' or self.num2.inversion != 1:
return ('Measure ' + str(self.num2.measureNumber) + ': In

minor, V goes to IV6, not iv6 or IV');

if self.num2.scaleDegree == 6 and not self.of2:
if self.num2.inversion() != 1:

return ('Measure ' + str(self.num2.measureNumber) + ': In
minor, V goes to vi6, not vi');

def pairValid _MajorMinor(self):
out = True;

Check each of four cases
Case 1: Diatonic chord to diatonic chord
if not self.ofl and not self.of2:

out = self.dest[self.basel.scaleDegree -
1] [self.base2.scaleDegree - 17;

Case 2: Diatonic chord to borrowed chord
elif not self.ofl and self.of2 != None:
if self.of2.quality == 'major' or self.of2.quality == 'minor':

out = True;

else:
out = False;
Case 3: Borrowed chord to diatonic chord
elif self.ofl != None and not self.of2:
if self.ofl.scaleDegree == self.base2.scaleDegree:

if self.basel.scaleDegree == 5 or self.basel.scaleDegree ==

out = True;
deceptive progression

elif (self.basel.scaleDegree + self.ofl.scaleDegree ==
self.base2.scaleDegree + 7):

out True;
else:
out = False;

Case 4: Borrowed chord to borrowed chord

elif self.ofl != None and self.of2 != None:
Subcase 1: both chords are borrowed from the same key
if self.ofl.scaleDegree == self.of2.scaleDegree:
same chord
if self.basel.scaleDegree == self.base2.scaleDegree:
out = True;
preceeded by own subdominant

elif (self.basel.scaleDegree == 4 or self.base2.scaleDegree
== 2) and (self.base2.scaleDegree == 5 or self.base2.scaleDegree == 7):

out = True;
deceptive progression

elif self.basel.scaleDegree + self.ofl.scaleDegree + 1 ==
self.base2.scaleDegree + self.of2.scaleDegree:

out = True;

else:

out False;
Subcase 2: the chords are borrowed from different keys
else:

out = False;

if out == False:

return ('Measure ' + str(self.numl.measureNumber) + ': Invalid
progression from ' + str(self.numl.figure) + ' to ' + str(self.num2.figure) +

¥

there are two types of progressionCheckers - major and minor. They
have an array of allowed simple progressions, and a list of mode

specific checks to be run.

def _init__ (self, mode):

assert(mode == "major" or mode == "minor")
self.mode = mode;
if mode == "major":

self.dest = [self.MIdest, self.Miidest, self.Miiidest,
self.MIVdest, self.MVdest, self.Mvidest, self.Mviidest];

self.singleChecks = [self.modalityErr_Major,
self.sixInversion_MajorMinor, self.sevenInversion MajorMinor];

self.doubleChecks = [self.sixToOne_MajorMinor,
self.pairValid _MajorMinor];

if mode == "minor":

self.dest = [self.midest, self.miidest, self.mIIIdest,
self.mivdest, self.mVdest, self.mVIdest, self.mviidest];

self.singleChecks = [self.modalityErr_Minor,
self.twolnversion_Minor, self.sixInversion MajorMinor,
self.sevenInversion_MajorMinor];

self.doubleChecks = [self.sixToOne_MajorMinor, self.fiveTo_Minor,
self.pairValid _MajorMinor];

setChords is meant to set up the progressionChecker for use on a pair
of chords, in order to verify the progression. If isValid is called
after a setChords call, the validity of the pair will be determined

def setChords(self, numA, numB):

tell the object that it is of type TwoChord

self.checkerType = "TwoChord";

first we must store the roman numerals
self.numl = numA;

self.num2 = numB;

now must parse into base and of

if not self.numl.secondaryRomanNumeral:

self.basel = self.numl;
self.ofl = None;
else:

breakdown = self.numl.figure.split("/" +
self.numl.secondaryRomanNumeral.figure);

self.basel = roman.RomanNumeral(breakdown[0]) ;

self.ofl =
roman.RomanNumeral (self.numl.secondaryRomanNumeral.figure);

if not self.num2.secondaryRomanNumeral:
self.base2 = self.num2;
self.of2 = None;

else:

breakdown = self.num2.figure.split("/" +
self.num2.secondaryRomanNumeral.figure);

self.base2 = roman.RomanNumeral(breakdown([0]) ;

self.of2 =
roman.RomanNumeral (self.num2.secondaryRomanNumeral.figure);

def setChord(self, num):

tell the object that it is of type OneChord

self.checkerType = "OneChord";

first we must store the roman numeral

self.num = num;

now must parse into base and of

if not self.num.secondaryRomanNumeral:
self.base = self.num;
self.of = None;

else:

breakdown = self.num.figure.split("/" +
self.num.secondaryRomanNumeral.figure);

self.base = roman.RomanNumeral(breakdown[0]) ;

self.of =
roman.RomanNumeral (self.num.secondaryRomanNumeral.figure);

tells if whatever was put into the progressionChecker is valid.
If a single chord was put in, validates it. If two chords were put
in, validates the transition.
def isValid(self):
output = [1;
if self.checkerType == "OneChord":
for function in self.singleChecks:
err = function();
if err != None:
output.append(err);
elif self.checkerType == "TwoChord":
for function in self.doubleChecks:
err = function();
if err != None:

output.append(err);

return output;
OTHER MODULES

Utilites.py

module contains utilities

assign list of errors
def assignList():
global errorlList;

errorList = [1;

get list of errors

def retrievelList():

return errorlList;

removes duplicates from a 1list
def removeDuplicates(errors):
seen = [1];
for error in errors:
if error not in seen:
seen.append(error);

return seen;

function takes as an argument a function which returns error messages.
the messages are then printed
def printErrors(errorGenerator, arg, initialMes, clearMes):
print (" "+ initialMes);
messages = errorGenerator(arg);
if not messages:
print (" " + clearMes);
else:
for error in messages:
print(error);
errorList.append(error);

[N ")

An errorTracker is a data structure meant to store the types and number
of errors occuring over several chorale checks.

class errorTracker:

def _ dinit__ (self):

Parallel Intervals

self.P1l = 0;
self.P5 = 0;
self.P8 = 0;
Ranges

self.bassRange = 0;
self.tenorRange = 0;
self.altoRange = 0;
self.sopRange = 0;

Closeness

1]
(o)

self.altSoplInt

self.tenAltInt

1]
(o)

Voice Crossing

self.BTVC = 0;
self.TAVC = 0;
self.ASVC = 0;

Tritones
self.tritone = 0;

Repeated Bass
self.repBass = 0;

Chord progressions
self.inversion = 0;
self.majorMinor = 0;

self.invalidProg = 0;

self.bachness = [];

For each of the 17 error types, average violations per measure

in the chorales

self.bachViolations = [0.000994036, 0.21868787, 0.001988072,
0.081510934, 0.005964215, 0.000994036, 0.000994036, 0.021868787, 0.07554672,
0.040755467, 0.093439364, 0.028827038, 0.047713718, 0.034791252, 0.03777336,
0.078528827, 0.093439364]

The average violations per measure in this chorale

self.inputViolations = [];

def printState(self):
print('P1: ' + str(self.Pl));
print('P5: ' + str(self.P5));
print('P8: ' + str(self.P8));
print('bassRange: ' + str(self.bassRange));
print('tenorRange: ' + str(self.tenorRange));
print('altoRange: ' + str(self.altoRange));
print('sopRange: ' + str(self.sopRange));
print('altSopInt: ' + str(self.altSoplInt));
print('tenAltInt: ' + str(self.tenAltlInt));
print('BTVC: ' + str(self.BTV(C));
print('TAVC: ' + str(self.TAV(C));

print("ASVC: ' + str(self.ASV(C));

print('tritone: ' + str(self.tritone));
print('repBass: ' + str(self.repBass));
print('inversion: ' + str(self.inversion));
print('majorMinor: ' + str(self.majorMinor));

print('invalidProg: ' + str(self.invalidProg));

print self.bachness;

takes an error and updates local variables. Works by basic
string manipulation
def processError(self, err):

sp = err.split();

if len(sp) < 3:
return

firstWord = sp[0O];

secondWord = sp[l];

thirdWord = sp[2];

lastWord = sp[-1];

Parallel Unison

if secondWord == 'unison':
self.Pl = self.P1 + 1;

Parallel Fifth

elif secondWord == 'fifth':
self.P5 = self.P5 + 1;

Parallel Octave

elif secondWord == 'octave':
self.P8 = self.P8 + 1;

Bass Range

elif firstWord == 'Bass' and secondWord == 'out':
self.bassRange = self.bassRange + 1;

Tenor Range

elif firstWord == 'Tenor' and secondWord == 'out':
self.tenorRange = self.tenorRange + 1;

Alto Range

elif firstWord == 'Alto' and secondWord == 'out':
self.altoRange = self.altoRange + 1;

Soprano Range

elif firstWord == 'Soprano' and secondWord == 'out':
self.sopranoRange = self.sopranoRange + 1;

Alto Soprano Closeness

elif firstWord == 'Interval' and thirdWord == 'alto':

self.altSopInt = self.altSopInt + 1;

Tenor Alto Closeness

elif firstWord == 'Interval' and thirdWord == 'tenor':
self.tenAltInt = self.tenAltInt + 1;

Bass Tenor Voice Crossing

elif firstWord == 'Bass/Tenor':
self.BTVC = self.BTVC + 1;

Tenor Alto Voice Crossing

elif firstWord == 'Tenor/Alto':
self.TAVC = self.TAVC + 1;

Alto Soprano Voice Crossing

elif firstWord == 'Alto/Soprano':
self.ASVC = self.ASVC + 1;

Tritone

elif thirdWord == 'tritone':

self.tritone = self.tritone + 1;
Repeated Bass
elif firstWord == 'Repeated’:
self.repBass = self.repBass + 1;
Inversion
elif lastWord == 'inversion':
self.inversion = self.inversion + 1;
elif lastWord == 'I6':
self.inversion = self.inversion + 1;
Major/Minor
elif lastWord == 'major' or lastWord == 'minor':
self.majorMinor = self.majorMinor + 1;
Invalid progression
elif thirdWord == 'Invalid':
self.invalidProg = self.invalidProg + 1;

elif firstWord == 'Bachness':

self.bachness.append(thirdWord);

def computeBachness(self, numberOfMeasures):
self.inputViolations = [self.Pl, self.P5, self.P8, self.bassRange,
self.tenorRange, self.altoRange, self.sopRange, self.altSoplInt,

self.tenAltInt, self.BTVC, self.TAVC, self.ASVC, self.tritone, self.repBass,
self.inversion, self.majorMinor, self.invalidProg];

for i in range(len(self.inputViolations)):

self.inputViolations[i] =
float(self.inputViolations[i])/numberOfMeasures;

ratios = [];
for i in range(len(self.bachViolations)):

ratios.append(self.inputViolations[i]/self.bachViolations[i]);

bachness = 0;
for i 1in ratios:

bachness += 1i;

return bachness/17;

testBach.py
import sys
import os
from utilities import *
import subprocess, glob
if len(sys.argv) < 2:
print "Usage: python testBach.py [number of chorales]";
exit();
pFlag = True;
if len(sys.argv) == 3:

pFlag = False;

numberOfChorales = int(sys.argv[1l]);

output = [1;

for i in range(numberOfChorales):

num = i + 1;
if num < 10:

txt = "00" + str(num);
elif num < 100:

txt = "0" + str(num);
elif num < 100:

txt = str(num);

c = "Tymo/XMLChorales/riemenschneider" + txt + ".xml";

b "Tymo/BachChorales/riemenschneider" + txt + ".txt";
input = "python chassis.py " + ¢ + " " + b;

print input;

Code taken from stack overflow post

http://stackoverflow.com/questions/15786637/python-subprocess-store-
each-1line-of-output-in-a-1list

globpattern = 'path/to/*.*'
if pFlag:
cmd = ['python', 'choraleAnalyzer.py', ¢, bl;

else:

cmd ['python', 'choraleAnalyzer.py', ¢, b, 'noParallels'];
cmd.extend(glob.glob(globpattern))
proc = subprocess.Popen(cmd,stdout=subprocess.PIPE)

outputlines = filter(lambda x:len(x)>0, (line.strip() for line 1in
proc.stdout))

output = output + outputlines;

errorTracker = errorTracker();

for 1ine 1in output:

errorTracker.processError(line);

errorTracker.printState();

