
CritTer
Critique From the Terminal

Customizable Style Checking for C Programs

Author:
Erin Rosenbaum

Advisor:
Dr. Robert Dondero

Senior Thesis

Submitted to Princeton University
Department of Computer Science

In Partial Fulfillment of the Requirements for the A.B. Degree

April 15, 2011

This paper represents my own work in accordance with University regulations.

Erin Rosenbaum
April 15, 2011

Abstract

Stylistic errors are a symptom of poorly written code. Sadly, relatively few tools have
implemented automated stylistic error checking and even fewer are customizable or
written for C. CritTer (Critique from the Terminal) fills this void. It provides a tool
to check for administrator-defined stylistic errors in C code. CritTer uses a SAX style
of event-based programming to perform checks and produces warnings as the code is
being read. Administrators can use predefined checks or create their own to enforce
coding standards. Additionally, they can use CritTer to help grade and teach “good
style” to students. To test CritTer’s abilities, I ran it over a series of graded student
submissions and compared CritTer’s performance to the grader’s. The results proved
that CritTer is both helpful and reliable. Not only did CritTer find 98.1% of errors,
it had a a precision rate of 90.0%. These rates are excellent, especially given the
grader found 83.6% of errors and had a precision of 100%.

Acknowledgements

This thesis has been simultaneously one of the hardest and most rewarding ex-
periences of my academic career. Transforming a simple idea into a functional and,
more importantly, useful program was extremely satisfying and is a boost to my
confidence as I enter the professional world. I am thoroughly indebted to many in-
dividuals who supported me through this process. Unequivocally, I owe my greatest
and most profound thanks to my advisor, Dr. Robert Dondero. Dr. Dondero pa-
tiently met with me every week this year and helped me in everything from research
and general software development to programming design tactics and writing skills.
Without his support and appreciation of good style, this thesis would never have
made it to its current state.

I would also like to express my gratitude to Professor Brian Kernighan for helping
me enter the Computer Science department my sophomore year and for putting up
with my two Junior Projects. Without his help and support, I would not have become
a successful CS major.

There are various individuals who have supported me who also deserve mention.
I would like to thank Alice Zheng for her wonderful help in creating the CritTer
logo. Ashton Brown and Slater Stich have been two of my closest friends and biggest
supporters this year and throughout my entire college career. Without their help, I
would not have been as productive or successful in my efforts on this thesis; without
their friendship, my college career would have been significantly less enjoyable. I
would also like to thank my teammates for being a wonderful, if often slightly an-
noying, set of brothers — I will actively miss all of our ‘family’ dinners next year.
Additionally, I’d like to thank Marty Crotty, my coach, who has made me a better
competitor and tougher person. Finally I would like to thank my parents and my
sisters who constantly provide me with support and laughter. I owe all my success
to them.

Contents

1 Introduction 1

2 Related Products 4
2.1 Splint . 4
2.2 PMD and Checkstyle . 6

3 What CritTer Does 10

4 How CritTer Works 13
4.1 Parsing the Code . 13
4.2 Some Theory . 18
4.3 Calling the Checks . 19
4.4 Writing the Checks . 27

5 How to Use CritTer 31
5.1 Users . 31
5.2 Administrators . 31

5.2.1 Use . 31
5.2.2 Customization . 32
5.2.3 Compilation, Testing and Installation 36

6 Evaluation 39

Appendices 47

A Predefined Check Functions 47

B Conventions and Necessities 51
B.1 General . 51
B.2 Sax and Hooks Modules . 52
B.3 Checks Module . 52

C Progression of Development 54

Bibliography 56

iv

List of Tables

1.1 Error Checking . 1

3.1 Predefined Checks . 12

6.1 Test Results for Magic Numbers . 40
6.2 Test Results for Validating Pointer Parameters 41
6.3 Test Results for Comments Above Global Variables 42
6.4 Test Results for Validating Function Comments 43
6.5 Test Results Across All Checks . 45

A Predefined Check Functions and their Relevant Event Handlers . . . 47

v

List of Figures

2.1 Splint Annotations . 5
2.2 Example of a PMD Rule . 7
2.3 Example of a Checkstyle Check . 9

3.1 Example of an Error and Corresponding Warning 10

4.1 Module Interaction of CritTer . 14
4.2 Excerpt of the Grammar . 17
4.3 A Subset of the Event Handlers in the Sax Module 20
4.4 Additional Excerpt of the Grammar 22
4.5 Representation of the Hooks Module 23
4.6 Timeline of Event Handler Calls . 24
4.7 Example of a Check which Utilizes lastCalledFunction 26
4.8 CritTer Check with Additional Context 28
4.9 Example of Adjacent Comments . 29

5.1 CritTer Check with Contextual Processing 34
5.2 Direct vs. Indirect Event Handlers . 37

C.1 Version 1.0 Grammar Excerpt . 55

vi

Chapter 1
Introduction

Writing typically contains three types of errors: syntactic, stylistic and semantic.

In the case of writing prose, these errors take the form of spelling and grammar

mistakes, poorly phrased passages and logic errors. When writing code, they form

syntax errors, poorly styled code and malfunctioning code. Both spelling mistakes

and syntax errors represent text that is not within the language (be it English, C,

etc.). A poorly phrased passage in prose or code denote text that is technically valid

but hard to understand. Finally, illogical arguments in prose and malfunctioning code

both imply errors in the ideas behind the text. There are ways to find with these

errors in both prose and code (see Table 1.1). While all these methods are useful,

syntactic error checking is largely automated and therefore much more available and

helpful. Good automated semantic error checking requires a currently unavailable

level of artificial intelligence. Stylistic error checking, on the other hand, is feasible

but has been addressed by very few tools.

Types of Errors Tools for Prose Tools for Code

Syntactic Spell & Grammar Check Compiler
Stylistic Editor Code Reviewers/Graders
Semantic Reader User/Tests

Table 1.1: Error Checking

1

Chapter 1. Introduction

From a different point of view, this problem can be formulated in terms of soft-

ware quality. There are two perspectives on software quality: that of the user and

that of the programmer. Users evaluate software on whether or not it behaves as it

ought. Programmers, in addition, evaluate software on whether or not it is easily

maintainable. Minimally, maintainability implies that code is easy to read and up-

date. Evaluating a program from the user’s perspective is common practice and most

easily accomplished through automated testing. Though it is possible to evaluate

a program from the programmer’s perspective, existing tools that do so only check

for specific qualities. Unfortunately, code quality is subjective, so any tool that only

performs pre-defined inspections will never be satisfactory to every programmer.

The biggest reason to perform stylistic error checking is to improve readability

(the ease with which another programmer can understand a piece of code). In the

same way that poor phrasing in a paper often confounds its underlying arguments,

poorly written code can easily obscure its underlying function. Furthermore, readable

code is easier to revise and update.

In the academic world, professors and teaching assistants (TAs) often read stu-

dents’ code, especially in introductory level courses. In these courses, much of the

focus is on enforcing “good style” (though the definition varies from professor to pro-

fessor). The successful implementation of an automated stylistic error checker can

immediately save work for professors by replacing the process of individually writ-

ing the same set of stylistic comments to multiple students with a set of automated

warnings. In addition to reducing this repetitive and time consuming task, it also

allows for a consistent evaluation. Students also directly benefit by applying this tool

2

Chapter 1. Introduction

to their code prior to submitting assignments — giving them the chance to improve

their grades as well as their coding habits.

In an industrial setting, where it is necessary to read or edit another’s code, main-

taining readability is essential. Projects are often handed over to new employees or

teams who are then expected to be able to contribute immediately. Poorly organized

or written code makes this daunting task onerous. Many successful software compa-

nies make use of a codified internal style but the enforcement of this policy falls to

the employees. Many transgressions are simply due to inattention and could easily

be solved by an automated reminder system. Such a tool would improve readabil-

ity and reduce the need to bother one’s peers with another round of code reviews,

thereby allowing the entire team to be more productive.

To address these needs, I have created CritTer (Critique from the Terminal), a

customizable style-checker for C code. CritTer is run from the command line and

executes a set of stylistic checks on the source files. Additionally, administrators can

create checks to satisfy their personal needs.

3

Chapter 2
Related Products

Many tools exist to help improve code. Minimally, compilers often produce warnings

about unused code or assignments within if statements. Tools like Clang[5] and

Uno[15] go even further and look for bugs such as uninitialized variables, out-of-

bounds array indexing and memory errors. These tools do not focus on style or

readability explicitly and still largely operate on the same level as a compiler. Other

tools try very hard to fill the stylistic error checking void. Each approaches the

problem differently, but all succeed in finding some stylistic errors. Three such tools

are Splint[10], PMD[4], and Checkstyle[2].

2.1 Splint

Splint is a tool for “statically checking C programs for security vulnerabilities and

programming mistakes”[10, p. 9]. It works exactly as CritTer does from the user’s

perspective, i.e. as a command-line program which prints warnings to stdout. Splint

displays warnings about basic stylistic errors such as assignments with mismatched

types and ignored return values. With more effort, programmers can add annotations

(fancy comments) to their code that gives Splint a specification against which to

check. These annotations allow for stronger checks like memory management, null

pointers and “violations of information hiding”[10, p. 9]. Examples of annotations in

4

Chapter 2. Related Products

typedef /*@abstract@*/ /*@mutable@*/ char *mstring;

typedef /*@abstract@*/ /*@immutable@*/ int weekDay;

Figure 2.1: Splint Annotations which define mstring and weekDay as abstract data types and
further specify that they are mutable/immutable respectively.

action are shown in Figure 2.1. These checks supersede the set found in the original

Lint, Splint’s namesake: “Specification Lint” and “Secure Programming Lint”.

While these annotations provide an extensive feature set, they are a huge incon-

venience. They require programmers to specifically write their code to meet both

the specification of the client and also of the tool. For new programmers — often the

ones who need the most error checking — these annotations are almost impossible to

implement on top of learning to program. David Evans, one of the authors of Splint,

says as much in a private email. He states:

One of the goals of the original design of Splint was for programmers
who add no annotations to start getting some useful warnings right away,
including warnings that encourage them to start adding annotations. For
some aspects, such as /*@null@*/ annotations I think this has worked
okay, but for others like abstract types, memory management, etc., I
don’t think it has worked very well, and the warnings on these issues
tend to either make developers want to stop using Splint, or at least
just turn off all the warnings of that type, rather than start adding the
annotations needed to enable better checking.[11]

Splint and CritTer differ in two significant ways. Splint performs a lot of inter-

file checks regarding headers, interfaces, etc., whereas CritTer primarily focuses on

intra-file checks. They also differ in how they specify what to check. Splint uses a

configuration file and command line arguments to determine which of the several-

hundred pre-defined messages and warnings to display. In contrast, CritTer allows

5

Chapter 2. Related Products

administrators to easily write their own checks and always runs every check that

is defined. Because of this disparity, Splint is limited to checking for commonly

accepted errors but CritTer has the freedom to operate idiosyncratically and check

many different — possibly quite arbitrary — coding standards.

2.2 PMD and Checkstyle

PMD is a tool for checking Java code. It is integrated into a dozen or so popular

IDEs. PMD comes with over 250 checks, which are mostly organized by purpose such

as Braces Rules, Basic Rules, Coupling Rules, etc. Some checks also deal explicitly

with a certain library or platform like Android, Jakarta and JUnit. PMD works

by passing source code into a JavaCC-generated parser and receiving an Abstract

Syntax Tree (a.k.a. AST, a tree-based model of the source code). PMD then traverses

the AST and calls each rule to check for any violations. This pattern of examining a

tree of nodes is called the Visitor Pattern[13]. Rules are written in their own classes

and extend a base implementation. The rule itself can override three functions (start,

visit and end) to perform various checks against the source code based on the nodes

in the AST. The “dummy” example from the PMD website which counts how many

expressions are in the source code is shown in Figure 2.2. PMD keeps track of these

custom rules by reading additional XML files, called rulesets, which specify the

various attributes of the rule (such as name, message, corresponding class, examples,

etc.).

Checkstyle provides similar functionality to PMD in that it checks Java code for

6

Chapter 2. Related Products

package net.sourceforge.pmd.rules;

import java.util.concurrent.atomic.AtomicLong;

import net.sourceforge.pmd.AbstractJavaRule;

import net.sourceforge.pmd.RuleContext;

import net.sourceforge.pmd.ast.ASTExpression;

public class CountRule extends AbstractJavaRule {

private static final String COUNT = "count";

@Override

public void start(RuleContext ctx) {

ctx.setAttribute(COUNT, new AtomicLong());

super.start(ctx);
}

@Override

public Object visit(ASTExpression node, Object data) {

// How many Expression nodes are there in all files parsed!

RuleContext ctx = (RuleContext)data;

AtomicLong total = (AtomicLong)ctx.getAttribute(COUNT);

total.incrementAndGet();

return super.visit(node, data);

}

@Override

public void end(RuleContext ctx) {

AtomicLong total = (AtomicLong)ctx.getAttribute(COUNT);

addViolation(ctx, null, new Object[] { total });

ctx.removeAttribute(COUNT);

super.start(ctx);
}

}

Figure 2.2: Example of a PMD rule which counts the number of expressions in the source
code.

7

Chapter 2. Related Products

stylistic errors. It was designed to help programmers adhere to coding standards.

Later, its designers added checks for bug prevention, class design problems, and other

common errors. Accordingly, Checkstyle comes standard with many checks include

those regarding duplicate code, class design, whitespace, etc. Like PMD, it uses an

AST and the Visitor Pattern to check code. Custom rules are registered through an

XML file and passed to Checkstyle at runtime. An example check which determines

how many methods are in a class is shown in Figure 2.3.

PMD and Checkstyle are great tools; nevertheless, because they only work for

Java, they do not solve my problem: stylistic error checking in C. In essence PMD,

Checkstyle and CritTer perform very similarly; however, PMD and Checkstyle are

built upon entirely different frameworks from CritTer. The use of the Visitor Pattern

and an AST requires PMD and Checkstyle to read though the entirety of the code

before they can produce any warnings. In contrast, CritTer performs error checking

as it reads the code. PMD and Checkstyle also contain graphical user interfaces,

both to aid writing checks and to find errors (the latter due to their integration with

IDEs). CritTer, on the other hand, is a command line program. Another difference

is CritTer must be recompiled in order to take advantage of any added checks as

opposed to responding at runtime to a configuration file.

8

Chapter 2. Related Products

package com.mycompany.checks;

import com.puppycrawl.tools.checkstyle.api.*;

public class MethodLimitCheck extends Check

{

private static final int DEFAULT_MAX = 30;

private int max = DEFAULT_MAX;

@Override

public int[] getDefaultTokens()

{

return new int[]{TokenTypes.CLASS_DEF, TokenTypes.INTERFACE_DEF};

}

@Override

public void visitToken(DetailAST ast)

{

// find the OBJBLOCK node below the CLASS_DEF/INTERFACE_DEF

DetailAST objBlock = ast.findFirstToken(TokenTypes.OBJBLOCK);

// count the number of direct children of the OBJBLOCK that

// are METHOD_DEFS

int methodDefs = objBlock.getChildCount(TokenTypes.METHOD_DEF);

// report error if limit is reached

if (methodDefs > this.max) {

log(ast.getLineNo(),

"too many methods, only " + this.max + " are allowed");

}

}

}

Figure 2.3: Example of a Checkstyle check which counts the number of methods in a class.

9

Chapter 3
What CritTer Does

CritTer reads in a set of C source code files and determines if they contain any of

the defined stylistic errors. It is run from the command line inside one’s working

directory. CritTer is given a list of .c files to check and reads through each in the

given order, pausing to read through included header files. Upon encountering an

error, CritTer prints a warning to stderr containing the full location of the error, an

error level and a message (an example is shown in Figure 3.1).

CritTer places the responsibility on the administrator to define the set of stylistic

errors to check. CritTer comes with a set of predefined checks that the adminis-

trator may use or discard at his/her discretion. Checks are event driven and are

called when the appropriate element in the code is reached. For example, it is of-

ten desirable to make sure that variables have long enough names to be adequately

descriptive. In order to check this property, whenever CritTer recognizes a variable

inside a declaration it checks that the variable’s name exceeds a minimum length.

(a) test.c

92 for (int q = 0; q<5; q++) {

93 printf("hi");

94 }

(b) stderr

$ critTer test.c

test.c:92.22-92.23: big problem:

Do not use magic numbers (5)

Figure 3.1: Example of an Error and Corresponding Warning. Here, CritTer is complaining
that the for loop’s exit condition contains a ‘magic number’. The warning contains the location
of the error, the error level as well as the message.

10

Chapter 3. What CritTer Does

The administrator can write his/her own checks as functions to be invoked at each

of the relevant callback points.

The predefined checks are listed in Table 3.1. These checks reflect two main

ideas: to demonstrate the strength and abilities of CritTer as well as my own stylistic

choices. In order to show off some of the power of CritTer, I wrote a variety of

checks that show the various distinct elements that can be examined. Some checks,

such as isFunctionTooLongByLines and isFunctionTooLongByStatements, are the

same check defined on a different unit of length (line vs. statement). The style

choices I made represent ideas from a variety of sources including Fowler’s Bad

Smells of Code[12], Google’s style guide[20], Code Complete[18], C-Style: Standards

and Guidelines[19], The Practice of Programming[8], PMD[4] and Checkstyle[2], as

well as my own experience and preferences.

11

Chapter 3. What CritTer Does

Check Name Purpose

isFileTooLong Check if the file exceeds a maximum length.
hasBraces Check if the statement within an if, else, for, while,

and do while statement is a compound statement.
isFunctionTooLongByLines Check if a function exceeds a maximum line count.
isFunctionTooLongByStatements Checks if a function exceeds a maximum statement

count.
tooManyParameters Check if there are too many parameters in the func-

tion declaration.
neverUseCPlusPlusComments Warn against using C++ style single line comments.
hasComment Check for comments before some construct.
switchHasDefault Check that each switch statement has a default case.
switchCasesHaveBreaks Check that each switch case has a breakstatement.
isTooDeeplyNested Check whether a region of code (i.e. a compound

statement) nests too deeply.
useEnumNotDefine Warn against using #define instead of enum for dec-

larations.
neverUseGotos Warn against using GOTO statements.
isVariableNameTooShort Check if a variable’s name exceeds a minimum length.
isMagicNumber Warn against using magic numbers outside of a dec-

laration.
globalHasComment Check if each global variable has a comment.
isLoopTooLong Check if the loop length exceeds a maximum length.
isCompoundStatementEmpty Check if the compound statement is empty.
tooManyFunctionsInFile Check if there are too many functions in a file.
isIfElsePlacementValid Warn against poor if/else placement as defined by

the Google style guide.
isFunctionCommentValid Check if function comments have the appropriate

contents. Specifically check that the comment men-
tions each parameter (by name) and what the func-
tion returns.

arePointerParametersValidated Check if each pointer type parameter into a function
is mentioned within an assert() before being used.

doFunctionsHaveCommonPrefix Check that function names contain a common prefix.
functionHasEnoughLocal-
Comments

Check that there are enough local comments in the
function relative to the number of control/selection
statements.

structFieldsHaveComments Check that all fields in a struct have a comment.

Table 3.1: Predefined Checks

12

Chapter 4
How CritTer Works

Figure 4.1 shows how CritTer is divided up into multiple, loosely coupled modules.

Each of these has a unique purpose and is designed to keep the code as clean as

possible. The “Knowledge Barrier” distinguishes the easily customizable and un-

derstandable modules from those which should not be modified without extreme

caution. The modules can also be conceptually grouped into three categories: Pars-

ing the Code (Lexer and Parser), Calling the Checks (Hooks and Sax), and Writing

the Checks (Checks, Comments, and Locations).

4.1 Parsing the Code

CritTer is built on top of Flex and Bison, a lexical analyzer and parser generator,

respectively. These two programs each take in a specification file (which defines a set

of tokens and a corresponding context free grammar) and output a set of C files to

parse code. Control goes back and forth between the lexical analyzer — which divides

the code into distinct tokens — and the parser — which determines how the tokens

fit together. CritTer is able to parse valid ANSI C code but it does not compile

or in anyway track the contents. This means, for example, that CritTer sees any

variable or function name as just as an IDENTIFIER (any set of letters1 that does not

1Strictly, IDENTIFIERs fit the regular expression: [a-zA-Z_]([a-zA-Z_]|[0-9])*.

13

Chapter 4. How CritTer Works

MainLexer and Parser

Sax

Hooks

Locations

Comments

Checks

The Knowledge Barrier

Figure 4.1: Module Interaction of CritTer. Arrows represent the flow of control between the
modules.

already designate a data type) without any context as to where it was defined or used

before. Because CritTer does not compile code, it cannot evaluate expressions within

preprocessor directives. Therefore, CritTer cannot perform conditional compilation

(specifically, it cannot follow #if and #define). In order to combat the issue of

multiple inclusion of header files, CritTer stores the name of each file it opens and

does not open that file again, even if it is included from another file. CritTer does not

read standard header files (such as stdlib.h and strings.h) because they define data

types within #defines (which CritTer cannot evaluate and therefore cannot recognize

as types). For example, the file sys/cdefs.h, which stdio.h eventually includes, has

14

Chapter 4. How CritTer Works

the line #define __signed signed and then uses __signed throughout the file. To

adjust for this issue, the lexer instead contains a hack for determining if character

strings in the code are IDENTIFIERs or data type names. The lexer does a string

comparison against common types defined in standard headers such as size_t, FILE,

pid_t, etc. If any of these hardcoded checks pass, then the lexer tells the parser it

has found a type name instead of an IDENTIFIER.2

Bison and Flex track the location of any token or grammar construct. They

store this information in a YYLTYPE structure. Normally a YYLTYPE contains 4 fields,

first_line, first_column, last_line and last_column; however, I have also added a

filename field in order to produce more accurate checks and warnings across a set of

files. Each grammar rule can contain multiple actions that consist of C code. These

actions can reference the location of the entire construct, or any of single component

of it, through the prebuilt location mechanism. Event handlers are functions in the

Sax and Hooks modules that respond to finding different code constructs. CritTer

calls the event handlers from actions, passing in the location of the relevant text.

Figure 4.2 shows an excerpt of the grammar where actions and the event handlers

within the actions are underlined. Some actions are ‘hidden’ in dummy rules (called

‘subroutines’ by Bison) in order to avoid ambiguities within the grammar. Exam-

ples of this practice are shown in Figure 4.2 with the beginCompound, beginFOR and

beginIF rules. Locations passed from the middle of a rule (all those passed to begin

handlers) represent only the location of that segment and not the entire construct.

2The lack of preprocessing also means that escaped new lines are left in the code. If these
characters occur inside a string, CritTer’s lexical analysis fails, which in turn causes Bison to falsely
report syntax errors. Since this style is rare (and often discouraged), I decided to ignore this issue.

15

Chapter 4. How CritTer Works

For example, in Figure 4.2, beginWhile will only be passed the location of the word

“while” whereas endWhile will be passed the location of the entire while statement.

Instead of writing them anew, I found Flex and Bison input files specifying the

C language online[16] and modified them to add additional functionality. The only

major modification of the actual grammar was to add the ability to recognize and

dynamically add typedef definitions as types. CritTer stores these type names in an

internal symbol table and the lexer checks to make sure that potential IDENTIFIERs

are not already listed in the table. Additionally, I modified some of the grammar

rules to include dummy rules with actions. In order to accommodate the inclusion of

header files, I had to expand the given lexer functionality to transfer control between

files. The specific method of using a stack of buffers and file pointers is heavily

inspired by the examples in the O’Reilly Flex & Bison book[17]. When transferring

to a different file, the lexer adds the current file to a stack with its file pointer,

internal state, and current line number. When it reaches the end of the file, the lexer

pops the current file off the stack and goes back to its previous state. The end of

program occurs when there are no more files on the stack.3

3CritTer starts by adding all of the given files to the stack and dynamically adding additional
header files. I chose to pre-load .c files in this manner because the mechanism was already in place
and it simplified the interface between the main module and the lexer/parser. In order to hide this
implementation detail, the .c files are pushed onto the stack in reverse order.
Additionally, the lexer reads in header filenames without any additional context about the path

of the current file. Because of this, CritTer is unable to find and read header files that are included
from within subdirectories. It is relatively rare within an academic context to break a single program
into subdirectories and accordingly I decided not to focus on this issue.

16

Chapter 4. How CritTer Works

beginCompound : /* empty */ {beginCompoundStatement(@$);}

compound_statement

: ’{’ beginCompound ’}’ {endCompoundStatement(@$);}

| ’{’ beginCompound statement_list ’}’ {endCompoundStatement(@$);}

| ’{’ beginCompound declaration_list ’} ’ {endCompoundStatement(@$);}

| ’{’ beginCompound declaration_list statement_list ’}’

{endCompoundStatement(@$);}

;

beginIF : /*empty*/ {beginIf(@$);}

selection_statement

: IF beginIF ’(’ expression ’)’ statement {endIf(@$);}

| IF beginIF ’(’ expression ’)’ statement ELSE

{endIf(@6); beginElse(@7);} statement {endElse(@9);}

| SWITCH {beginSwitch(@1);} ’(’ expression ’)’ statement

{endSwitch(@$);}

;

beginFOR : /*empty*/ {beginFor(@$);}

iteration_statement

: WHILE {beginWhile(@1);} ’(’ expression ’)’ statement {endWhile(@$);}

| DO {beginDoWhile(@1);} statement WHILE ’(’ expression ’)’ ’;’

{endDoWhile(@$);}

| FOR beginFOR ’(’ expression_statement expression_statement ’)’

statement {endFor(@$);}

| FOR beginFOR ’(’ expression_statement expression_statement expression

’)’ statement {endFor(@$);}

| FOR beginFOR ’(’ declaration expression_statement ’)’ statement

{endFor(@$);}

| FOR beginFOR ’(’ declaration expression_statement expression ’)’

statement {endFor(@$);}

Figure 4.2: Excerpt of the Grammar. Here, the different ‘paragraphs’ are the different grammar
rules. Actions are underlined and my additions to the grammar are in bold.

17

Chapter 4. How CritTer Works

4.2 Some Theory

Bison uses an LALR(1) parsing algorithm, meaning it uses Left to Right, Rightmost

Derivation to create a parse tree using one token of lookahead. This algorithm

maintains a parser table which allows it to avoid backtracking as it parses the source

file. Because of this property, calls are never mistakenly made from the lexer or

parser into other modules of CritTer.

When compilers translate code into machine language, they first perform lexical

analysis and parsing, just like CritTer. Where the two start to differ is in the actions

for each grammar rule. Compilers store information regarding the semantic value,

or meaning of the source code, inside each construct. This practice allows compilers

to build an Abstract Syntax Tree, which “conveys the phrase structure of the source

program, with all parsing issues resolved but without any semantic interpretation”[7].

Other modules can then look over the entire tree and determine the meaning of the

code as well as stylistic attributes. Both PMD and Checkstyle use this method.

Originally, CritTer operated in a similar manner; it stored an enumerated value

corresponding to the type of construction as the semantic value of each node (see

Appendix C). The checks then examined the value of each construction. Instead

of expanding along this line of development, I decided to transition to an event-

based system, largely inspired by SAX[1]. This kind of framework “reports parsing

events (such as the start and end of elements) directly to the application through

callbacks, and does not usually build an internal tree. The application implements

handlers to deal with the different events, much like handling events in a graphical

user interface”[1]. Specifically, SAX uses event handlers to parse XML files. There

18

Chapter 4. How CritTer Works

are three main handlers which are used at the beginning and end of each XML

element as well as to capture the text in between.

I chose to make this transition because the event-based system required far less

overhead to implement. Instead of spending time building the tree framework and the

corresponding methods to traverse it, I was able to focus on implementing stylistic

checks. Additionally, the SAX-style framework has the added benefit of being able

to examine code as it parses, as opposed to after the file has been parsed completely.

This feature also increases scalability because the SAX framework discards the parts

of the file(s) it has already read.

4.3 Calling the Checks

Much like SAX, CritTer calls event handlers at the beginning and end of constructs

(functions, declarations, statements, parameter lists, etc.) as well as when it finds

singular elements (variable names, break statements, parameters, etc.). In the code,

handlers are prefaced by the words “begin”, “end” and “register” to signal at what

point each is called (as shown in Figure 4.2). At minimum, each handler is passed

the location of the relevant text — in the case of IDENTIFIERs and numeric constants,

the handler is also passed the relevant text itself. Each of these event handlers exists

in the file sax.c which in turn calls the administrator-defined checks (as shown in

Figure 4.3). While these checks could be written into the event handlers themselves,

it is advantageous to separate them into their own functions in order to preserve the

readability of the sax.c file and the code in general. Appendix A lists the predefined

checks, their function signatures, and the handlers which call them.

19

Chapter 4. How CritTer Works

void registerConstant(YYLTYPE location, char* constant) {

isMagicNumber(location, MIDDLE, constant);

}

void beginCompoundStatement(YYLTYPE location) {

isCompoundStatementEmpty(location, BEGINNING);

lastCalled_set(beginCompoundStatement);

isTooDeeplyNested(location, BEGINNING);

isFunctionCommentValid(location, BEGIN_FUNCTION_BODY, NULL);

}

void endCompoundStatement(YYLTYPE location) {

isCompoundStatementEmpty(location, END);

lastCalled_set(endCompoundStatement);

isTooDeeplyNested(location, END);

}

void beginDeclaration(YYLTYPE location) {

isMagicNumber(location, BEGINNING, NULL);

isVariableNameTooShort(location, BEGINNING, NULL);

}

void endDeclaration(YYLTYPE location) {

isMagicNumber(location, END, NULL);

globalHasComment(location, MIDDLE);

isVariableNameTooShort(location, END, NULL);

}

Figure 4.3: A Subset of the Event Handlers in the Sax Module

20

Chapter 4. How CritTer Works

Unfortunately, some handlers cannot actually be called at the time the construct

is recognized. This is because Bison executes actions as they are encountered inside

each grammar rule. If actions were placed at the beginning of a rule, Bison would not

know which to act upon. In all the rules listed in Figure 4.2, the action is preceded

by some distinguishing token (e.g. WHILE) or by the entire rule. However, Figure 4.4

shows some rules that both need actions at the beginning of the statement and lack

distinguishing tokens. Specifically we would like to know when we start a function

definition, but we cannot be sure that we are in a function definition until Bison

finishes parsing the function’s signature. To fix this issue I added the Hooks module.

This module intercepts what would be normal calls within the SAX framework and

then reorders them at the appropriate time. Each call into the Hooks module does

one of two things: it enqueues a Sax level function call and its location or it dequeues

any item after a specified location (Figure 4.5). With the beginning of a function,

all the elements of the signature are placed on the queue and then dequeued when

h_beginFunctionDefinition is called.

The Hooks module also makes the appropriate calls into the Sax layer regarding

IDENTIFIERs and numeric constants. The lowest order structure Bison can manip-

ulate is the token, meaning it cannot know the textual representation of a given

IDENTIFIER or constant. Flex, on the other hand, operates on the actual text. Each

module makes one call into Hooks for each IDENTIFIER or constant regarding the

text or location. The Hooks module then takes the information from these separate

calls and combines them into one call in the SAX layer. This can best be seen in

Figure 4.6.

21

Chapter 4. How CritTer Works

declarator

: pointer direct_declarator

| direct_declarator

;

direct_declarator

: IDENTIFIER {h_registerIdentifier(@$);}

| ’(’ declarator ’)’

| direct_declarator ’[’ {h_beginDirectDeclarator(@1);}

constant_expression ’]’ {h_endDirectDeclarator(@$);}

| direct_declarator ’[’ {h_beginDirectDeclarator(@1);} ’]’

{h_endDirectDeclarator(@$);}

| direct_declarator ’(’ {h_beginDirectDeclarator(@1);}

parameter_type_list ’)’ {h_endDirectDeclarator(@$);}

| direct_declarator ’(’ {h_beginDirectDeclarator(@1);} identifier_list

’)’ {h_endDirectDeclarator(@$);}

| direct_declarator ’(’ {h_beginDirectDeclarator(@1);} ’)’

{h_endDirectDeclarator(@$);}

;

function_definition

: declaration_specifiers declarator {h_beginFunctionDefinition(@2);}

declaration_list compound_statement {endFunctionDefinition(@$);}

| declaration_specifiers declarator {h_beginFunctionDefinition(@2);}}

compound_statement {endFunctionDefinition(@$);}

| declarator {h_beginFunctionDefinition(@1);} declaration_list

compound_statement {endFunctionDefinition(@$);}

| declarator {h_beginFunctionDefinition(@1);} compound_statement

{endFunctionDefinition(@$);};

Figure 4.4: Additional Excerpt of the Grammar

22

Chapter 4. How CritTer Works

(a)

11 12 13

(b)

11 12 13 14

(c)

11

Sax

2 3 4
15 1

(d)

11

Figure 4.5: Representation of the Hooks Module. (a) The initial queue with functions associ-
ated to locations 11, 12 and 13. (b) The queue after another function/location pair has been
enqueued. (c) The call at location 15 causes a call into the Sax layer followed by every stored
call after the given location (12) in the queue. (d) The resulting queue.

Event handlers for major and common constructs, the beginning and end of each

file, and the program have been implemented. Smaller items, including the handlers

for registration of operators and data types, have yet to be implemented. It is easy to

add more handlers; however, administrators should only attempt to do so after fully

comprehending how the system works. Specifically, it is crucial to route handlers

through Hooks only when they occur inside constructs which are already rerouted

inside Hooks (such as statements and declarations). Otherwise events could be called

in the wrong order (if they miss going through Hooks) or not at all (if they go through

Hooks without anything to release them from the queue).

In addition to the basic SAX style system, I have implemented one shortcut to

help identify code context without an excess of global variables. Every time a handler

is called, it sets the lastCalledFunction through a setter. Checks can then use this

23

Chapter 4. How CritTer Works

Hooks Sax Relevant Code

h_registerIdentifierText example

h_registerIdentifier example

h_beginParameterList (

h_registerIdentifierText a

h_registerIdentifier a

h_registerParameter int a

h_registerIdentifierText b

h_registerIdentifier b

h_registerParameter double b

h_endParameterList)

h_beginFunctionDefinition beginFunctionDefinition
registerIdentifier example

beginParameterList (

registerIdentifier a

registerParameter int a

registerIdentifier b

registerParameter double b

endParameterList)

N/A beginCompoundStatement {

.

N/A endCompoundStatement }

N/A endFunctionDefinition

Figure 4.6: Timeline of event handler calls into the hooks and sax module for: void

example(int a, double b){...}

24

Chapter 4. How CritTer Works

variable to easily figure out what the previous context was without additional calls

or variables (as shown in Figure 4.7).

25

Chapter 4. How CritTer Works

/**

* Check if the compound statement is empty.

*/

void isCompoundStatementEmpty(YYLTYPE location, int progress) {

static void (*context)(YYLTYPE);

switch (progress) {

case BEGINNING:

context = lastCalled_get();

break;
case END:

if (lastCalled_get() == beginCompoundStatement) {

/* create a good error message */

char *parent = NULL;

if (context == beginIf) { parent = "if statements"; }

else if (context == beginElse) { parent = "else statements"; }

else if (context == beginFor) { parent = "for loops"; }

else if (context == beginWhile) { parent = "while loops"; }

else if (context == beginDoWhile) { parent = "doWhile loops"; }

if (parent) {

lyyerrorf(ERROR_HIGH, location, "Do not use empty %s", parent);

} else {

lyyerror(ERROR_HIGH, location,

"Do not use empty block statements");

}

}

break;
default:

break;
}

}

Figure 4.7: Example of a Check which Utilizes lastCalledFunction

26

Chapter 4. How CritTer Works

4.4 Writing the Checks

Minimally, each check needs access to the location of the code construct in order to

be able to produce a warning. Additionally, checks often need further information

regarding the surrounding context of the possible error. A simple example is the check

against using “magic numbers”[8, p. 19] (see Figure 4.8). Many programmers consider

using numeric constants directly inside the code very poor style and recommend

defining a symbolic constant to hold that value. Therefore CritTer should only

throw a warning when it finds a magic number inside a normal statement as opposed

to inside a declaration where it is necessarily defined. This check then needs to know

every time a declaration begins and ends as well as each time a number is found.

This contextual information can be stored in global variables in the Checks module

or passed into the individual check through its parameters (as in Figure 4.8).

In order to throw a warning, the administrator can call one of three functions:

yyerror, lyyerror, and lyyerrorf. Each of these functions prints a warning message

to stderr preceded by the error’s location in the code and an error level (as seen in

Figure 3.1). yyerror and lyyerrorf are each wrappers to lyyerror, which takes in

an error level (enum errorLevel), a location (YYLTYPE) and a warning message (char

*). In essence, lyyerror is really a wrapper to fprintf and defines the formatting

for the warnings messages and locations. Instead of receiving a warning message,

lyyerrorf accepts a format string and a variable argument list, which it uses with

vsprintf to create a warning message. It then passes the newly created message to

lyyerror with the rest of its arguments. yyerror only accepts a warning message

and calls lyyerror with Bison’s internal location in the code and a default high

27

Chapter 4. How CritTer Works

void isMagicNumber(YYLTYPE location, int progress, char* constant) {

int acceptableNumbers[3] = {0, 1, 2};

int numAcceptable = sizeof(acceptableNumbers)/sizeof(int);

static int inDeclaration = 0;

switch (progress) {

case BEGINNING:

inDeclaration++;

break;
case MIDDLE:

if (lastCalled_get() == registerCase) {

lyyerror(ERROR_HIGH, location, "Do not use magic numbers");

} else if (inDeclaration == 0) {

int number = (int)strtol(constant, (char**)NULL, 0);

int i;

/* see if number is within the acceptableNumbers array */

for (i = 0; i < numAcceptable; i++) {

if (number == acceptableNumbers[i]) {

return;
}

}

lyyerror(ERROR_HIGH, location, "Do not use magic numbers");

}

break;
case END:

inDeclaration--;

break;
default:

break;
}

}

Figure 4.8: CritTer check with additional context that throws a warning on encountering a
magic number outside of a declaration.

28

Chapter 4. How CritTer Works

/* Warn against using magic numbers outside of a declaration. */

/* (Presumably, inside a declaration, a variable will be initialized */

/* to a magic number and then used throughout the rest of the code). */

Figure 4.9: Example of Adjacent Comments

error level. This is because yyerror is called internally through Bison to represent

syntax errors. yyerror is the only predefined error reporting function; lyyerror is an

extension suggested by O’Reilly[17] when using location tracking with Bison/Flex.

The ‘l’ represents the variable location. lyyerrorf is modeled after printf and deals

with formatted warning messages in one consolidated function.

Additionally, there are two helper modules designed to facilitate writing checks:

Locations and Comments. The Locations module contains several functions to ma-

nipulate YYLTYPEs. Specifically it contains methods to compare locations as well

as allocate, copy and free YYLTYPEs. The Comments module tracks all the com-

ments found while running CritTer. Comments’ contents and locations are regis-

tered through calls from the Sax layer and are stored in a dynamic array. Adjacent

comments (like those in Figure 4.9) are recognized and combined into one larger

comment. Additionally the module provides the ability to search through this array

to find comments in or near a given location (using the methods from Locations).

Finally, the Comments module provides two useful functions for analyzing the com-

ment itself. The first determines if a comment has words — signifying that it is not a

delimiting comment in the form of /*----*/. The second checks whether a comment

contains a given string with or without case sensitivity.

CritTer has difficulty checking some coding styles. For example, when checking

29

Chapter 4. How CritTer Works

that each global variable has a comment, it is trivial to check if there is a comment

before that declaration. If, however, the comment appears after the declaration, as is

common in some header files, CritTer is unable to find the comment. This is because,

at the end of a declaration, CritTer has not yet read or stored the forthcoming

comment. There are three solutions to this issue. The first is a creative hack in

which one stores every location of a global variable and then searches for comments

after each location at the end of the file. The second method would be to perform

lookahead within the lexer to determine if a comment was about to follow. The third

and preferred solution is to change the coding standard to have comments precede

declarations.4

4Princeton University’s Introduction to Programming Systems course[6] will be changing its
coding standards this summer to facilitate using CritTer this fall and thereafter. One of the largest
changes will be to put comments before function declarations in header files.

30

Chapter 5
How to Use CritTer

5.1 Users

Find out from your administrator where you should find their version of CritTer.

After following their installation instructions, go to your working directory from the

command line. Type “critTer *.c” (or if you only want to check one or two files,

type their names instead of the *.c). CritTer will output any warnings about your

code to stderr.

5.2 Administrators

5.2.1 Use

In academics, the best use of CritTer is as an automated grading system. It is simple

to assign a point reduction system based on the number of warnings CritTer returns

over a submission. For example, one might deduct a two point penalty per high error

level message, a point per normal error level message and a half a point per low error

level message. Not only does it reduce the work needed to grade a submission, but

by allowing students to pre-check their work, the submissions become easier to read

through good, consistent style.

31

Chapter 5. How to Use CritTer

In industry, CritTer should be used by programmers before submitting code for

peer review. This creates an automated system to alert against any code that does

not adhere to the accepted coding standard. In this way, CritTer helps make the code

base more consistent and readable without direct peer enforcement. Furthermore,

the team can be more productive when they spend less time correcting their peers’

stylistic errors.

5.2.2 Customization

Before customizing the code, it is important to both understand how CritTer works

(see Chapter 4) and have looked through the code conventions in Appendix B.

Add a Check

The first step of adding a new stylistic check is to determine precisely what you wish

to check and which handlers will give you the necessary information. Then deter-

mine how much context is needed to implement this check. For example, to throw

a warning on C++ style comments (comments in form of “// Comment text which

ends on a newline”) requires no context — it is only dependent on the existence

of that code. In contrast, checking for braces around the content of for loops re-

quires very minimal context: whether or not endCompoundStatement was the last

function called (i.e. right before endFor was called, did CritTer encounter a ‘}’ or

something else). This minimal context can be established through the use of the

lastCalled_get() function which returns a pointer to the last Sax handler called.

More complex checks may need additional context. For example, to check that each

32

Chapter 5. How to Use CritTer

switch statement has a default case, the check needs to keep track of whether it has

seen a default within the current switch block. The easiest way to do this is to have

the check called from beginSwitch, registerDefault and endSwitch and pass in a

different ‘progress’ value at each different call. Throughout the code, the enumerated

values BEGINNING, MIDDLE and END provide such values (as shown in Figure 5.1).

After determining the relevant handlers and additional necessary parameters,1

one must actually write the check. The easiest way to deal with contextual processing

is to use a switch statement and conditionally set static local variables (Figure 5.1).

In order to throw a warning, one must pass location to either lyyerror or lyyerrorf

with an error level and either a message or format string and arguments respectively

(for additional information see Section 4.4).

Add an Event Handler

In order to add an event handler, it is necessary to edit the grammar file. This is

not trivial and should be undertaken with great care. Having said that, creating a

handler itself is actually quite simple. The first step is to figure out which grammar

rule(s) are relevant to the event you would like to capture. In some cases this is

incredibly trivial, in others it takes some effort to understand what the grammar

is describing. In my experience, the best method to figure out the various rules is

to perform a manual depth-first-search through the different components of the rule

until it becomes clear.

1Each check should have at least one parameter: YYLTYPE location. This value is necessary in
order to produce a proper warning message. All other parameters are optional and should follow
location. Many checks can be completed using only a progress value or informative string.

33

Chapter 5. How to Use CritTer

/**

* Check that each switch statement has a default case.

*/

void switchHasDefault(YYLTYPE location, int progress) {

static int started = 0;

static int found = 0;

switch (progress) {

case BEGINNING:

started = 1;

found = 0;

break;
case MIDDLE:

found = 1;

break;
case END:

if (!found && started) {

lyyerror(ERROR_HIGH, location,

"Always include a default in switch statements");

}

started = 0;

break;
default:

break;
}

}

Figure 5.1: CritTer Check with Contextual Processing. switchHasDefault is called from
beginSwitch with BEGINNING, endSwitch with END and registerDefault with MIDDLE.

34

Chapter 5. How to Use CritTer

After finding the grammar rule, adding a register or end handler is very sim-

ple: define the handler in sax.c/h and add the action “{newHandler(@X);}” after the

component you want to recognize. The @X references the location of either the com-

ponent (where X = the number of the component) or the entire rule (where X = ‘$’).

Figure 4.2 and Figure 4.4 show examples of these calls. Adding begin handlers can

be much more difficult than the previous cases although, in principle, the process is

identical. This is due to the possibility of adding ambiguities to the grammar.2 When

this happens, Bison will throw several errors during compilation and the parser will

most likely break. The first tactic to avoid this issue is to never place actions as the

first element in a rule; they should always appear after (at least) one component. If

this approach is insufficient, you should try burying the action inside a dummy rule

(such as beginCompound, beginIF, and beginFOR in Figure 4.2).

There are only two reasons to route your new handler through the Hooks module

instead of going directly to Sax; the most likely reason is the event occurs inside a

construct that already goes through Hooks. Declarations, function signatures, and

statements currently go through Hooks. This means that events like registerConst

must also go through Hooks in order to be released to Sax at the right time (see

Section 4.3). The second motive is the reason why those constructs already go

through Hooks: it is the only way of getting an accurate begin handler. By this, I

mean it is either impossible or exceptionally complicated to create a begin handler in

the correct place in the grammar such that it is executed before all of its components.

These constructs dequeue all the appropriate previous calls once the h_endXX handler

2The shift/reduce conflict for if-else statements was removed by giving explicit precedence for
if-else statements over if statements as suggested by O’Reilly[17, p. 188].

35

Chapter 5. How to Use CritTer

is called.

If you do not need to go through Hooks, after defining the action in the grammar

file and the handler in sax.c/h, all you need to do is call lastCalled_set() from

the handler. If the new handler needs to go through Hooks, you need to create two

handlers: newHandler in Sax and h_newHandler in Hooks (where h_newHandler is

called from the action in the grammar file). If the event just needs to be released

at the correct time (i.e. it appears within a hooked construct), the Hooks handler

should call enqueueFunctionAndLocation to enqueue the Sax handler. If the handler

needs to dequeue some elements, it should call dequeueUntil, followed by the sax

handler and lastCalled_set(). Examples of both direct and indirect routes from

the Lexer/Parser to Sax are shown in Figure 5.2.

5.2.3 Compilation, Testing and Installation

CritTer contains a Makefile which contains targets for compilation, testing and in-

stallation. To compile the given version of CritTer (or a customized version without

additional files), simply type “make”. To compile CritTer with additional files, edit

the all target to include the new files and then type “make”. To install CritTer (i.e.

copy into /usr/local/bin/) type “make install”.

Testing can be accomplished by typing “make test” which uses two shell scripts

to run the local version of CritTer over a set of test files and then compares the new

output to the previous output. The first script, runOnTests.sh, has a set of paths

over which to run CritTer. The error messages are piped to output.txt after the old

output has been copied to output_old.txt. The second script, checkTestOutput.sh,

36

Chapter 5. How to Use CritTer

(a) Direct Grammar

iteration_statement

: WHILE {beginWhile(@1);} ’(’ expression ’)’ statement {endWhile(@$);}

(b) Direct Sax Level Event Handlers

void beginWhile(YYLTYPE location) {

lastCalled_set(beginWhile);

functionHasEnoughLocalComments(location, MIDDLE, 0);

}

void endWhile(YYLTYPE location) {

hasBraces(location, "while");

lastCalled_set(endWhile);

isLoopTooLong(location);

}

(c) Indirect Grammar

parameter_list

: parameter_declaration {h_registerParameter(@$);}

(d) Indirect Hooks Level Event Handlers

void h_registerParameter(YYLTYPE location) {

enqueueFunctionAndLocation(registerParameter, location);

}

(e) Indirect Sax Level Event Handlers

void registerParameter(YYLTYPE location) {

tooManyParameters(location, MIDDLE);

arePointerParametersValidated(location, REGISTER_PARAM, NULL);

}

Figure 5.2: Direct vs. Indirect Event Handlers. (a, b) A while statement has a direct call
into the Sax module. (c, d, e)The registration of function parameters needs to indirectly route
through Hooks in order to have the Sax level event handlers called after beginFunctionDefinition.

37

Chapter 5. How to Use CritTer

uses a list of all the warning messages and grep to break apart the output files check

by check. The script then diffs each section of the files to determine if a check has

been broken. In order to add new checks to the testing mechanism, one simply needs

to add the check’s function name and a significant (non-variable) part of the warning

message into the appropriate arrays inside runOnTests.sh.

38

Chapter 6
Evaluation

In order to evaluate of CritTer’s performance, Dr. Robert Dondero graded 10 ran-

domly chosen final project submissions for Princeton University’s Introduction to

Programming Systems (COS 217) [6]. There were over 650 assignments available,

each of which was anonymized in order to protect the students’ privacy. Dr. Don-

dero has taught the course for many years, making him the perfect person to judge

each submission’s style. We judged CritTer’s performance compared to “true” er-

rors, which were determined after both Dr. Dondero and CritTer looked at each

submission. This post-analysis judgement of errors was necessary in order to prop-

erly take into account errors that Dr. Dondero originally missed and CritTer found.

We did allow CritTer to perform an iterative analysis of the submissions as a whole,

mirroring the development process we hope other administrators will go through

as they develop their own checks. The iterative process mostly affected checks like

functionIsTooLong where there was a threshold value that needed to be tuned.

We measured two properties: precision and recall. Precision represents what

fraction of the output was in response to a true error. In our experiment, Dr. Dondero

will always have a precision of 100%.1 Recall is an idea from information retrieval to

represent the fraction of relevant documents that were retrieved. Here we use it to

1It is possible for Dr. Dondero to lower this value by changing his mind regarding an error but
this never happened in practice.

39

Chapter 6. Evaluation

Was an error present?
Yes No

Did CritTer report an error? Yes 46 11
No 9

Did Dr. Dondero report an error? Yes 33 0
No 22

Table 6.1: Test Results for Magic Numbers. For this check, CritTer had a recall of 83.6%
(46
46+9

) and a precision of 80.7% (46
46+11

). Dr. Dondero had a recall of 60.0% (33
33+22

).

mean the number of true errors that were found. Throughout CritTer’s development,

we considered recall to be more important than precision. We prefer CritTer to find

all the true errors and produce extraneous output rather than missing some of the

true errors and minimizing extraneous output. We think it is better for students

and instructors to have to defend their code rather than letting possible errors slide.2

The checks I wrote reflect this preference. However, other administrators can write

more ‘conservative’ checks which alter this relationship between recall and precision.

Four checks were very useful and represented about half of all of CritTer’s output:

magic numbers, validating pointer parameters, comments above global variables,

and validating function comments. The check for magic numbers was one of the

qualitatively hardest for Dr. Dondero to perform because numerals do not stand out

from code. This is shown in the data in Table 6.1 where Dr. Dondero missed almost

as many magic numbers as he caught. This check is also interesting in that, by its

very nature, it will miss some errors; specifically when 0, 1 or 2 is used ‘magically’.

2The notable exception is the check for magic numbers in which producing warnings against
the use of 0, 1 and 2 in the code would far outweigh the few times those numbers would be used
‘magically’.

40

Chapter 6. Evaluation

Was an error present?
Yes No

Did CritTer report an error? Yes 102 21
No 9

Did Dr. Dondero report an error? Yes 74 0
No 37

Table 6.2: Test Results for Validating Pointer Parameters. For this check, CritTer had a recall
of 91.9% and a precision of 82.9%. Dr. Dondero had a recall of 66.7%.

CritTer checks whether functions validate pointer parameters inside an assert()

before the parameter is actually used. The check fails systematically in two cases.

The first is that CritTer will output a warning when the parameter is being properly

validated through code like ‘if (param != NULL)’. This is unavoidable as CritTer

does not detect the meaning behind the code. The second systematic failure involves

opaque pointer types; CritTer has no way of knowing whether a newly defined type

is a wrapper around a pointer. Therefore, it does not make sure parameters of those

types are validated. Data are shown in Table 6.2.

One of the more interesting checks looked for comments above each global vari-

able. Yet again, CritTer came up against systematic failure. While CritTer found

each missing comment, it had a large tendency to output extraneous warnings. There

were two main causes: self commenting code and an uncheckable coding standard.

Many times, CritTer encountered global variables similar to “enum BOOLEAN {FALSE,

TRUE}”. Declarations of this kind are self-commenting and further comments would

decrease readability. Warnings to add comments are therefore extraneous. The other

systematic failure was due to a previously acceptable standard of putting comments

41

Chapter 6. Evaluation

Was an error present?
Yes No

Did CritTer report an error? Yes 76 53 (224)
No 0

Did Dr. Dondero report an error? Yes 62 0
No 14

Table 6.3: Test Results for Comments Above Global Variables. The number in the parenthesis
in upper right corner represents the raw number of errors reported; the first number is the
number of errors reported which were not solved after super imposing the upcoming change
in coding standards. For this check, with the raw data, CritTer had a recall of 100% and a
precision of 25.3%. After filtering the data, CritTer had a precision of 58.9%. Dr. Dondero had
a recall of 81.6%.

beneath declarations. As mentioned in Section 4.4, CritTer is unable to associate

comments beneath a declaration to that code. Because of this, and the upcoming

change to the COS 217 coding standard, Dr. Dondero and I felt that it was inappro-

priate to include these results against CritTer. To accomplish this, we have filtered

the data to remove the 224 extraneous warnings due to comments placed after global

declarations. Table 6.3 shows the data both before and after filtering.

The check to validate function comments is an ideal check. One of Dr. Dondero’s

biggest time drains in grading assignments is checking that each function has an

appropriate comment. CritTer is able to easily check whether the function has a

comment and whether that comment refers to each of its parameters and its return

value. More importantly, CritTer had a perfect record in finding these errors within

our dataset as seen in Table 6.4.

In addition to those mentioned above, CritTer ran 16 checks over the dataset.

In some cases, like useEnumNotDefine and functionIsTooLong, CritTer and Dr. Don-

42

Chapter 6. Evaluation

Was an error present?
Yes No

Comment
Present?

Did CritTer report an error? Yes 138 0
No 0

Did Dr. Dondero report an error? Yes 131 0
No 7

Refers to
Parameters?

Did CritTer report an error? Yes 36 0
No 0

Did Dr. Dondero report an error? Yes 18 0
No 18

Refers to
Return
Value?

Did CritTer report an error? Yes 9 0
No 0

Did Dr. Dondero report an error? Yes 4 0
No 5

Totals:
Did CritTer report an error? Yes 183 0

No 0

Did Dr. Dondero report an error? Yes 153 0
No 30

Table 6.4: Test Results for Validating Function Comments. For this check, CritTer had a recall
of 100% and a precision of 100%. Dr. Dondero had a recall of 83.6%.

43

Chapter 6. Evaluation

dero found the same set of errors. In other cases, as with neverUseCPlusPlusStyleCom-

ments and switchHasDefault, Dr. Dondero did not find any errors yet CritTer found

a set with 100% precision. Several checks did not have enough data points to perform

any meaningful analysis. For example, tooManyFunctionsInFile, tooManyParame-

ters, fileIsTooLong, isCompoundStatementEmpty and switchCasesHaveBreaks each

had less than 4 warnings. In some cases, specifically for isTooDeeplyNested, Dr. Don-

dero agreed that CritTer’s output was correct even if there wasn’t a specific remedy

for the code. During the term, Dr. Dondero normally solves this issue by telling the

student that “it would be better to refactor the code, but it’s not clear how”.

In going over the graded assignments, it became clear that CritTer had not yet

been tuned to find all the desired types of style errors. One of the most prevalent

ignored issues were lines that exceeded a maximum length. CritTer can be config-

ured to check for this error by editing the code in the lexer which tracks the column

position of the source file. Another useful check would be to recognize duplicate

definitions of the same struct in different files. While this would be possible to

implement in CritTer by storing all references to structs, it would not be a simple

process. Splint, however, does check for this type of error and can be used in con-

junction with CritTer to provide a more complete set of checks. Other issues that

appeared were: missing #include guards, needing to create an opaque pointer type

from a struct, and poor indentation.

Overall, CritTer did very well. CritTer produced a total of 1226 warnings over

the entire dataset. 951 of these represented true stylistic errors in the code. CritTer’s

recall was 14.5% higher than Dr. Dondero’s and maintained a relatively high precision

44

Chapter 6. Evaluation

Was an error present?
Yes No

Did CritTer report an error? Yes 933 104 (275)
No 18

Did Dr. Dondero report an error? Yes 796 0
No 155

Table 6.5: Test Results Across All Checks. Across all checks, CritTer had a recall of 98.1% and
a precision of 77.2%. After filtering the data, CritTer had a precision of 90.0%. Dr. Dondero
had a recall of 83.6%.

of 77.2%. After filtering, CritTer’s precision jumped to 90.0%. Dr. Dondero and I

both judged that precision as excellent. Data, before and after filtering, can be seen

in Table 6.5. These tests conclusively prove the benefit that CritTer can provide

in terms of automatic style checking. Even without filtering the data, over three

quarters of CritTer’s output was pertinent. Furthermore, it increased error detection

by 16.3%.

Given these impressive results, it is clear CritTer can help fill the automated

stylistic error checking gap. CritTer can definitely help Professors (and their TAs)

grade assignments both by saving time and increasing the number of stylistic errors

found. CritTer can also help students improve their coding habits and their grades.

Additionally, CritTer’s impressive performance and high degree of customizability

give us reason to believe that it will be useful to the world outside of academia.

Companies with a defined coding standard can customize CritTer to help clean up

their code base and ease the code review process.

45

Appendices

46

Appendix A
Predefined Check Functions and their
Relevant Event Handlers

Check Function & Purpose Relevant Sax Handlers

isFileTooLong(YYLTYPE location) endFileCheck if the file exceeds a maximum length.

hasBraces(YYLTYPE location, char* construct) endWhile, endDoWhile,
endFor, endIf, endElseCheck if the statement within an if statement, else

clause, for statement, while statement, and do while

statement is a compound statement.

isFunctionTooLongByLines(YYLTYPE location) endFunctionDefinitionCheck if a function exceeds a maximum line count.

isFunctionTooLongByStatements(YYLTYPE

location, int progress)

beginFunctionDefinition,
endFunctionDefinition,
endStatementChecks if a function exceeds a maximum statement

count.

tooManyParameters(YYLTYPE location, int

progress)

beginParameterList,
registerParameter,
endParameterListCheck if there are too many parameters in the func-

tion declaration.

neverUseCPlusPlusComments(YYLTYPE location) N/A (Called from the
Lexer)Warn against using C++ style single line comments.

hasComment(YYLTYPE location, char* construct) endFile (also from
globalHasComment)Check for comments before some construct.

Continued

47

Appendix A. Predefined Check Functions

Check Function & Purpose Relevant Sax Handlers

switchHasDefault(YYLTYPE location, int

progress)

beginSwitch,
registerDefault, endSwitch

Check that each switch statement has a default case.

switchCasesHaveBreaks(YYLTYPE location, int

progress, int isCase)

beginSwitch,
registerDefault,
registerCase,
registerBreak,
registerReturn,
registerReturnSomething,
endSwitch

Check that each switch case has a break or return

statement.

isTooDeeplyNested(YYLTYPE location, int

progress)

beginCompoundStatement,
endCompoundStatement

Check whether a region of code (i.e. a compound
statement) nests too deeply.

useEnumNotDefine(YYLTYPE location, int

progress)
registerDefineIntegralType

Warn against using #define instead of enum for dec-
larations.

neverUseGotos(YYLTYPE location) registerGotoWarn against using GOTO statements.

isVariableNameTooShort(YYLTYPE location, int

progress, char* identifier)

registerIdentifier,
beginDeclaration,
endDeclarationCheck if a variable’s name exceeds a minimum length.

isMagicNumber(YYLTYPE location, int progress,

char* constant)

registerConstant,
beginDeclaration,
endDeclarationWarn against using magic numbers outside of a dec-

laration.

Continued

48

Appendix A. Predefined Check Functions

Check Function & Purpose Relevant Sax Handlers

globalHasComment(YYLTYPE location, int

progress)

beginFunctionDefinition,
endFunctionDefinition,
endDeclarationCheck if each global variable has a comment.

isLoopTooLong(YYLTYPE location) endWhile, endDoWhile,
endForCheck if the loop length exceeds a maximum length.

isCompoundStatementEmpty(YYLTYPE location,

int progress)

beginCompoundStatement,
endCompoundStatement

Check if the compound statement is empty.

tooManyFunctionsInFile(YYLTYPE location, int

progress)

endFile,
beginFunctionDefinition

Check if there are too many functions in a file.

isIfElsePlacementValid(YYLTYPE location, int

progress)
endIf, beginElse

Warn against poor if/else placement as defined by
the Google style guide.

isFunctionCommentValid(YYLTYPE location, enum

commandType command, char* text)

beginFunctionDefinition,
endFunctionDefinition,
beginParameterList,
endParameterList,
registerIdentifier, begin-
CompoundStatement,
registerReturnSomething

Check if function comments have the appropriate con-
tents. Specifically check that the comment mentions
each parameter (by name) and what the function re-
turns.

arePointerParametersValidated(YYLTYPE

location, enum commandType command, char*
identifier)

beginFunctionDefinition,
endFunctionDefinition,
beginParameterList,
registerParameter,
endParameterList,
registerIdentifier,
registerPointer,
endStatement

Check if each pointer type parameter into a function
is mentioned within an assert() before being used.

Continued

49

Appendix A. Predefined Check Functions

Check Function & Purpose Relevant Sax Handlers

void doFunctionsHaveCommonPrefix(YYLTYPE

location, int progress, char* identifier)

beginProgram,
endProgram, endFile,
beginFunctionDefinition,
endFunctionDefinition,
registerIdentifier

Check that function names contain a common prefix.

functionHasEnoughLocalComments(YYLTYPE

location, int progress, int isComment)

beginComment,
beginFunctionDefinition,
endFunctionDefinition,
beginWhile,
beginDoWhile, beginFor,
beginIf, beginSwitch

Check that there are enough local comments in the
function relative to the number of control/selection
statements.

structFieldsHaveComments(YYLTYPE location,

int progress)

beginStructDefinition,
registerStructField,
endStructDefinitionCheck that all fields in a struct have a comment.

50

Appendix B
Conventions and Necessities

B.1 General

• Use the DynArray class to handle persistent arrays, stacks and queues. It

is a dynamically growing array which holds void pointers. This is the base

implementation of how comments are stored as well as the Hook module queues.

• To change the tab size, edit the count function inside c.l.

• To change the string representation for each error level, edit the lyyerror

function in c.y. Currently, ERROR_HIGH = “big problem”, ERROR_NORMAL = “error”,

and ERROR_LOW = “low priority”.

• Make sure that each IDENTIFIER in the grammar is either registered through

h_registerIdentifer or is explicitly ignored through h_ignoreIdentifierText.

Otherwise the wrong identifier text will be dequeued and passed into the Sax

module. This is because the lexer will always enqueue the IDENTIFIER’s text

before the grammar recognizes it.

• Throughout the code, 0 and 1 are used synonymously for false and true respec-

tively whereas NULL is used for pointers.

51

Appendix B. Conventions and Necessities

B.2 Sax and Hooks Modules

• When adding new calls, use the “begin”, “register” and “end” prefixes where

begin and end are used with larger constructs and register is used with con-

structs that are conceptually a single item (like a parameter).

• Always make sure to add the lastCalled_set function for any handlers that

do not go through the Hooks module.

• Be careful of doing memory management at a file level. Most of it is done at

a program wide level because files are added onto a stack. This means that

for three files, CritTer sees three calls to beginFile before any of the endFile

calls. This makes it far easier to have allocation and releasing of memory at

the single beginProgram and endProgram calls.

• Keep all actual checks outside of the Sax handlers to improve code readability.

• Prefix all calls that go through the Hooks module with “h_”.

B.3 Checks Module

• All warning messages should be passed to their respective function without an

ending newline; one will be added so that each warning appears on one line.

• Use local static variables as opposed to global variables to determine context

within checks.

52

Appendix B. Conventions and Necessities

• Phrase check function names as questions if there is something to check or com-

mands if there is an automatic warning. For example, if it is never acceptable

to use GOTO statements, phrase the check as a command like “neverUseGotos”.

• To compare entire locations use the methods in the Locations module. Com-

paring single elements can be done inline.

• Be careful not to free things which were either never allocated (e.g. the current

location passed to the Sax/Hook handler), might be shared between objects

(e.g. filename strings) or will be freed on its own later (e.g. comment texts and

locations).

• When adding a new check, add the function name and a significant (non-

variable) part of the warning message to the arrays in runOnTests.sh. If chang-

ing the warning message of an existing check, make sure to update the arrays.

53

Appendix C
Progression of Development

CritTer’s development has been reasonably linear and has consisted of slowly adding

modules as new situations arose. Getting Bison and Flex to parse the sample C code

took a significant portion of time at the beginning, especially the added elements

such as tracking typedefs and dynamically reading header files. Once the code could

be read without issue, the next step was to start adding some minimal checks.

The first version of CritTer consisted of the Main, Lexer and Parser, and Checks

modules (although they were not conceived as such at that point). At this stage,

Checks contained four checks which were called directly from the actions in the

grammar (Figure C.1). Minimal comment tracking had been implemented inside

the Checks module within a single function. Context was determined by setting an

enumerated value for the statement as a whole (underlined in Figure C.1). While

this initial version was functional, it involved tedious manipulation of the grammar

as well as very little ability to perform contextual processing.

This dependency on the grammar file was the motivation to change the framework

in version 2. The first step was to adopt the SAX style of processing. The alternative

was to try to use an AST and Visitor Pattern (like PMD and Checkstyle) but this

would have involved a lot of overhead to write the framework code. The SAX style is

relatively lightweight and was the far easier (and simpler) alternative. The transition

from version 1 to version 2 was fairly straightforward and immediately allowed for

54

Appendix C. Progression of Development

selection_statement

: IF ’(’ expression ’)’ statement {$$ = IF_SELECTION; ifHasBraces($5,

@$);}

| IF ’(’ expression ’)’ statement ELSE statement

{$$ = IF_ELSE_SELECTION; ifHasBraces($5, @$); ifHasBraces($7, @$);}

| SWITCH ’(’ expression ’)’ statement

;

Figure C.1: Version 1.0 Grammar Excerpt where ifHasBraces is a check that determines if an
if statement had braces.

additional checks to be added. The comment tracking system was moved into its own

module and all of the previous enumerated value contexts were removed. However,

in adding more checks, I realized that some calls into the Sax module were simply

not going to be in the right order.

This problem prompted final version (3) which added the Hooks module. The

inspiration behind the Hooks module was the queue of function pointers. The insight

of storing the pointers to the event handlers made this entire implementation (and

version) possible. After adding the Hooks module, I was able to add even more checks

and focus on cleaning up the code. In the process of adding more checks, I decided to

store the last called event handler in order to minimize the number of handlers any

given check needed to be called from. This eventually led to the lastCalledFunction

methods. At this point I moved all the code regarding YYLTYPEs into the Locations

module and added finer grain methods to find relevant comments by location.

55

Bibliography

[1] SAX. http://sax.sourceforge.net/. 18

[2] Checkstyle. http://checkstyle.sourceforge.net/index.html, 2010. 4, 11

[3] Frama-C. http://frama-c.com/index.html, 2010.

[4] PMD. http://pmd.sourceforge.net/, 2010. 4, 11

[5] Clang Static Analyzer. http://clang-analyzer.llvm.org/, 2011. 4

[6] Computer Science 217: Introduction to Programming Systems. http://www.cs.
princeton.edu/courses/archive/spring11/cos217/, 2011. 30, 39

[7] A.W. Appel. Modern compiler implementation in ML. Cambridge University
Press, 2004. 18

[8] Brian W. Kernighan and Rob Pike. The Practice of Programming. Addison-
Wesley, 2007. 11, 27

[9] D. Brown, J. Levine, and T. Mason. Lex & yacc. O’Reilly Media, Inc., 1992.

[10] D. Evans. Splint Manual. Splint, 3.1.1-1 edition, June 2003. 4

[11] D. Evans. Splint and Senior Thesis. 09 2010. 5

[12] M. Fowler, K. Beck, J. Brandt, W. Opdyke, and D. Roberts. Refactoring:
Improving the Design of Existing Code. Addison-Wesley, Boston, 2008. 11

[13] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns: El-
ements of Reusable Object Oriented Software. Addison-Wesley, Boston, 2008.
6

[14] GNU Bison. Bison, 2.4.3 edition, 2010.

[15] G. J. Holzmann. UNO: Static Source Code Checking for UserDefined Properties.
In 6th World Conf. on Integrated Design and Process Technology, IDPT ’02,
2002. 4

56

http://sax.sourceforge.net/
http://checkstyle.sourceforge.net/index.html
http://frama-c.com/index.html
http://pmd.sourceforge.net/
http://clang-analyzer.llvm.org/
http://www.cs.princeton.edu/courses/archive/spring11/cos217/
http://www.cs.princeton.edu/courses/archive/spring11/cos217/

Bibliography

[16] J. Lee and J. Degener. ANSI C Yacc grammar. http://www.lysator.liu.se/c/
ANSI-C-grammar-y.html, 1995. 16

[17] J. R. Levine. Flex & bison: [Unix text processing tools]. O’Reilly, 2009. 16, 29,
35

[18] S. McConnell. Code Complete: A Practical Handbook of Software Construction.
Microsoft Press, 2 edition, 2004. 11

[19] D. Straker. C-Style: Standards & Guidelines. Prentice Hall, 1992. 11

[20] B. Weinberger, C. Silverstein, G. Eitzmann, M. Mentovai, and T. Landray.
Google C++ Style Guide. http://google-styleguide.googlecode.com/svn/

trunk/cppguide.xml. 11

57

http://www.lysator.liu.se/c/ANSI-C-grammar-y.html
http://www.lysator.liu.se/c/ANSI-C-grammar-y.html
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml

	Introduction
	Related Products
	Splint
	PMD and Checkstyle

	What CritTer Does
	How CritTer Works
	Parsing the Code
	Some Theory
	Calling the Checks
	Writing the Checks

	How to Use CritTer
	Users
	Administrators
	Use
	Customization
	Compilation, Testing and Installation

	Evaluation
	Appendices
	Predefined Check Functions
	Conventions and Necessities
	General
	Sax and Hooks Modules
	Checks Module

	Progression of Development
	Bibliography

