
VROOM: Accelerating the Mobile Web with Server-Aided

Dependency Resolution

Vaspol Ruamviboonsuk
University of Michigan

Ravi Netravali
MIT

Muhammed Uluyol
University of Michigan

Harsha V. Madhyastha
University of Michigan

Abstract
The existing slowness of the web on mobile devices frustrates users
and hurts the revenue of website providers. Prior studies have at-
tributed high page load times to dependencies within the page load
process: network latency in fetching a resource delays its processing,
which in turn delays when dependent resources can be discovered
and fetched.

To securely address the impact that these dependencies have on
page load times, we present VROOM, a rethink of how clients and
servers interact to facilitate web page loads. Unlike existing solu-
tions, which require clients to either trust proxy servers or discover
all the resources on any page themselves, VROOM’s key character-
istics are that clients fetch every resource directly from the domain
that hosts it but web servers aid clients in discovering resources.
Input from web servers decouples a client’s processing of resources
from its fetching of resources, thereby enabling independent use of
both the CPU and the network. As a result, VROOM reduces the
median page load time by more than 5 seconds across popular News
and Sports sites. To enable these benefits, our contributions lie in
making web servers capable of accurately aiding clients in resource
discovery and judiciously scheduling a client’s receipt of resources.

CCS Concepts
• Information systems ! Mobile information processing sys-
tems; Browsers; • Networks ! Network performance evaluation;
Network measurement;

Keywords
Web performance, Mobile web, Page load times

ACM Reference format:
Vaspol Ruamviboonsuk, Ravi Netravali, Muhammed Uluyol, and Harsha
V. Madhyastha. 2017. VROOM: Accelerating the Mobile Web with Server-
Aided Dependency Resolution . In Proceedings of SIGCOMM ’17, Los
Angeles, CA, USA, August 21–25, 2017, 14 pages.
https://doi.org/10.1145/3098822.3098851

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association
for Computing Machinery.
ACM ISBN 978-1-4503-4653-5/17/08. . . $15.00
https://doi.org/10.1145/3098822.3098851

1 Introduction
Despite the rapid increase in mobile web traffic [11], page loads
on mobile devices remain disappointingly slow. Recent industry
studies [9, 13], as well as our own measurements (§2), show that
a large fraction of mobile-optimized websites load much slower
than user tolerance levels, even on state-of-the-art mobile devices
and cellular networks. For example, the average web page takes 14
seconds to load even on a 4G network [12].

Since the speed of page loads critically impacts user experience
and thus provider revenue [19], much effort has been expended by
both industry and academia to identify the root causes for poor web
performance. Recent studies [35, 41, 42] have found that dependen-
cies between the resources on any web page are a key reason for
slow page loads. Today, even mobile-optimized web pages include
roughly one hundred resources [7] on average, and client browsers
can discover each of these resources only after they have fetched,
parsed, and executed other resources that appear earlier in the page.
For instance, a browser may learn that it needs to fetch an image
after executing a script which it discovers after downloading and
parsing the page’s HTML.

Prior work has taken one of two approaches to address the impact
of these dependencies on web performance, and both approaches
suffer from fundamental drawbacks.
• Offloading to proxies. In one class of solutions, when a client

loads a page, discovery of resources on the page is offloaded to
a proxy [36, 40, 43]. Solutions that take this approach attempt
to reduce page load times by leveraging the faster CPUs and
network connectivity of proxy servers. However, clients must
trust that proxies preserve the integrity of HTTPS content; proxies
that disregard HTTPS traffic are limited in the benefits they can
provide given the increased usage of HTTPS [33]. Moreover, to
preserve the ability of web providers to personalize content, a
client must share with the proxy its cookies for all domains from
which resources must be fetched to load the page.

• Reprioritizing requests at client. An alternative class of solu-
tions [22, 35] lets the client itself discover all resources on a page.
Instead of fetching resources in the order that they are discovered,
these systems preferentially fetch certain resources (e.g., those
that lead to longer dependency chains [35]) based on precomputed,
high-level characterizations of the page’s dependency structure.
The problem with these approaches is that, once the client browser
discovers the need for a resource, the client must necessarily wait
for that resource to be fetched over the network before it can start
processing the resource, resulting in under-utilization of the CPU.
Since the client CPU is the primary bottleneck when loading web

https://doi.org/10.1145/3098822.3098851
https://doi.org/10.1145/3098822.3098851

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA V. Ruamviboonsuk et al.

pages on mobile devices ([34] and §2), this class of solutions has
limited ability to speed up the mobile web.
These limitations of prior approaches motivate the need for a new

solution that both preserves the end-to-end nature of the web and aids
clients in discovering the resources on any page. Specifically, a client
must receive every resource directly from the domain hosting that
resource, thereby enabling the client to verify the integrity of HTTPS
content and requiring the client to share its cookies for a domain
only with servers in that domain. Yet, the new solution must also
preserve the primary benefit of proxy-based dependency resolution,
which is to decouple the client’s downloading of resources on a page
from the processing of those resources. Decoupling these functions
maximizes resource utilization during page loads because fetching
of resources is constrained by the network, whereas the CPU limits
the parsing and execution of each fetched resource.

We argue that the way to realize this desired end-to-end solution
is to redesign page loads such that web servers securely aid clients
in resource discovery. In addition to returning a requested resource,
a web server should inform the client of other dependent resources
that the client will need in order to load the page. Though there
are resource overheads associated with identifying these dependent
resources, content providers have a strong incentive to incur this
burden in order to decrease load times for their clients, thereby
increasing revenue [6, 46]. We make three contributions in designing
VROOM to realize this approach.

First, to aid clients in resource discovery, VROOM-compliant web
servers not only push the content of dependent resources (leveraging
the server push capability in HTTP/2 [20]) but also return depen-
dency hints in the form of URLs for resources that the client should
fetch. The use of HTTP/2 push alone is insufficient because content
on modern web pages is often served by multiple domains [21], each
of which can only securely push the content that it owns. In contrast,
dependency hints enable a server to inform a client of the dependent
resources that it should fetch from other domains, without providing
the content of those resources. This additional input from servers
ensures that a client’s ability to discover and start downloading re-
quired resources is not constrained by the speed with which it can
process fetched content. In fact, by the time the client discovers the
need for a resource during its execution of a page load, that resource
will likely already be in its cache.

Second, we develop the mechanisms that VROOM-compliant web
servers must employ to identify the resources they should push and
the dependency hints they should include with their responses. In
contrast to prior efforts, which have relied exclusively on either
online [36, 40] or offline [22, 35] dependency resolution, we show
how to combine the two approaches to accurately identify the set of
resources that a client will need to fetch within a specific page load.
Critically, our design maximizes the number of dependent resources
that the client is made aware of while avoiding sending dependency
hints for intrinsically unpredictable resources—ones which vary
even across back-to-back loads of the page—so that the client does
not incur the overhead of fetching resources that are unnecessary for
its page load.

Lastly, while the additional input from VROOM-compliant web
servers reduces the latency for clients to discover all resources on
a web page, fetching all resources as soon as they are discovered

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20

Page Load Time (s)

CD
F

ac
ro

ss
 w

eb
sit

es

Top 100 Overall
Top 50 News + Top 50 Sports

Figure 1: Page load times on today’s mobile web.

increases contention for the access link’s bandwidth, delaying the
receipt of some resources. To maximize CPU utilization, we lever-
age the property that resources that need to be parsed/executed
(HTML, CSS, and JS objects) constitute only a quarter of the bytes
on the average mobile web page [7]. We coordinate server-side
pushes and client-side fetches such that resources that need to be
parsed/executed are received earlier than other resources; the client
can fetch the latter set of resources while processing the former set.
In doing so, we ensure that resources arrive at the client in the order
in which they will be processed.

Our implementation of VROOM enables the use of Google Chrome
to load pages from the Mahimahi [36] page load replay environment.
On a corpus of web pages from popular News and Sports sites, the
median page load time reduces from the status quo of 10.5 sec-
onds to 5.1 seconds with VROOM. These improvements stem from
VROOM’s ability to enable server-side identification of dependent
resources with a median false negative rate of less than 5%, which
in turn results in a 22% median decrease in client-side latency to
discover all resources on a page.

2 Motivation
We begin by presenting a range of measurements that illustrate
the poor web performance today on mobile devices, estimate the
potential to reduce page load times, and show that existing solutions
are insufficient.
Problem: Poor load times. We demonstrate the slowness of the
mobile web using two sets of websites: the Alexa US top 100 web-
sites and the top 50 sites each in the News and Sports categories;
these popular sites apply known best practices such as minifying
JavaScript content and eliminating HTTP redirects [4]. We load the
landing page for each site five times on a Nexus 6 smartphone that is
connected to Verizon’s LTE network with excellent signal strength;
we report median page load times.1

Figure 1 shows that the median site among the top 100 takes
roughly 5 seconds to load, which is higher than the 2–3 second
period that a typical user is willing to wait [27]. When considering
News and Sports sites, which are more complex than the average
site [21], the median load time is even higher, exceeding 10 seconds.
Since the need for faster loads is particularly acute on News and
Sports sites, we focus on these sites in the rest of this section.
Cause: Poor CPU/network utilization. We now consider how
low page load times can be reduced to without web pages being
rewritten [1]. For a client to not have to trust proxies to execute
1We compute page load time as the time between when a page load begins and when
the onload event fires.

VROOM: Accelerating the Mobile Web SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20

Page Load Time (s)

C
D

F
ac

ro
ss

 w
eb

si
te

s

Network Bottleneck
CPU Bottleneck
Max(CPU, Network)
Loads from Web

Figure 2: Potential for reducing page load times by making better use
of the client’s CPU and network.

page loads on its behalf, the client must fetch all resources on a
page directly from origin web servers and locally process all of
these resources. This places two constraints on web performance:
the client’s network connection and its CPU. To compute a lower
bound on page load times, we estimate the potential gains from a
redesign of the page load process that would fully utilize at least one
of these two resources.

To mimic a setting where the network bandwidth is the bottleneck,
we replay each page load after modifying the root HTML to list all
resources required to load the page in a manner that instructs the
browser to fetch these resources but not evaluate them. To emulate
a setting where the client’s CPU is the bottleneck, we load every
page with the client phone connected via USB to a desktop which
hosts all of the web servers. In both cases, we use Mahimahi [36]
to record page content and replay page loads, and we use HTTP/2
between the client and all web servers in order to make efficient use
of the network. We use the same mobile device and cellular network
as above, and we further describe our replay setup in Section 6.

Figure 2 shows that, when exactly one of the network or the CPU
is the bottleneck, rather than both limiting each other as is the case
today, page load times on popular News and Sports websites are
significantly lower than the status quo (the median load time drops
from 10.5 seconds to 5 seconds). Our results also show that the
CPU is typically the bottleneck in mobile page loads, corroborating
the findings of recent studies [34]. Furthermore, page load times in
the case where the CPU is the bottleneck remain largely the same
even if we disable 1 of the 4 cores on the Nexus 6 smartphone,
indicating that adding more cores will not help improve mobile web
performance.
Existing solutions are insufficient. Since we seek a solution that
improves mobile web performance while preserving the end-to-end
nature of the web, we consider two existing solutions that satisfy
this property.

First, we consider a setting where all domains on the web have
adopted the latest version of the HTTP protocol, HTTP/2. HTTP/2
reduces inefficiency in the use of the network by enabling requests
to be multiplexed on the same TCP connection. To estimate the
potential impact of HTTP/2, we replay page loads in an environment
where HTTP/2 is universally used (“HTTP/2 Baseline”). The results
in Figure 3 portend that, though the global adoption of HTTP/2 will
reduce the median page load time across popular News and Sports
websites to roughly 8 seconds, mobile web performance will remain
significantly short of optimal; the lower bound we saw in Figure 2
was more than 2 seconds lower, a substantial gap given that web

0.00

0.25

0.50

0.75

1.00

0 5 10 15

Page Load Time (s)

C
D

F
ac

ro
ss

 w
eb

si
te

s HTTP/2 Baseline
Push All Static
HTTP/1.1
Loads from Web

Figure 3: Estimation of page load time improvements that would be
enabled once HTTP/2 is globally adopted. Given that the adoption of
HTTP/2 is still in its nascency today, the fidelity of our replay setup
is confirmed by the close match between load times measured when
loading pages on the web and in our HTTP/1.1 replay environment.

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6

Fraction of Time on Critical Path Waiting on Network

C
D

F
ac

ro
ss

 w
eb

si
te

s

Figure 4: Fraction of the critical path spent waiting for the network,
when the client uses HTTP/2 to communicate with all domains.

providers have found that even a few 100 milliseconds of additional
delay significantly reduces their revenue [10]. Configuring the first
party domain of every page to push (leveraging HTTP/2’s server
push capability) all static resources that it hosts offers little additional
benefit, for reasons discussed later.

Performance with HTTP/2 falls significantly short of the lower
bound because the root cause for high page load times remains: since
both CPU-bound and network-bound activities are typically on the
critical path of a page load [41], neither the client’s CPU nor its
access link is utilized to capacity. The client browser cannot parse an
HTML/CSS object or execute a JavaScript file until it has incurred
the latency to fetch that resource, which in turn it can begin to do only
after discovering the need to fetch that resource by parsing/executing
another resource. Indeed, Figure 4 shows that a significant fraction
of time on the page load’s critical path—over 30% on the median
page—is spent waiting to receive data over the network, leading to
under-utilization of the CPU, the bottleneck resource (Figure 2).

An alternative end-to-end solution for improving web perfor-
mance is to use an approach like Polaris [35]. With Polaris, the client
receives a characterization of the page’s dependency structure at the
start of the page load and uses this knowledge to prioritize requests
for more critical resources. However, such an approach can do little
to reduce the network delays encountered on the critical path. The
fundamental constraint with this approach is that the client must dis-
cover all resources on the page on its own (i.e., fetching a resource
and then evaluating it to identify new resources to fetch). As a result,
once the browser discovers a resource by parsing/executing other
resources that appear earlier in the page load, the latency of fetching

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA V. Ruamviboonsuk et al.

that resource must be incurred at that time before the browser can
begin processing the resource. Since HTTP/2 eliminates head-of-
line blocking and network bandwidth is not the bottleneck in mobile
page loads (Figure 2), reordering requests for discovered resources
offers little benefit. We provide further evaluation and discussion of
Polaris in Section 6.
Summary. Together, the measurements in this section lead to the
following takeaways:
• Page loads on mobile devices are currently significantly slow even

for popular websites, particularly for sites in categories that have
more complex web pages than others.

• The reduction in load times that we can expect from the adoption
of existing end-to-end solutions will not suffice.

• However, we could potentially halve the median load time if the
page load process were redesigned to more efficiently use the
client’s CPU and network.

3 Approach
Our results in the previous section indicate that the key to optimizing
mobile web performance is to maximize the utilization of the client’s
CPU. To do this, we need to ensure that the browser’s processing of
any resource is not delayed waiting to receive the resource over the
network. To achieve this decoupling of the browser’s use of the CPU
and network, web page loads would ideally work as follows. When
a client browser issues a request for a page, it would receive back all
the resources needed to render the page, rather than just the HTML
for the page. This would optimize page load performance for two
reasons. On the one hand, in contrast to the status quo wherein the
client incrementally fetches resources as it discovers them during
the page load, receiving all of the objects on the page at once would
maximize the utilization of the client’s access link and eliminate the
need for repeated latency-onerous interactions between the client
and web servers. On the other hand, if the resources on the page
are delivered in the order they need to be processed, the client can
make full use of its CPU, processing resources while fetching other
resources in parallel.

3.1 Limitations of HTTP/2 PUSH
It may appear that such an ideal design of the page load process is
feasible today because HTTP/2-compliant web servers can specu-
latively push resources to clients [20]. However, today, 1) the re-
sources on a page are often spread across multiple domains [21],
e.g., a web page from one provider often includes advertising, ana-
lytics, JavaScript libraries, and social networking widgets from other
providers; 2) HTTPS adoption is rapidly growing [8, 33]; and 3)
page content is increasingly personalized. These typical characteris-
tics of modern web pages make the use of HTTP/2 PUSH inefficient
for the following reasons.2

• When a domain receives a request for the HTML of a page that it
hosts, it can only return resources that it hosts and not resources
served by other domains. In the example in Figure 5, in re-
sponse to the request for the HTML, a.com’s servers can only

2Another commonly cited limitation of PUSH is the potential for bandwidth wastage
when a resource cached at the client is pushed. However, this problem could be addressed
by having the client send a summary of its cache contents to web servers, e.g., in a
cookie [5].

<html>
...
<script>a.com/foo.js</script>
...
</html>

GET
a.com

...
var image = new Image();
image.src = "b.com/img.jpg";
document.appendChild(image);
...

http://a.com http://a.com/foo.js

a.com

b.com

client

HTML foo.js img.jpg

Parse HTML Execute foo.js

11

12

GET
foo.js

13

14

GET
img.jpg

15

GET
a.com

a.com

b.com

client

HTML

Parse HTML

11

12 Execute foo.js13

(a) Client discovers all resources on its own

(b) Servers aid client's resource discovery by pushing some resources

(c) Servers push some resources and return dependency hints for others

GET
a.com

a.com

b.com

client

img.jpg

Parse HTML

HTML

b.com/img.jpg
+

GET
img.jpg

11

12 Execute foo.js13

foo.js img.jpg

GET
img.jpg

14

foo.js

Figure 5: Comparison of critical path across different approaches for
loading web pages, in all of which the client receives every resource from
the domain from which it is served, so as to preserve personalization
and the client’s ability to verify the integrity of secure content: (a) 5
stages on critical path with CPU use blocking use of the network in
steps 2 and 4 and vice-versa in steps 3 and 5, (b) 4 stages on critical
path with CPU use blocking use of the network in steps 2 and 3 and
vice-versa in step 4, (c) 3 stages on critical path with CPU and network
utilized throughout.

push the contents of foo.js which is served from the same do-
main, but not the third-party resource img.jpg. If web servers
were to fetch resources from external domains and push them to
clients [22, 36, 43], clients would be unable to verify the integrity
of secure page content. Moreover, since any client’s request to a
web server will only include the client’s cookie for that domain,
resources fetched from other domains by that web server will not
reflect any personalization of content by those domains.

• If web servers only push locally hosted resources, the client will
discover resources that it needs to fetch from other domains only
after processing previously fetched resources, e.g., in Figure 5(b),
the client can discover the need to fetch img.jpg only after
executing foo.js. This makes the CPU a potential bottleneck
in the client’s fetching of resources.

VROOM: Accelerating the Mobile Web SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

Client

Scheduler

Domain A
Front-end

(Online parsing
of HTML)

Offline
dependency

resolution

1. List of URLs of external dependencies
and low priority local dependencies
2. Requested resource
3. Content push of high
priority local dependencies

......

Resource
list

<Page,
device
type>

Resolution table

Domain B Domain C

T=0

Page load timeline
Fetch all HTML,

JS, CSS

onload

Requests with cookie for
corresponding domain

Requests with
no cookies

Fetch other resources

HTML/CSS parsing + JS execution

Figure 6: Illustration of the components in VROOM and the interactions between them.

• During a page load, if every domain independently pushes its
resources to the client, the client’s receipt from one domain of a
resource that must be processed (i.e., HTML, CSS, or JavaScript)
can be delayed due to bandwidth contention on the client’s ac-
cess link with other resources (such as bulky images) from other
domains. This makes the network a potential bottleneck in the
client’s processing of resources.

3.2 Combining PUSH with dependency hints

Given these limitations associated with relying solely on HTTP/2
PUSH, we leverage an additional server-side capability. When a web
server receives a request for a resource, in addition to pushing the
content for some dependent resources that it owns, the server can
also return a list of URLs for other dependent resources—we refer
to this list as dependency hints. Web servers can include such a list
of URLs as an additional header in HTTP responses.

When a client receives dependency hints, it can fetch every re-
source whose URL is included in the list, without having to first
process other resources on the page to discover the URLs in the list.
For example, in Figure 5(c), based on the hint received from a.com,
the client can fetch img.jpg from b.com without having to wait
to receive and execute foo.js.

Legacy browsers already support dependency hints in the form
of HTTP Link headers which have the preload attribute set [16];
resources listed in these headers are immediately fetched by browsers
but are not evaluated until they are referenced by the page (i.e.,
Link preload headers are primarily used to prewarm browser caches
during page loads).

Using dependency hints in addition to HTTP/2 PUSH offers
several advantages:
• Any web server can safely send clients dependency hints for third-

party resources. For any URL received via dependency hints, a
client will fetch it directly from the respective domain, enabling
the client to confirm the integrity of resources served over HTTPS
and preserving that domain’s ability to personalize content.

• The client need not fetch resources that are already cached locally,
making it easier to minimize bandwidth waste compared to the
use of HTTP/2 PUSH.

• The client maintains control over its concurrent fetches of re-
sources from multiple domains; it can coordinate its downloads
such that high priority resources (those that must be processed)
are not delayed.

4 Design
Using the approach described in the previous section requires us to
answer three questions:
• In response to a request from a client, how can a web server

accurately identify the list of dependent resources that it should
inform the client about, including ones hosted in other domains,
without having clients fetch resources that are irrelevant to the
ongoing page load (thereby wasting bandwidth)?

• How can a server provide a sufficient number of dependency hints
to clients, without knowledge of how content is personalized by
other domains that serve resources for a given page?

• At any point in time during a page load, a client’s access link
bandwidth is shared by resources that are explicitly fetched by
the client or proactively pushed by servers. Given this contention,
when should clients schedule resource fetches? What resources
should servers push?
In designing VROOM to address these questions, we respect two

primary constraints: 1) we do not rely on input from developers to
characterize the dependencies on web pages because the resources
on a page are typically spread across several domains [21], and no
single developer is likely to have complete knowledge about all de-
pendencies on a page; and 2) to preserve the integrity of content and
to protect user privacy, any client will accept a resource only from
the domain that serves that resource, and it will share its cookie for
a domain only with web servers in that domain. Figure 6 illustrates
the server-side and client-side components of VROOM, which we
describe next.

4.1 Server-side dependency resolution
Generating an accurate list of dependent resources for a web page is
challenging due to the constant flux in resources on modern pages.
Moreover, unlike recent work [22, 35] focused on generating a page’s
stable dependency structure, here we need to identify the precise
URLs of resources that a server must either push or include in its
dependency hints. To appreciate the challenge in doing so, we first
consider two strawman approaches before describing our solution.

4.1.1 Strawmans for resource discovery

Strawman 1 (Online). When a server receives a request for the
HTML of a page, the server could load the entire page locally,
mimicking a client browser, to identify the other resources on the
page. However, many of the URLs fetched by the server during its
page load will not be requested during the client’s page load. On

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA V. Ruamviboonsuk et al.

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75 1.00

Fraction of persistent resources

CD
F

ac
ro

ss
 w

eb
sit

es

One Week
One Day
One Hour

Figure 7: Fraction of resources, per page in the Alexa Top 100, that
persist over different time scales.

Relatively stable resources
(Offline loads accounting for

device type customization)

Dynamic page content
(Online analysis of HTML)

Resources that vary
across back-to-back loads
(Onus on client to discover)

User-specific personalization
(Dependencies stemming from
a HTML resolved by domain

that serves HTML)

Figure 8: Summary of techniques used in VROOM for server-side de-
pendency resolution to account for the different types of resource on
any web page.

the one hand, back-to-back loads of a page often differ in the exact
set of URLs fetched (e.g., ads typically insert a randomly selected
identifier into the URLs they fetch). For example, 22% of the URLs
fetched to load the median page in the Alexa Top 100 list change
across back-to-back loads. On the other hand, loading a page at one
server cannot account for the personalization performed by other
domains, since the server only has the user’s cookie for its domain.
If servers fail to account for these discrepancies and either push to
the client or ask the client to fetch unnecessary objects, the user is
likely to experience higher load times.
Strawman 2 (Offline). Alternatively, a server can periodically load
each page that it serves. This enables the server to account for the
variation in resources over time; when a client requests the HTML
for a page, the server can return the set of resources that it has
repeatedly observed on recent loads of that page. With this approach,
we risk missing a large fraction of URLs that a client will need to
fetch when loading the page. For example, the set of stories or set of
products on the landing page of a News or Shopping site changes
often. Figure 7 confirms this; for the median site in the Alexa Top
100, only 70% of the resources on the landing page remain stable
over one hour, and this number drops to 50% over one week.

4.1.2 Our solution: offline + online discovery

The two strawmen approaches for server-side resource discovery
illustrate the following trade-off: servers must ensure that a client
does not end up fetching unnecessary resources, but if they are too
conservative (and thus let clients discover many resources on their
own), the utility of input from servers will be minimal. To address
this trade-off, we observe that both offline and online dependency
resolution are necessary at the server. Figure 8 summarizes the
techniques we employ. Periodic offline resolution of a page helps

0.00

0.25

0.50

0.75

1.00

0 0.25 0.5 0.75 1

Intersection over Union (Compared to a Nexus 6)

CD
F

ac
ro

ss
 w

eb
sit

es Nexus 10
OnePlus 3

Figure 9: Comparison of the stable set of resources on each page when
the user device is a Nexus 6 compared with when the user device is a
Nexus 10 or a OnePlus 3.

confirm which URLs are consistently fetched when loading the page,
whereas online resolution helps account for flux in page content.
Offline dependency resolution. Offline server-side determination
of the resources on a page works as described previously: the page
is loaded periodically (once every hour in our implementation), and
at any point in time, URLs fetched in all recent loads are considered
likely to also be fetched when a client loads the page. However, even
the largely stable subset of resources on a page can vary across differ-
ent types of client devices (Figure 9). For example, it is common for
website providers to use CSS stylesheets and JavaScript objects that
cause different clients to fetch images of different sizes on the same
page depending on the client’s display resolution or pixel density.

VROOM’s offline server-side dependency resolution efficiently
accounts for device-specific customization of resources in two ways.
First, the server need not load each page on every type of device;
this would be onerous given the large variety of smartphones and
tablets on the market. Instead, after a few loads of a page, the server
can bin all device types into a few equivalence classes. The equiva-
lence classes can vary across pages because different pages may be
customized based on different device characteristics. For example,
in Figure 9, the stable set of URLs fetched when loading a page on a
Nexus 6 smartphone matches the stable set of resources for a One-
Plus 3 phone much more closely than for a Nexus 10 tablet. Second,
after device type equivalence classes for a page are identified, the
server need not load the page on a real device in each class. Instead,
the server can leverage existing device emulation tools [3].
Online HTML analysis. In addition to offline dependency resolu-
tion, when a VROOM-compliant web server responds to a request
with an HTML object, it not only informs the client of dependencies
discovered from loading this object offline, but also includes all
URLs seen in the HTML object by parsing it on the fly. While there
can be other sources of dynamism on a page (e.g., a script on the
landing page of a shopping site may fetch products currently on sale),
we show later in Section 6 that accounting for the URLs in HTML
objects suffices on most pages to capture the flux in page content.
Importantly, we find that server-side parsing of HTML objects as
they are being served adds a median delay of only roughly 100 ms
across the landing pages of the top 1000 websites. This overhead
is offset by the multi-second reduction in page load times made
possible by server-aided resource discovery.

VROOM: Accelerating the Mobile Web SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

a.com/index.html

a.com/banner.jpg

c.com/ad.php

b.com/style.css

c.com/ad_inject.js

c.com/mouseover.js d.com/car.gif

b.com/logo_lo_res.png

Figure 10: Illustration of how VROOM-compliant servers account for
personalization. A client that requests for index.html from a.com

only discovers the resources within the solid blue envelope, because a
request for ad.php returns a HTML, whose content could be person-
alized to a specific user. The client discovers the resources in the dashed
red envelope in response to its request for ad.php sent to c.com. The
client will have to itself discover the need to fetch d.com/cars.gif.

4.2 Accounting for personalization

Unlike content push, dependency hints allow a server to inform
clients about resources served by other domains. But, content served
by one domain may be personalized in ways that other domains are
unaware of (e.g., based on information stored in cookies).

A naive solution for handling personalization would be for any
web server to never return dependencies derived from external con-
tent. In other words, any resource that is discovered during the page
load by parsing or executing an external resource is deemed as one
that could differ due to personalization. For example, in Figure 10,
in response to a request for index.html, a.com can inform a
client about b.com/style.css, but let the client discover the
need to fetch b.com/logo lo res.png only when it requests
style.css from b.com. Accounting for personalization in this
manner would however inflate the latency incurred by the client in
discovering all resources on the page, thereby limiting its ability to
fully utilize the network.

To handle content personalization while enabling low-latency re-
source discovery, we observe that websites are personalized primar-
ily in two ways: by customizing the content of HTML responses,3

and by adapting the execution of scripts. Server-side resource dis-
covery in VROOM accounts for these two types of personalization as
follows. First, web servers omit hints for dependencies derived from
an external resource only when that resource is an HTML object (i.e.,
an embedded iframe); servers do include dependencies derived from
other types of external resources (e.g., style.css in Figure 10).
In comparison with the naive solution described above, our approach
reduces the latency for the client to discover resources. Second, of
the resources determined based on JavaScript execution, those af-
fected by user-specific state (e.g., local time) are left to clients to
discover on their own. JavaScript-based personalization will typi-
cally vary over time, and hence, such unstable resources will get
filtered out via offline dependency resolution.

3Content of CSS stylesheets and scripts are seldom user-specific. Personalization of
images and videos (i.e., returning different versions when the same URL is fetched) is
typically device-specific, which we have previously accounted for.

-2

-1.5

-1

-0.5

 0

 0.5

 1

1 2 3 4 5 6 7 8 9 10

In
cr

ea
se

 in
 re

ce
ip

t t
im

e
re

la
tiv

e
to

 b
as

el
in

e
H

TT
P/

2

Resource ID

Push All, Fetch ASAP
Vroom

Figure 11: Need for and utility of careful scheduling of server-side
push and client-side fetch of the resources that need to be processed
(HTML, CSS, and JS) on http://eurosport.com. Resources are ordered
based on the order in which they are fetched with baseline HTTP/2.

4.3 Cooperative request scheduling
Finally, we turn our attention to questions that must be answered for
clients to benefit from server-side resource discovery. How should
web servers combine the use of HTTP/2 PUSH and dependency
hints to aid clients? How should clients utilize the dependency hints
from servers?
Strawman: Push whenever possible. Fetch upon discovery. We
first consider the most straightforward answers to these questions.
When a web server receives a client’s request for an HTML object, it
can push to the client all dependent resources that it owns. The server
can inform the client of all other dependencies via dependency hints.
As soon as the client receives these hints, it can initiate downloads
for all specified URLs.
Problem: Bandwidth contention. Though this simple strategy sig-
nificantly improves utilization of the client’s access link, we do not
see a commensurate increase in CPU utilization. This is because,
though the client receives the complete set of resources on a page
well before it would without server push and dependency hints,
contention on the client’s access link slows down fetches of some
of the resources that need to be processed. In the example in Fig-
ure 11, though the time to fetch the first 10 resources that need to be
processed reduces by 2 seconds with the “Push All, Fetch ASAP”
strawman, simultaneous use of the client’s access link to transfer
all of these resources delays the first few resources, causing the
browser’s processing to stall. Due to the resulting under-utilization
of the CPU, we show later in Section 6 that applying this strawman
solution yields no improvements in page load times.
Solution: Prioritization via selective push and staged downloads.
Our solution to this problem is to prioritize the fetches of resources
that need to be processed (HTML, CSS, and JS) over those that need
not be processed (e.g., images and videos).4 Classifying resources
into high and low priority groups helps because, once the client has
finished fetching all resources that need to be processed, utilization
of the CPU and the network are largely decoupled over the rest of the
page load. Moreover, the types of resources that need to be processed
typically constitute a small fraction of the bytes on a page [7].

4We however consider all resources that are descendants of third-party HTML objects
(i.e., HTMLs within a page’s iframes) as low priority because web browsers process
iframes only after the root HTML for the page has been completely downloaded and
parsed. This helps minimize network contention for high priority resources referenced
in the root HTML, thus reducing the fetch times for those resources.

http://eurosport.com

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA V. Ruamviboonsuk et al.

Header Description
Link preload Resources to be processed (e.g., JavaScript and HTML objects), fetched at the highest priority

x-semi-important Resources to be processed that are lazily fetched, e.g., “async” JavaScript or CSS objects
x-unimportant Resources that do not need to be parsed or executed (cannot have derived children), e.g., images

Table 1: HTTP headers used by VROOM-compliant servers to provide dependency hints to client browsers. Headers are listed in decreasing order of
priority. Resources in each header are listed in the order they need to be processed.

This prioritization of resources that need to be processed is
achieved in VROOM via two means. First, when a web server re-
sponds to a client’s request for an HTML object, out of all the
dependencies the server identifies, it pushes the content of only the
high priority resources served from the local domain. All other de-
pendencies are returned to the client via dependency hints. Second,
when the client receives a list of URLs, it immediately fetches only
high priority resources; the server’s hints specify resources in the
order in which the client will need to process them, so client requests
simply mimic that order. Once resource discovery from servers is
complete and the client has finished fetching all high priority re-
sources that have been discovered, it issues requests for all other
resources at once. In Figure 11, the time by when receipt of the 10
resources shown completes is the same with VROOM’s scheduling
as with the strawman strategy, but without significantly delaying the
receipt of any individual resource.

Note that VROOM’s scheduler is tailored for the setting where web
pages are loaded on a state-of-the-art mobile device connected to a
LTE network; as we saw earlier in Section 2, the client CPU is the
bottleneck in this case. Alternate scheduling strategies will likely be
necessary in settings where either network bandwidth (e.g., because
of many users simultaneously accessing the cellular network [23])
or latency (e.g., on 2G or 3G networks [25]) is the bottleneck.

5 Implementation
The realization of VROOM requires both server-side (offline and
online dependency resolution; pushing resources to clients and in-
cluding dependency hints in responses) and client-side (scheduling
fetches of hinted objects) changes. Since this preempts evaluation in
the wild, we have implemented VROOM to accelerate web page loads
when Google Chrome is used to load pages from the Mahimahi [36]
replay environment.

5.1 Server-aided resource discovery
VROOM-compliant servers inform clients of dependent resources via
content pushes and dependency hints. To push resources, we lever-
age HTTP/2’s PUSH capability; since Mahimahi uses Apache web
servers which do not yet support HTTP/2, we run an HTTP/2 nghttpx
reverse proxy [14] in front of each web server. For dependency hints,
we rely on embedding additional headers in HTTP responses. For
example, when a browser encounters a Link preload header [16] in
an HTTP response, the browser will immediately issue a request for
the URL embedded in that header.5 Table 1 summarizes the headers
used by VROOM to provide dependency hints to clients.

To minimize stalls in the client browser’s processing of resources,
dependency hints from any server list resources in the order the client
will need to process them and the client requests hinted resources

5While Link preload headers are currently supported by Chrome, other browsers such as
Firefox are actively in the process of adding support for these headers: https://bugzilla.
mozilla.org/show bug.cgi?id=1222633.

in this order; the server discovers this order during its offline and
online dependency resolution. However, since the client issues these
requests back-to-back, a web server may receive multiple requests
near-simultaneously, causing it to respond to all requests in parallel.
The resulting contention for the client’s access link bandwidth leads
to the slowdown of some resources over others as seen with the
“Push All, Fetch ASAP” strategy in Figure 11. Therefore, we modify
Mahimahi so that any web server returns the content for requested
resources in the same order in which it receives requests.

5.2 Scheduling requests with JavaScript
To schedule client-side downloads of URLs learned via dependency
hints (Section 4.3), VROOM uses a JavaScript-based request sched-
uler. For each recorded page in Mahimahi, we modify the page’s top-
level HTML using Beautiful Soup [2]. VROOM’s scheduler script is
added as the first tag in the HTML, thereby ensuring that the browser
executes this script as soon as it begins parsing the HTML.

VROOM’s scheduler script begins its execution with two steps.
First, it defines an onload handler, response handler, which it at-
taches to each request that it makes. This handler maintains a list of
dependency hints that it has seen and fires every time the browser re-
ceives a response for a request made by VROOM’s scheduler. Second,
the script issues an XHR (XMLHttpRequest) for the page’s HTML,
whose URL we embed as an attribute in the <html> tag.6

The scheduler examines Link preload headers in the response for
the page’s HTML to discover dependency hints.7 It then issues re-
quests for high priority dependencies by adding <link> tags (with
the preload attribute set) to the DOM. Importantly, the scheduler’s re-
quests for high priority resources are served from the browser’s local
cache, because the browser itself immediately requests URLs in-
cluded in Link preload headers. Moreover, modern browsers permit
only a single outstanding request for any given URL.

Thereafter, VROOM’s scheduler runs in an event-driven loop.
Whenever the browser invokes response handler upon receiving a
resource, the scheduler marks that resource as fetched. The scheduler
then examines the set of outstanding requests to determine whether
it should start fetching dependencies in the next level of priority.
Specifically, once all high priority resources learned via dependency
hints have been received, VROOM’s scheduler issues requests for all
semi-important resources that it has discovered until that point. This
process then repeats for low priority resources.

By using a JavaScript-based request scheduler, our implementa-
tion of VROOM can accelerate page loads on unmodified commodity
browsers. However, due to the single-threaded nature of Javascript, if

6Note that VROOM’s scheduler removes this attribute and its own DOM node from the
page once the XHR for the top-level HTML is issued. Thus, subsequent accesses to the
DOM are not affected.
7To ensure that the request scheduler can securely access headers in HTTP responses
served from third-party domains, responses must include the “Access-Control-Expose-
Headers” header with the values “Link,” and our custom headers “x-semi-important”
and “x-unimportant.”

https://bugzilla.mozilla.org/show_bug.cgi?id=1222633
https://bugzilla.mozilla.org/show_bug.cgi?id=1222633

VROOM: Accelerating the Mobile Web SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
Page Load Time (s)

C
D

F
ac

ro
ss

 w
eb

si
te

s

Lower Bound
Vroom
HTTP/2 Baseline
HTTP/1.1

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
Above−the−fold Time (s)

C
D

F
ac

ro
ss

 w
eb

si
te

s

Lower Bound
Vroom
HTTP/2 Baseline
HTTP/1.1

0.00

0.25

0.50

0.75

1.00

1000 3000 5000 7000 9000
Speed Index

C
D

F
ac

ro
ss

 w
eb

si
te

s

Lower Bound
Vroom
HTTP/2 Baseline
HTTP/1.1

(a) (b) (c)
Figure 13: With respect to three different metrics, VROOM yields significant benefits compared to simply upgrading from HTTP/1.1 to HTTP/2, and
comes close to matching the achievable lower bound.

Local desktop

Client nghttpx
proxy

Apache
serverVPN over

cellular network

RTT1

RTT2RTT3

Figure 12: Setup to evaluate page load performance enabled by our
implementation of VROOM.

the browser is executing another script on the page when a response
arrives, response handler will not fire immediately. This delays the
fetches of lower priority resources. Therefore, in the future, incorpo-
ration of the scheduling logic into the browser may enable greater
performance gains than what we report.

6 Evaluation
We evaluate VROOM from two perspectives: 1) performance benefits
for users, and 2) the accuracy with which servers can aid resource
discovery for clients. The key highlights from our evaluation are:
• Across 100 popular News and Sports websites, we see that the

adoption of VROOM would yield near-optimal performance on
the median site with respect to two different metrics: page load
time (PLT) and above-the-fold time (AFT). In comparison to the
adoption of only HTTP/2, VROOM’s use would reduce the median
PLT and AFT values by 30% and 20%, respectively.

• Simple alternatives to VROOM (e.g., relying only on prior loads
of the page for dependency discovery, using only HTTP/2 PUSH
but not dependency hints, or not scheduling pushes and fetches)
can increase the median page load time by over 2 seconds.

• On the median site, VROOM’s server-side discovery of dependent
resources has a false negative rate below 5%, which in turn results
in a 22% decrease in client-side latency to discover all resources
on the page.

6.1 Impact on client performance

Methodology. We use the setup shown in Figure 12 to experimen-
tally evaluate our implementation of VROOM. We load pages in
Chrome for Android on a Nexus 6 smartphone connected to a Veri-
zon LTE hotspot. The phone is also connected via USB to a desktop,
which subscribes to events exported by Chrome via the Remote De-
bugging Protocol (RDP). The phone has a VPN tunnel setup to the

desktop, on which we host Mahimahi [36]. For every web page on
which we test VROOM, we initially load the page with the desktop
as a proxy to have Mahimahi record all page contents; page load
times with this setup match those measured when we load pages
with the phone directly communicating with web servers. Thereafter,
when replaying page loads, we configure Mahimahi such that traffic
between the phone and any of the web servers is subjected to not
only the delay over the cellular network but also the median RTT ob-
served between the desktop and the corresponding web server when
recording page contents. The desktop on which we deploy Mahimahi
is sufficiently well-provisioned so that its CPU or network is not
a bottleneck, and as we mentioned earlier in Section 2, load times
when we replay page loads using HTTP/1.1 between the client and
all servers closely match load times measured when loading pages
directly from the web.

We evaluate the utility of VROOM on the landing pages of the
top 50 News and top 50 Sports websites as well as 100 randomly
chosen sites from Alexa’s top 400 sites;8 in most of our experiments,
we focus on the News and Sports sites because, as seen earlier in
Section 2, the need for performance improvements on these sites
is particularly acute with a median page load time of 10.5 seconds.
We load each page 3 times in our replay setup and consider the load
with the median page load time. During these loads, web servers
identify the dependencies to return to clients by drawing upon three
prior loads of each page gathered 1, 2, and 3 hours prior to when we
recorded the page content in Mahimahi.

In addition to page load times, we also evaluate VROOM’s benefits
with respect to additional metrics which capture the speed with
which page content is rendered, as this impacts users’ perception
of page load performance [29]. To measure these metrics, we use
screenrecord, a utility program which captures videos of page loads
on Android devices. We pass the recorded videos to the visualmetrics
tool [18] which outputs the metrics of interest.
Improvement in page load times. First, we compare page load
performance when using VROOM with that when doing a HTTP/2
based replay (i.e., same setup as Figure 12, except that servers
simply return requested resources), which we refer to as the HTTP/2
baseline. On the top 50 News and top 50 Sports sites, Figure 13(a)
shows that VROOM significantly reduces the page load time on
the median site—from 7.3s with the HTTP/2 baseline to 5.1s with
VROOM—closely matching the lower bound (median of 5s); the
lower bound corresponds to the maximum of the CPU-bound and

8The high page load times for these pages and the need to load each page multiple
times to account for the variability of the cellular network limit us from running our
evaluation on more web pages.

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA V. Ruamviboonsuk et al.

0.00

0.25

0.50

0.75

1.00

0 4 8 12 16

Page Load Time (s)

C
D

F
ac

ro
ss

 w
eb

si
te

s

Vroom
Polaris

Figure 14: Comparison of page load times when pages are loaded with
VROOM and with Polaris.

network-bound loads described earlier in Section 2. On the 100 sites
from the top 400, where the median page load time is significantly
lower than on the News and Sports sites even with the HTTP/2
baseline (median of 4.8s), VROOM still reduces the median page
load time to 4s.

The improvements in load times described above are feasible
when all domains adopt the changes prescribed by VROOM. To
understand VROOM’s benefits as it is incrementally adopted, we
evaluate VROOM in a scenario where the first party domain for every
web page (i.e., the domain that serves the root HTML for the page),
along with all other domains controlled by the same organization,
are VROOM-compliant. All other domains contacted in each page
load only conform to HTTP/2, without pushing content or providing
dependency hints. While the median page load time across the News
and Sports increases to 5.6s in this case, as compared to 5.1s with
universal adoption of VROOM, this is still significantly lower than
the 7.3s median page load time with the HTTP/2 baseline.

We also compared VROOM to Polaris [35], a state-of-the-art
web accelerator which uses information about a page’s dependency
structure to prioritize requests for critical resources. Figure 14 shows
that, compared to Polaris, VROOM is able to reduce the median page
load time for the popular News and Sports sites from 6.4s to 5.1s.
As noted in Section 2, the primary reason for this performance gain
is that Polaris still leaves clients to discover resources on their own
(i.e., the client can discover the need to fetch a resource only after
fetching and evaluating another resource). Further, Polaris does not
specify policies for servers to proactively push resources to clients
in anticipation of future requests.

Though Figures 13(a) and 14 show that VROOM significantly im-
proves performance for the median page, these benefits are marginal
at the tail; in fact, Polaris outperforms VROOM in the tail of the load
time distribution. The reasons for this are two-fold. First, certain
sites include dynamic content that VROOM is unable to detect simply
by online analysis of HTMLs; VROOM defers the discovery of such
unpredictable resources to clients and is unable to provide hints for
these resources. Second, when clients prefetch objects (specified
by dependency hints) and servers in multiple domains concurrently
push resources, bandwidth contention can result in high priority
resources being delayed. These results illustrate that combining
the complementary approaches used in VROOM and Polaris is a
promising direction of future work.
Improvement in visual performance metrics. In addition to re-
ducing page load times, VROOM also improves metrics such as
Above-the-fold time and Speed Index which grade performance

(a) (b)
Figure 15: For the Fox News mobile site, (a) rendering of the above
the fold content completes at 9.26s with VROOM; (b) with only HTTP/2
enabled, rendering is incomplete at that time and completes only later
at 13.87s.

based on visual completeness of page loads. Above-the-fold time
measures the time until all content that is “above the fold” (i.e., a
user sees prior to scrolling) is rendered to its final state. Speed Index
extends this metric to capture the rate at which all the content that
is above the fold gets rendered. Figures 13(b) and (c) show that,
across the popular News and Sports sites, VROOM improves the
Above-the-fold time and Speed Index for the median site by 400ms
and 380ms, respectively.

Figures 15 shows these benefits on an example site (http://m.
foxnews.com/). With VROOM, rendering of all above the fold content
completes at 9.26s. At that same time in the page load with the
HTTP/2 baseline configuration, the main images are still missing
and the rendering of the page is yet to converge. With HTTP/2,
rendering of all above the fold content takes 4.6s longer, completing
at 13.87s into the page load.

The above-described improvements in page load performance
with VROOM are due to several reasons; we dig into each of these
next. For brevity, we show results only for the popular News and
Sports sites.
Latency in discovering and fetching resources. A key benefit of
server-aided resource discovery is that it enables clients to discover
resources and complete fetching them much sooner than in normal
page loads. Figure 16 depicts these improvements both when consid-
ering all resources identified as dependencies by VROOM-compliant
web servers, and also when considering only those dependencies
which are high priority resources (i.e., HTML, CSS, and JS objects,
which are the ones that need to be parsed or executed).

Reducing the time by when the client completes fetching all de-
pendencies (a 22% reduction on the median page) is crucial because
any further network activity necessary to complete the page load is
only to fetch the small subset of unpredictable resources that servers
fail to identify as dependencies. But, in addition, the drop in the time
by when all high priority dependencies finish downloading—a 12%

http://m.foxnews.com/
http://m.foxnews.com/

VROOM: Accelerating the Mobile Web SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

0.00

0.25

0.50

0.75

1.00

−0.25 0 0.25 0.5 0.75 1

Discovery Time Improvement over HTTP/2 (%)

CD
F

ac
ro

ss
 w

eb
sit

es

High Priority Only
All

(a)

0.00

0.25

0.50

0.75

1.00

−0.25 0 0.25 0.5 0.75 1

Fetch Time Improvement over HTTP/2 (%)

CD
F

ac
ro

ss
 w

eb
sit

es

High Priority Only
All

(b)
Figure 16: In comparison to HTTP/2, VROOM reduces the latency in
both (a) discovering resources and (b) completing their downloads.

 0

 2

 4

 6

 8

 10

 12

Lower Bound Vroom Deps from
Previous Load

HTTP/2
Baseline

Pa
ge

 L
oa

d
Ti

m
e

(s
)

Figure 17: In contrast to VROOM, if servers return dependencies as all
the resources seen on a prior load of the page, page load times increase
on many pages. 25th percentile, median, and 75th percentile are shown
in each case.

median reduction compared to baseline HTTP/2—is also critical
since use of the CPU and the network are largely decoupled there-
after. Both of these improvements are made possible because of the
speedup in the client discovering dependencies: in the median, 22%
and 16% faster discovery of all dependencies and of all high priority
dependencies, respectively.

Faster discovery and preemptive receipt of resources also helps
reduce the time spent on the critical path waiting to receive data
over the network. While the simple use of HTTP/2 led to network
delays accounting for over 30% of the critical path on the median
site (Figure 4), VROOM’s use reduces the network wait time on the
critical path by 24% on the median site.
Utility of accurate dependency inference. While input from servers
enables clients to discover and fetch dependent resources sooner,
the benefit of this input strongly relies upon the accuracy of the
dependencies returned. To show this, we consider servers identifying

 0

 2

 4

 6

 8

 10

Lower Bound Vroom Push High
Priority, No Hints

Push All,
No Hints

Pa
ge

 L
oa

d
Ti

m
e

(s
)

Figure 18: VROOM improves page load times compared to using only
server-side push to inform clients of dependent resources. 25th per-
centile, median, and 75th percentile are shown in each case.

 0

 2

 4

 6

 8

 10

Lower Bound Vroom Push All,
Fetch ASAP

No Push,
No Hints

Pa
ge

 L
oa

d
Ti

m
e

(s
)

Figure 19: VROOM’s judicious scheduling of server push and client
fetch is key to enabling improvements in page load time. 25th percentile,
median, and 75th percentile are shown in each case.

the set of dependencies to return to a client simply based on a prior
load of the page, i.e., all resources seen in a load within the past hour
are assumed to be relevant to the new load. Figure 17 shows that,
though the median page load time does reduce with this approach,
the extraneous inaccurate dependencies returned to the client de-
grade performance on many sites; the 75th percentile increases by
over 1.5 seconds.
Need for combining HTTP/2 PUSH and dependency hints. Be-
yond accuracy in server-side dependency discovery, VROOM’s bene-
fits draw upon the combined use of HTTP/2 PUSH and dependency
hints. Figure 18 shows that simply relying on server push is insuffi-
cient. Irrespective of whether we push all static resources or only the
subset of static resources that need to be processed, median page load
time remains more than 2 seconds higher than with VROOM. This
stems from the preponderance of third-party resources on modern
web pages; servers can inform clients of such dependencies only via
dependency hints, as any server can securely push only the content
that it hosts.
Utility of scheduling. While HTTP/2 PUSH and dependency hints
enable faster resource discovery, performance improvements with
VROOM also hinge upon judicious coordinated scheduling of pushes
and downloads of discovered dependencies. Figure 19 illustrates
the utility of the cooperative scheduling in VROOM compared to
the strawman “Push All, Fetch ASAP” approach discussed in Sec-
tion 4.3 (where servers push any resource they can and clients fetch
any resource immediately upon discovery). Because only high prior-
ity resources are pushed by VROOM servers and are preferentially
fetched by clients, contention for access link bandwidth has mini-
mal impact on the processing of resources. The resultant increased

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA V. Ruamviboonsuk et al.

0.00

0.25

0.50

0.75

1.00

0 0.25 0.5 0.75 1

Predictable Resources / Total

C
D

F
ac

ro
ss

 w
eb

si
te

s Count
Bytes

0.00

0.25

0.50

0.75

1.00

0 0.25 0.5 0.75 1

Fraction of Predictable Set

CD
F

ac
ro

ss
 w

eb
sit

es

Online Only
Vroom
Offline Only

0.00

0.25

0.50

0.75

1.00

0 0.25 0.5 0.75 1

Fraction of Predictable Set

CD
F

ac
ro

ss
 w

eb
sit

es

Vroom
Offline Only
Online Only

(a) (b) (c)
Figure 21: (a) Among the resources derived from a page’s root HTML, except for those derived from embedded HTMLs, the contribution of the
predictable subset to the number of resources and bytes. As a fraction of the size of this predictable subset, the resources that are either (b) missed or
(c) are extraneous when using VROOM’s server-side dependency resolution as compared to offline-only and online-only analyses.

 0

 2

 4

 6

 8

 10

Back-to-back 1 Day Later 1 Week Later

Pa
ge

 L
oa

d
Ti

m
e

(s
)

Vroom
HTTP/2 Baseline

Figure 20: For three different delays between the load that warms the
browser’s cache and the load on which we evaluate page load perfor-
mance, VROOM reduces page load times. 25th percentile, median, and
75th percentile are shown in each case.

utilization of the CPU enables VROOM to improve performance
over baseline HTTP/2. Whereas, use of the strawman approach for
servers to inform clients of dependencies offers minimal benefits; in
fact, the median load time increases as a result of increased network
contention.
VROOM accelerates page loads with warm caches. All of our
experiments thus far have considered the browser’s cache to be
empty. To evaluate VROOM when the browser’s cache is not empty,
we first identify cacheable objects by examining the headers in HTTP
responses. We mimic three different scenarios, wherein once a page
is loaded by a client, it loads the page again immediately thereafter
(i.e., back-to-back loads), a day later, or a week later. Importantly, to
prevent wasted bandwidth, resources that were already cached at the
client were not pushed by servers.

Figure 20 shows that VROOM significantly improves page load
times in all three warm browser cache settings. When considering
back-to-back loads, VROOM reduces the page load time of the me-
dian site by 1.6s. This improvement increases to 2.2s and 2.1s for
the loads separated by one day and one week, respectively.

6.2 Accuracy of server-side dependency resolution

Setup. To evaluate the accuracy of the resource dependencies that
VROOM-compliant servers return to clients, we consider 265 web
pages drawn from popular News and Sports websites; these pages
span a variety of page types such as landing pages, individual articles,
results for specific games, etc. We load these pages once every hour
for a week from the perspective of four users, whose cookies are
seeded by visiting the landing pages of the top 50 pages in the Busi-
ness, Health, Computers, and Shopping/Vehicles Alexa categories,

respectively. Every hour, we load each page twice back-to-back from
every user’s perspective for reasons described shortly.

As described earlier in Section 4.1, server-side dependency reso-
lution in VROOM relies upon both offline and online analysis. The
dependencies identified via offline dependency resolution include the
resources seen in each of the loads in the past 3 hours. For online anal-
ysis, we model the server which serves any HTML object—either
the root HTML on a page or one embedded in an iframe—returning
all links in that HTML. Recall that, in order to account for person-
alization, VROOM-compliant servers return dependencies—either
via push or via dependency hints—only in response to requests for
HTML objects (Section 4.2).
Strategies for server-side resource discovery. We compare de-
pendency resolution in VROOM with both the strawman approaches
described earlier in Section 4.1: offline-only returns URLs seen in
the intersection of loads over the past 3 hours, and online-only loads
the page on the fly at the server and returns the URLs fetched.
Definition of accuracy. To evaluate the accuracy with which each
of these approaches can identify the set of URLs that a client must
fetch during a page load, we partition the set of URLs we see in any
page load into a predictable and unpredictable subset. We identify
the subset of unpredictable URLs as ones that differ between back-to-
back loads; these are URLs that VROOM leaves it up to the client to
discover. As seen in Figure 21(a), out of the subset of resources on a
page that a server can potentially return as dependencies in response
to a request for a HTML (i.e., all the resources derived from HTML
minus the ones derived from embedded iframes), the predictable
subset accounts for over 80% and over 95%, respectively, in terms
of the number of resources and the number of bytes. We evaluate the
accuracy of each approach for server-side resource discovery with
two metrics—the number of resources identified as dependencies
by the server which do not appear in the predictable subset of the
client’s load (false positives), and the number of resources in the
predictable subset that the server fails to identify (false negatives)—
both computed as fractions of the predictable subset’s size.
Results. First, Figure 21(b) shows that, out of the resources in
the predictable subset, the fraction that VROOM-compliant servers
would fail to identify is less than 5% for the median page. Whereas,
offline-only dependency resolution ends up missing as many as 40%
of the predictable subset of resources seen on any particular page
load because of its inability to cope with changes from hour to
hour. The online-only approach is perfect with respect to this metric,
which validates our design decision to account for personalization

VROOM: Accelerating the Mobile Web SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

by limiting the set of dependencies returned to exclude resources
recursively derived from embedded HTMLs.

Second, with respect to the overhead imposed on clients by return-
ing dependencies not in the predictable subset, Figure 21(c) shows
that VROOM matches the offline-only approach. In both of these
cases, identifying the stable set of resources seen consistently on a
page helps in ignoring resources that happen to show up on a single
load. Due to its inability to cope with such nondeterminism, the
online-only approach identifies many extra resources, which inflate
the predictable subset by as much as 20% in the median case.

7 Discussion

Deployability. Unlike attempts at clean-slate redesigns of the Inter-
net’s architecture, new designs for client-server interactions on the
web are more amenable to deployment, as evidenced by the recent
incorporation of SPDY into HTTP/2. This is possible because of
several differences between the web and general communication
over the Internet: 1) clients directly interact with web servers, un-
like an ISP having to rely on other ISPs to forward traffic, 2) a
few popular browsers and web servers are dominant, and 3) since
some browsers (Chrome and IE) are controlled by popular content
providers (Google and Bing), these providers can unilaterally test
performance improvements enabled by a new proposal such as ours
without depending on adoption by others.
Server-side overhead. VROOM-enabled servers identify dependent
resources using both online and offline analyses. For popular web-
sites that host thousands of web pages, loading each page every hour
to facilitate offline dependency resolution will likely be onerous.
We observe that there are typically only a few types of pages on
each site and the stable set of resources (e.g., CSS stylesheets, fonts,
logo images, etc.) are likely to be common across pages of the same
type. For example, on a news site, landing pages for different news
categories are likely to share similarities as will news articles about
different individual stories. We defer for future work the task of
leveraging the similarity across pages of the same type to improve
the scalability of VROOM’s server-side resource discovery.

Note that the overhead of resolving dependencies will be incurred
only by the domains which serve HTML objects, i.e., the root HTML
for an entire page or for an individual frame in the page. Other
servers involved in a page load need only serve individual resources
as they are requested. Moreover, for over 80% of sites, the landing
page’s HTML is served directly from origin web servers [7] and not
from third-party CDNs. Thus, the overhead imposed by VROOM’s
resource discovery will largely be incurred by top-level domains
who are only responsible for the websites they own.
Security. At first glance, it may appear that having servers push
resources and having clients fetch hinted resources present new se-
curity concerns for page loads, whereby compromised web servers
could push or provide hints for malware. However, of the resources
that are pushed or fetched based on dependency hints, client browsers
will only process those resources referenced by the page being
loaded, e.g., as HTML tags. Further, page loads that include un-
necessary pushes or hints will still load correctly to completion,
albeit with higher load times due to the downloads of unnecessary
resources. Thus, page loads with VROOM encounter the same (but
not worse) security concerns as page loads do today.

8 Related work

Mobile web performance. Prior measurement studies [34, 44]
have analyzed the performance of mobile web browsers. Like us,
these studies find that CPU and network delays are bottlenecks when
loading pages on mobile devices and high-latency cellular links.

Some new proposals aim to alleviate the effects of these bottle-
necks by altering how pages are written and served. For example,
Google’s AMP project [1] asynchronously fetches many resources
required to load a page, and uses Google’s CDN to serve AMP-
enabled content with HTTP/2. In contrast to AMP, VROOM can
speed up the loads of legacy web pages. VROOM can also improve
the performance of AMP-based pages by enabling asynchronous
fetches earlier using server-provided hints.
Dependencies in page loads. Many recent systems [22, 30, 35]
use offline analysis to discover dependencies inherent to web pages.
Due to the dynamic nature of web content, previously generated
dependency graphs can only capture the structure of a page, but
not the exact set of URLs that must be fetched in any particular
load of the page. These systems that leverage a priori knowledge
of inter-object dependencies can therefore only reorder requests for
resources, but leave the onus of discovering resources on the client.
VROOM overcomes this limitation by combining offline dependency
resolution with online analysis and by carefully spreading resource
discovery across domains.

WProf [41] identifies dependencies between different browser
components (e.g., HTML parser, JavaScript engine) that arise dur-
ing page loads and degrade performance. By leveraging HTTP/2
PUSH and browser support for fetching dependency hints, VROOM
reduces the coupling between the CPU and the network; processing
a resource is rarely blocked by fetching, and vice versa.
Proxy-based acceleration. Cloud browsers improve mobile web
performance by dividing the load process between the client’s de-
vice and a remote proxy server. By resolving dependencies using a
proxy’s wired connections to origin servers (in place of the client’s
slow access link), such systems can significantly reduce page load
times [15, 22, 36, 40, 43]. However, the reliance on web proxies
raises security and privacy concerns, as clients must share their cook-
ies with the proxy in order to preserve personalization and must trust
that the proxy preserves the integrity of content served over HTTPS.
Network optimizations for faster page loads. HTTP/2 [20] (for-
merly SPDY [17]) reduces load times by allowing client browsers
to multiplex all requests to an origin on a single TCP connection.
HTTP/2 also allows servers to speculatively “push” objects they
own before the user requests them (saving RTTs) [39]. VROOM
demonstrates the need for HTTP/2’s PUSH feature to be combined
with dependency hints in order to securely speed up dependency
resolution on the client.

Recent work has isolated two distinct factors that limit perfor-
mance improvements with HTTP/2: dependencies inherent in web
pages and browsers restrict HTTP/2’s ability to reduce load times [42],
and the use of a single TCP connection can be detrimental in the
presence of high packet loss [24]. VROOM would benefit from mul-
tiplexing requests on the same connection, but it can be used with
HTTP/1.1 in the face of high packet loss.

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA V. Ruamviboonsuk et al.

Client-side optimizations. Content prefetching and speculative
loading systems reduce the effect that high network latencies have
on web performance [26, 28, 37, 45]. These systems predict user
browsing behavior and speculatively fetch content in hopes that
users will soon do the same. However, accurately predicting user
browsing behavior remains a challenge. Thus, prefetching often
leads to wasted device energy and data usage [38].

Other client-side improvements reduce energy usage and compu-
tational delays using parallel web browsers [31, 32] and improved
hardware [47]. By increasing the amount of parallelization for nec-
essary page load tasks (e.g., rendering), these systems reduce energy
usage and have positive impacts on page load times.

Each of these optimizations is complementary to our work. How-
ever, VROOM tackles a fundamental source of inefficiency in page
loads that client-only solutions cannot address alone: VROOM decou-
ples resource discovery from object evaluation (and thus, network
delays from computational delays). By using server-provided hints,
VROOM shifts resource discovery from being a client-only task to
one in which the client and server cooperate.

9 Conclusions
The recognition that dependencies within the page load process are
the dominant cause for slow page loads has led to a slew of solu-
tions recently. However, all of these solutions either compromise
security and privacy by relying on proxies to resolve dependencies
or have limited ability to improve mobile web performance since
they require clients to themselves discover the resources on any
page. VROOM offers the best of both worlds: by having servers aid a
client’s discovery of resources (both via HTTP/2 PUSH and depen-
dency hints), we decouple the client’s processing and downloads of
resources, but do so while preserving the end-to-end nature of the
web. By improving CPU utilization, VROOM significantly decreases
page load times compared to baseline HTTP/2.

Acknowledgments
We thank the anonymous reviewers, our shepherd Mark Crovella,
and Simon Pelchat for their valuable feedback on earlier drafts of
this paper. This work was supported in part by a Google Faculty
Research Award. Ravi Netravali’s participation in the project was
supported by NSF grant CNS-1407470 (PI: Hari Balakrishnan) and
by the MIT Center for Wireless Networks and Mobile Computing.

References
[1] Accelerated Mobile Pages Project. https://www.ampproject.org/.
[2] Beautiful Soup. http://www.crummy.com/software/BeautifulSoup/.
[3] Google Developers - Simulate Mobile Devices with Device Mode. https:

//developers.google.com/web/tools/chrome-devtools/iterate/device-mode/.
[4] Google Page Speed. https://developers.google.com/speed/pagespeed/.
[5] H2O - The optimized HTTP/2 server. https://h2o.examp1e.net/configure/http2

directives.html#http2-casper.
[6] How One Second Could Cost Amazon $1.6 Bil-

lion In Sales. https://www.fastcompany.com/1825005/
how-one-second-could-cost-amazon-16-billion-sales.

[7] HTTP Archive. http://httparchive.org/.
[8] HTTPS adoption *doubled* this year. https://snyk.io/blog/

https-breaking-through/.
[9] Keynote: Mobile Commerce Performance Index. http://www.keynote.com/

performance-indexes/mobile-retail-us.
[10] Latency Is Everywhere And It Costs You Sales - How To Crush It. http:

//highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it.
[11] Mobile Devices Now Driving 56 Percent Of Traffic To Top Sites. http:

//marketingland.com/mobile-top-sites-165725.

[12] The need for mobile speed: How mobile latency impacts publisher revenue.
https://www.doubleclickbygoogle.com/articles/mobile-speed-matters/.

[13] New findings: For top ecommerce sites, mobile web performance is
wildly inconsistent. http://www.webperformancetoday.com/2014/10/22/
2014-mobile-ecommerce-page-speed-web-performance/.

[14] nghttpx - HTTP/2 proxy. https://nghttp2.org/documentation/nghttpx-howto.html.
[15] Opera Mini & Opera Mobile browsers. http://www.opera.com/mobile/.
[16] Preload. https://www.w3.org/TR/preload/.
[17] SPDY. https://developers.google.com/speed/spdy/.
[18] visualmetrics. https://github.com/WPO-Foundation/visualmetrics.
[19] WPO Stats. https://wpostats.com/.
[20] M. Belshe, R. Peon, and M. Thomson. 2015. Hypertext Transfer Protocol Version

2. http://httpwg.org/specs/rfc7540.html.
[21] Michael Butkiewicz, Harsha V. Madhyastha, and Vyas Sekar. 2011. Understand-

ing Website Complexity: Measurements, Metrics, and Implications. In IMC.
[22] Michael Butkiewicz, Daimeng Wang, Zhe Wu, Harsha V. Madhyastha, and Vyas

Sekar. 2015. Klotski: Reprioritizing Web Content to Improve User Experience on
Mobile Devices. In NSDI.

[23] Abhijnan Chakraborty, Vishnu Navda, Venkata N Padmanabhan, and Ramachan-
dran Ramjee. 2013. Coordinating Cellular Background Transfers using LoadSense.
In MOBICOM.

[24] Jeff Erman, Vijay Gopalakrishnan, Rittwik Jana, and K.K. Ramakrishnan. 2013.
Towards a SPDY’ier Mobile Web. In CoNEXT.

[25] Tammy Everts. 2013. Rules for Mobile Performance Optimization. ACM Queue
11, 6 (2013).

[26] Li Fan, Pei Cao, Wei Lin, and Quinn Jacobson. 1999. Web Prefetching Between
Low-Bandwidth Clients and Proxies: Potential and Performance. In SIGMET-
RICS.

[27] David F. Galletta, Raymond Henry, Scott McCoy, and Peter Polak. 2004. Web
Site Delays: How Tolerant are Users? Journal of the Association for Information
Systems 5, 1 (2004), 1–28.

[28] Zhimei Jiang and Leonard Kleinrock. 1998. Web Prefetching in a Mobile Envi-
ronment. IEEE Personal Communications 5, 5 (1998), 25–34.

[29] Conor Kelton, Jihoon Ryoo, Aruna Balasubramanian, and Samir R. Das. 2017.
Improving User Perceived Page Load Times Using Gaze. In NSDI.

[30] Zhichun Li, Ming Zhang, Zhaosheng Zhu, Yan Chen, Albert Greenberg, and
Yi-Min Wang. 2010. WebProphet: Automating Performance Prediction for Web
Services. In NSDI.

[31] Haohui Mai, Shuo Tang, Samuel T. King, Calin Cascaval, and Pablo Montesinos.
2012. A Case for Parallelizing Web Pages. In HotPar.

[32] L. Meyerovich and R. Bodik. 2010. Fast and Parallel Web Page Layout. In WWW.
[33] David Naylor, Alessandro Finamore, Illias Leontiadis, Yan Grunenberger, Marco

Mellia, Konstantina Papagiannaki, and Peter Steenkiste. 2014. The Cost of the
”S” in HTTPS. In CoNEXT.

[34] Javad Nejati and Aruna Balasubramanian. 2016. An In-Depth Study of Mobile
Browser Performance. In WWW.

[35] Ravi Netravali, Ameesh Goyal, James Mickens, and Hari Balakrishnan. 2016.
Polaris: Faster Page Loads Using Fine-grained Dependency Tracking. In NSDI.

[36] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Winstein,
James Mickens, and Hari Balakrishnan. 2015. Mahimahi: Accurate Record-and-
Replay for HTTP. In ATC.

[37] Venkata N. Padmanabhan and Jeffrey C. Mogul. 1996. Using Predictive Prefetch-
ing to Improve World Wide Web Latency. In SIGCOMM.

[38] Lenin Ravindranath, Sharad Agarwal, Jitendra Padhye, and Christopher Riederer.
2013. Give in to Procrastination and Stop Prefetching. In HotNets.

[39] Sanae Rosen, Bo Han, Shuai Hao, Z Morley Mao, and Feng Qian. 2017. Push
or Request: An Investigation of HTTP/2 Server Push for Improving Mobile
Performance. In WWW.

[40] Ashiwan Sivakumar, Shankaranarayanan Puzhavakath Narayanan, Vijay Gopalakr-
ishnan, Seungjoon Lee, Sanjay Rao, and Subhabrata Sen. 2014. PARCEL: Proxy
Assisted BRowsing in Cellular Networks for Energy and Latency Reduction. In
CoNEXT.

[41] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David
Wetherall. 2013. Demystifying Page Load Performance with WProf. In NSDI.

[42] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David
Wetherall. 2014. How Speedy is SPDY?. In NSDI.

[43] Xiao Sophia Wang, Arvind Krishnamurthy, and David Wetherall. 2016. Speeding
Up Web Page Loads with Shandian. In NSDI.

[44] Zhen Wang, Felix Xiaozhu Lin, Lin Zhong, and Mansoor Chishtie. 2011. Why
are Web Browsers Slow on Smartphones?. In HotMobile.

[45] Zhen Wang, Felix Xiazhou Lin, Lin Zhong, and Mansoor Chishtie. 2012. How
Far Can Client-Only Solutions Go for Mobile Browser Speed?. In WWW.

[46] Zizhuang Yang. 2009. Every Millisecond Counts. https://www.facebook.com/
note.php?note id=122869103919.

[47] Yuhao Zhu and Vijay Janapa Reddi. 2013. High-Performance and Energy-Efficient
Mobile Web Browsing on Big/Little Systems. In HPCA.

https://www.ampproject.org/
http://www.crummy.com/software/BeautifulSoup/
https://developers.google.com/web/tools/chrome-devtools/iterate/device-mode/
https://developers.google.com/web/tools/chrome-devtools/iterate/device-mode/
https://developers.google.com/speed/pagespeed/
https://h2o.examp1e.net/configure/http2_directives.html#http2-casper
https://h2o.examp1e.net/configure/http2_directives.html#http2-casper
https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
http://httparchive.org/
https://snyk.io/blog/https-breaking-through/
https://snyk.io/blog/https-breaking-through/
http://www.keynote.com/performance-indexes/mobile-retail-us
http://www.keynote.com/performance-indexes/mobile-retail-us
http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
http://marketingland.com/mobile-top-sites-165725
http://marketingland.com/mobile-top-sites-165725
https://www.doubleclickbygoogle.com/articles/mobile-speed-matters/
http://www.webperformancetoday.com/2014/10/22/2014-mobile-ecommerce-page-speed-web-performance/
http://www.webperformancetoday.com/2014/10/22/2014-mobile-ecommerce-page-speed-web-performance/
https://nghttp2.org/documentation/nghttpx-howto.html
http://www.opera.com/mobile/
https://www.w3.org/TR/preload/
https://developers.google.com/speed/spdy/
https://github.com/WPO-Foundation/visualmetrics
https://wpostats.com/
http://httpwg.org/specs/rfc7540.html
https://www.facebook.com/note.php?note_id=122869103919
https://www.facebook.com/note.php?note_id=122869103919

	Abstract
	1 Introduction
	2 Motivation
	3 Approach
	3.1 Limitations of HTTP/2 PUSH
	3.2 Combining PUSH with dependency hints

	4 Design
	4.1 Server-side dependency resolution
	4.2 Accounting for personalization
	4.3 Cooperative request scheduling

	5 Implementation
	5.1 Server-aided resource discovery
	5.2 Scheduling requests with JavaScript

	6 Evaluation
	6.1 Impact on client performance
	6.2 Accuracy of server-side dependency resolution

	7 Discussion
	8 Related work
	9 Conclusions
	References

