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ABSTRACT
The proliferation of edge video analytics applications has given rise
to a new breed of streaming protocols which stream aggressively
compressed videos to remote servers for compute-intensive DNN
inference. One popular design paradigm of such protocols is to
leverage the server-side DNN to extract useful feedback (e.g., based
on a low-quality-encoded stream sent to the server) and use the
feedback to inform how the camera should encode and stream the
video in the future. In this server-driven approach, an ideal feedback
should (1) be derived from minimum information from the video
sensor (2) incur minimum bandwidth usage to obtain (3) indicate
the optimal video streaming/encoding scheme (e.g., the minimum
frames/regions that require high encoding quality). However, our
preliminary study shows that these idealized requirements are far
from being met. Using object detection as an example use case,
we demonstrate significant yet untapped room for improvement by
considering a broader design space, in terms of how the feedback
should be derived from the DNN, how often it should be extracted,
and how to determine the encoding quality of the video on which
we extract the feedback.

CCS CONCEPTS
• Networks → Application layer protocols; • Information systems
→ Data analytics; • Computing methodologies → Computer
vision problems.
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1 INTRODUCTION
Video sensors are ubiquitous, in smart cities, homes, industrial set-
tings, leading to an explosive growth of live video streams from
which valuable information can be extracted by computer-vision
models, in forms of Deep Neural Networks (DNNs). Unlike stream-
ing videos for human users to watch, when video sensors send live
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video feeds to a server for compute-intensive DNN inference in
real-time, the goal is to maximize inference accuracy under the pre-
sented camera-to-server bandwidth constraints [10, 17, 27]. This is
increasingly critical, as most video sensors are wirelessly connected
with limited bandwidth and/or pricey data plan.

To this end, many video analytics systems have been recently
proposed [6, 7, 9, 10, 12, 13, 15–17, 19, 24, 27–29], and one of the
common approaches is the server-driven paradigm (e.g., [10, 13, 15,
17, 19, 27, 29]). At a high level, the server-driven paradigm has two
phases (Figure 1): the camera first sends video frames with regions
that do not contain detected objects in low quality to the server-side
DNN; based on the DNN output on these low-quality frames, the
server sends the client a feedback that indicates which regions or
frames are important (e.g., might contain new objects of interests);
upon receiving this feedback, the camera will resend the current
frames or send future frames with only these important regions
encoded in high quality. The rationale of the server-driven paradigm
is that edge cameras, which are incapable of running expensive DNN
inference, cannot accurately determine which regions contribute
more to the inference accuracy of the compute-intensive server-side
DNN. In contrast, the server-driven paradigm uniquely allows the
server-side DNN to directly determine which regions should be
encoded and streamed in high quality.

Given the widespread adoption of systems in the server-driven
paradigm [10, 13, 15, 17, 19, 27, 29] and the numerous tuning op-
tions in these systems (e.g., quality selections, frame rates, feedback
types), we first study the performance of existing server-driven video
streaming systems for video analytics on a variety of videos using
object detection as an example application. Overall, we find that
despite the early promises of the server-driven paradigm in certain
settings as displayed by prior work in this space, existing pipelines
leave many opportunities for performance improvement on the table.
In particular, we identify that current instantiations of the server-
driven paradigm fail to extract server-side feedback that directly and
accurately models which regions are more important to inference
accuracy. This is mainly because these systems rely exclusively on
bounding boxes from the outputs or region proposals on the frames
to extract server-side feedback and determine which regions should
be encoded in high quality. Our study shows that such feedback
extraction fails to capture (1) that many pixels outside the bounding
boxes can still influence DNN inference, and (2) that many pixels
inside the bounding boxes are not as influential.

To resolve this limitation, we need to better model the relative con-
tribution of a pixel to the inference accuracy than existing bounding-
box-based heuristics. To meet this goal, we leverage the well-studied
concept of saliency in the computer vision community [8, 22, 23],
computed as the gradient of the sum of bounding box confidence
scores with regard to each pixel RGB value. In contrast to bounding
boxes or region proposals, saliency, by definition, captures how much
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Figure 1: A typical server-driven video analytics workflow. LQ
refers to low encoding quality and HQ refers to high encoding
quality.

changing each pixel value can affect the output of the server-side
DNN.

To show the potential improvement (in accuracy and bandwidth
savings) of using saliency as the feedback, we first make an ide-
alized assumption that the camera can access the saliency of the
uncompressed frames, which means how much a slight change on
each pixel RGB value can have on the DNN output (§3.3). Based
on the saliency information, the camera then encodes 10% (16x16)
macroblocks with highest saliency sum in high quality and the re-
maining regions in low quality. Compared to existing server-driven
designs (DDS [10], Liu et. al [17], etc.), we found that this idealized
design reduces bandwidth usage by 18% and confidence drop by
76% compared to DDS [10], and reduces bandwidth usage by 40%
and confidence drop by 56% compared to Liu et. al [17] on the DDS
videos (Figure 3).

Yet, realizing the potential improvements in practice can be hard,
since it requires sending the high-quality video frames to the server
in the first place. Surprisingly, we found that the potential improve-
ments can be largely attained by selecting an appropriate encoding
quality and frame rate of the low-quality frames that the server-side
DNN uses to extract saliency (§4.2). In contrast, previous work in
this space manually picks these values, without exploring the full
space of possible values. Our empirical study, over a variety of
videos, shows that a realistic server-driven design can still achieve
43% bandwidth saving and 12% less accuracy drop as compared
to DDS [10], or 57% bandwidth saving without degrading DNN
inference accuracy as compared to Liu et. al [17].

In short, by changing key design choices (the format of feedback,
and the video quality and frame rate at which the feedback should be
extracted) of server-driven video analytics systems, we demonstrate
significant yet untapped improvement over the latest server-driven
designs with a simple yet efficient alternative. In doing so and out-
lining unanswered questions (§5 and §6), we hope to encourage
more research in the larger community towards the optimal design
of server-driven video analytics systems.

2 SERVER-DRIVEN VIDEO ANALYTICS
Edge video analytics seeks to run accurate but compute-intensive
DNN inference on massive video feeds from cheap cameras. To
leverage the abundant server-side compute to optimize the trade-off
between inference accuracy and various types of cost (like bandwidth
consumption [10, 17, 29], server-side compute cost [29] and end-
to-end latency [17, 29]), many proposals in this space follow the
server-driven approach. In an ideal server-driven video analytics
system, the server-side DNN extracts some feedback that indicates
the minimum regions in each frame that must be encoded in high
quality in order for the DNN to maximize accuracy, and then sends

Feedback format Feedback
frequency

Base video quality

DDS [10] Region proposals
(subset)

Every frame Low (QP=36)

Liu et. al [17] Region proposals Every frame Hybrid (QP=35)
Elf [29] Region proposals Every 7 frames Low (Res=760x432)

Table 1: Existing designs of server-driven video analytics sys-
tems and their design choices along three dimensions. We will
show significant potential improvement by exploring alternative
choices along these dimensions. 2

this feedback back to the camera which then encodes and streams
the video frames to the server based on the feedback.
Performance objectives: An ideal server-driven approach should
meet the following two requirements.1 (1) High accuracy: We de-
fine accuracy as the average drop of the confidence at each object,
between the inference output on the highest-quality video and that
on the actually streamed video. Though it is not the true inference
accuracy, we choose to use this definition because it captures any
adverse impact of streaming low quality videos on the inference out-
put: in practice, if the confidence of an object is dropped below the
threshold manually picked by the DNN operator, the object will not
be returned. (2) Low bandwidth usage: We measure the bandwidth
by the video file size over its duration.
Current server-driven designs: Existing proposals [10, 13, 15, 17,
19, 27, 29] of server-driven approach make different design choices
along three dimensions:
• The format of the server-extracted feedback sent from the server

to the camera,
• The frequency at which the feedback is updated by the server-side

DNN, and
• The quality of the video on which the server-side DNN extracts

the feedback. This is measured either by quantization parameter
(QP) in video codecs like H.264 [25] or by resolution. In our
experiments, we will use QP.

In this paper, we focus on three instantiations of server-driven ap-
proach: DDS [10], Liu et. al [17] and Elf [29] that have state-of-
the-art bandwidth-accuracy trade-off.3 Table 1 summarizes three
representative designs from recent papers. Note that in Liu et. al [17]
and Elf [29], the server-driven streaming of video frames is only part
of the overall system, and to make our discussion more focused, the
table only includes their design choices of server-driven streaming.
Performance advantages of server-driven paradigm: These in-
stantiations show promising performance gains over camera-side
frame dropping or quality downsizing, on their perspective datasets.
DDS [10], for instance, maintains same or higher accuracy while re-
ducing bandwidth usage by upto 59% or improves accuracy by upto
9% with no additional bandwidth usage; Liu et. al [17] improves
the detection accuracy by 20.2%-34.8% on two applications with

1We do not explicitly evaluate server-side compute cost and end-to-end inference delay,
but reducing bandwidth usage also helps reduce the end-to-end inference delay, and our
optimization does not affect server-side compute cost of server-driven designs.
2The QP of DDS refers to the quantization parameter of H.264 video codec, while the
QP of Liu et. al refers to the quantization parameter of JPEG image codec. We obtain
the resolution of Elf by timing the resolution of Elf’s input (1920x1280) by 0.4 along
width and height.
3Compared to these three works, Pakha et. al [19] extracts feedback from the low-
quality inference results and thus cannot identify the objects that do not appear in the
low-quality inference results, resulting in low accuracy; and other approaches stream
the objects and the background in the same quality and thus waste bandwidth to encode
the background.
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Figure 2: The comparison of regions selected to be encoded in
high quality between using region-proposal results as feedback
and using saliency values as feedback.

only 2.24ms latency for object tracking on the Augmented Reality
device; and Elf [29] saves bandwidth by 52.6%, while with less than
1% application accuracy sacrifice.

3 BETTER SERVER-DRIVEN FEEDBACK
We begin with the question: what should be the format of server
feedback? We first show that existing designs extract server feedback
that fails to directly capture the importance of different regions
(§3.1), and then propose (§3.2) and evaluate (§3.3) an alternative
design based on the well-studied concept of saliency in the computer
vision community.
3.1 Need for better server feedback
Previous work uses bounding boxes returned by some region pro-
posal networks (such as RCNN in object detection DNNs [20])
and picks some or all of the bounding boxes as the feedback. Such
region-proposal-based feedback, however, suffers from two issues.

First, many pixels outside the region proposals can be crucial
to high inference accuracy and thus need to be encoded in high
quality. For instance, in Figure 2(b), the region proposal fails to
mark the pixels to the right of the car’s bounding box as important
to inference accuracy. The observation that some pixels outside the
object bounding box are important to inference accuracy can be intu-
itively explained as follows. These pixels, if encoded in high quality,
might provide crucial contextual information about the object and
its boundary that helps the DNN to separate the object from the
background with high confidence. Some work [29] also enlarges
bounding boxes in all directions to encode more environmental pix-
els in high quality, but it will significantly increase the high-quality
regions.

Second, many pixels inside the region proposal can have little
impact on inference accuracy, and thus do not need to be encoded
in high quality. For instance, in Figure 2(b), the region proposal
feedback will fail to mark some pixels in the car bounding box
as unimportant to inference accuracy. Since existing solutions en-
code entire bounding boxes in high quality, it will lead to higher
bandwidth usage than necessary.

The fundamental issue is that the region-proposal-based feedback
fails to directly capture the regions whose encoding quality is crucial
to the inference accuracy. Essentially, region proposals (or bounding
boxes that might contain objects) seek to identify the pixels whose
absence or presence will affect the inference results, whereas what
we seek to identify the pixels whose changes of values (due to video
compression) will affect the inference results.
3.2 Saliency as a more meaningful feedback
Ideally, the server feedback should directly measure the relative
contribution of each pixel to the server-side DNN inference accuracy

and indicate which quality level should be used to encode each pixel.
To meet this goal, we introduce the well-studied concept of saliency
from the computer vision community [2, 4]. Mathematically, it is
computed as the gradient of the sum of the bounding box confidence
scores with regard to the pixel RGB values. So why does saliency,
as a server feedback, better indicate the regions whose encoding
qualities are more important to inference accuracy?

Saliency, by definition, measures the impact of any local changes
on a pixel value (e.g., due to video encoding) on the DNN output.
We use a simple example to contrast saliency with region proposals.
Consider a two-class classifier with a logistic function as the final
layer. A logistic function is an S-shaped curve between 0 and 1,
where the output value changes slowly when it approaches 0 or 1. If
an object has a very high confidence score, i.e., a larger output of the
logistic function, the function value remains relatively stable with
a slight change on the input pixel values, and all pixels will tend to
have low saliency values, because the confidence sits on the “plateau”
of the logistic function (i.e., it is unlikely to leave the plateau by any
local pixel changes). In contrast, all pixels related to the object will
firmly belong to a region proposal.

For the advantage of saliency as a direct indicator of important
regions, we use it as the server-side feedback. Figure 2(b) shows an
example saliency map (with high-saliency pixels labeled in bright).
Given a saliency map, we first compute for each pixel the product of
the saliency and pixel value difference between high quality and low
quality, then compute the sum of the product in each macroblock
(16×16), and finally encode the top 10% macroblocks with the
highest sum in high quality. By multiplying the saliency with the
low-quality pixel distortion, we can winnow out pixels whose values
change only marginally when encoded in a low quality. This is not
the only way to assign quality based on saliency, but this simple
encoding scheme (of which an example is shown in Figure 2(c))
already addresses the aforementioned two issues of region-proposal-
based feedback (§3.1).

3.3 Potential gains of saliency-based feedback
Before we design a system to extract saliency as server feedback,
it is natural to ask: if we have access to the saliency map, how
much can we improve the performance, in accuracy and bandwidth
usage? To show the full potential improvements that saliency as
server-side feedback could bring along, we assume access to the
original saliency derived from the uncompressed frames, i.e., how
much lowering the quality of each pixel from its original values will
change the DNN output. We will remove this assumption in the next
section.

Here, we compare the performance in accuracy-bandwidth trade-
offs of this idealized design with existing server-driven designs
(DDS [10], Liu et. al [17] and Elf [29]). We use object detection
as the task, and FasterRCNN [20] from the PyTorch model zoo as
the server-side DNN model. In this test, we use five traffic camera
videos randomly selected from the test videos of DDS [1] and an-
other four camera videos randomly selected from the test videos of
Boggart [5] (the videos are downloaded from YouTube by keywords
like “cityscape” and “street view"), and from each video, we select
the first 300 frames each having at least one object. We label the
two sets of test videos as DDS and Boggart. Although these videos
are relatively short, their content varies from small objects to large
objects and from fast-moving objects to relatively static objects, thus
allowing us to test performance over a variety of content: the DDS
videos include vehicles on highways and in intersections, whereas
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the Boggart videos include people walking in college campuses
and town squares. To compute the original saliency values, we run
the backward propagation operation from the DNN output (sum of
bounding box confidence scores) to the input uncompressed frame,
which produces the per-pixel saliency (gradients with regard to the
pixel RGB values). Given the original saliency per pixel, we select
the 10% (16x16) macroblocks in the manner described in §3.2. We
use QP of 2 (a high quality) to encode these macroblocks and a
varying low quality for the remaining macroblocks. The encoding is
done with H.264 [25]. Finally, we send the encoded video frame to
the server-side DNN for inference.

Figure 3 compares the performance trade-offs between existing
server-driven video streaming systems and our idealized design
based on original saliency. Note that we assume that Elf [29] and
Liu et. al [17] know the region proposals on all frames based on
high quality video (this makes their performance strictly better).
Thus, they lie on the same bandwidth-accuracy trade-off since they
leverage the same technique (region-of-interest encoding) to encode
the video based on the same feedback (the region proposals). We
can see that under the assumption that we have accurate saliency
values that models the real contribution of each pixel to the infer-
ence accuracy, on the DDS videos, using saliency as the server-side
feedback reduces bandwidth usage by 18% and confidence drop by
76% compared to DDS [10], and reduces bandwidth by 40% and
confidence drop by 56% compared to Liu et. al [17]; on the Boggart
videos, it reduces accuracy drop by 87% compared to DDS [10] and
by 84% compared to Liu et. al [17] without incurring substantially
more bandwidth. We conclude that the potential of performance
improvement of using saliency as the server-side feedback is signifi-
cantly large. Note that this improvement is achieved by specifying
encoding quality at a finer granularity (macroblocks) than prior work
(region proposals).

4 PRACTICAL DESIGN FOR
SALIENCY-BASED FEEDBACK

While the potential improvements shown in Figure 3 are impres-
sive, fully realizing them in practice is hard, since obtaining the
original saliency requires sending the uncompressed video frames
to the server DNN in the first place. To make it practical, we use an
empirical study to test whether the server-side DNN can still extract
near-original saliency values on a relatively low video quality and
frame rate (sent in Phase 1 shown in Figure 1). Our preliminary
results on a variety of videos have been encouraging—lowering the
video quality and frame rate in phase 1 can still unleash most of the
potential improvements of saliency-based feedback.

4.1 Key parameters of feedback extraction
Any implementation of a feedback extraction process has to set two
parameters: (1) the video quality 𝛼 (2) the frame rate 𝑘 at which the
client sends (in the first phase) to the server-side DNN to extract
feedback. Existing designs of server-driven video analytics systems
use certain static values for these parameters (see Table 1 for some
examples), but as we will see shortly, these values often are not
optimal.
Impact on performance: These parameters affect the trade-offs
between the fidelity of the saliency information and the bandwidth
usage to get the saliency. Sending uncompressed or high-quality
frames to the server will use too much bandwidth, but if the saliency
is derived from very low-quality frames, the low-quality pixel values
can be so distorted from the original value that the inference output’s

(a) DDS videos

(b) Boggart videos
Figure 3: Performance trade-off comparison between existing
server-driven video streaming systems and our idealized design
(based on original saliency) on two video datasets featuring
different contents. Each ellipse describes the 1-𝜎 distribution of
the performance across our test videos. 𝛼 next to each ellipse
represents the QP value used to encode the low-quality regions.

gradients on these distorted pixel values will no longer indicate
the original saliency of the pixels. A similar trade-off can be made
by choosing the frequency (the frame rate of the video) at which
DNN extracts saliency. A natural question, therefore, is whether
it is possible to choose “sweet spots” for these parameters, i.e.,
significantly lower the quality and frame rate of the video frames
(in phase 1 of Figure 1) while still allowing the server-side DNN
to extract near-original saliency to save bandwidth and improve
accuracy.

Rationale of “sweet spots”: We believe these sweet spots exist
(which corroborates with the empirical results shown shortly). In-
tuitively, lowering the video quality 𝛼 does change the pixel-level
saliency, but these changes will not significantly alter the relative
ordering between higher-saliency pixels and lower-saliency ones.
This is because the saliency values empirically follow log-linear
distribution (largely hold in our test videos), which means high and
low saliency values have substantial gaps. Similarly, nearby frames
have different yet similar pixel values, so if we lower the frequency
of saliency feedback extraction 𝑘 (i.e., reusing the saliency extracted
from recent frames), the relative order of high-saliency pixels and
low-saliency pixels will be largely preserved.

4.2 Empirical impact of first-phase frame quality
and frame rate on performance

To confirm the intuitions, we empirically compare the accuracy-
bandwidth trade-offs of using the original saliency with the per-
formance under different frame qualities (measured in QP 𝛼 ∈
{28, 32, 36, 40, 44}) and frame rates (calculating saliency every 𝑘 ∈
{2, 3, 5, 10} frames) in the first phase of Figure 1. We follow the same
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Figure 4: Accuracy-bandwidth trade-off comparison of our ap-
proaches with different first-iteration frame quality on the DDS
videos.

experiment setting (e.g., DNN models, video encoders) as described
in §3.3 and use the five DDS videos.

Frame quality for saliency extraction: Figure 4 shows that confi-
dence drop increases approximately exponentially as the quality of
the frames in the first phase degrades (i.e., increasing 𝛼). More im-
portantly, the performance of 𝛼 = 28 and 𝛼 = 32 show that saliency
values derived from mildly compressed images yield a sufficiently
accurate estimate on which regions in a frame should be encoded
with high quality. The resulting performance is close to the idealized
design.

Frame rate for saliency extraction: Next, we test if one can fur-
ther reduce bandwidth usage without hurting accuracy by extracting
server feedback less frequently. We use 𝛼 = 32 as the QP value of the
frame for feedback extraction as part of the findings in the previous
experiment. Figure 5 compares the accuracy-bandwidth trade-offs
under different frequencies of server-side feedback extraction with
the trade-offs and with the potential gains when using the original
saliency values derived from the uncompressed frames. We can see
that extracting saliency values once every 3 frames can provide suffi-
ciently low accuracy drop and 29% reduction in network bandwidth
as compared to extracting saliency values for every frame on the
DDS videos.

Improvement of the realistic design: Finally, we show that the po-
tential gain displayed in §3.3 can be largely attained in practice. We
use the values identified above (𝛼 = 32, 𝑘 = 3) to set the frame rate
and encoding quality based on which saliency feedback is extracted.
Figure 6 compares the resulting performance with that of several
alternative server-driven design as shown in Table 1. We can see
that even when we relax the assumption that the client has access
to saliency values derived from the uncompressed video frames,
on the DDS videos, we still achieve 43% more bandwidth saving
and 12% less accuracy drop compared to DDS [10], or 57% more
bandwidth saving compared to Liu et. al [17] without compromising
inference accuracy greatly; on the Boggart videos, we achieve 21%
more bandwidth saving and 68% less accuracy drop compared to
DDS [10], or 15% more bandwidth saving and 60% less accuracy
drop compared to Liu et. al [17]. In short, our system, despite featur-
ing simple and preliminary design choices, already shows significant
performance improvement as compared to latest systems that take
the server-driven approach, which demonstrates the untapped yet
large potential of server-driven designs.

We acknowledge that the best parameters for our test videos do
not necessarily apply to all videos. Our goal here is not to design
the optimal parameters settings; instead, we want to illustrate that
choosing appropriate values for these key parameters can lead to
favorable performance tradeoffs.

Figure 5: Accuracy-bandwidth trade-off comparison of our ap-
proaches with different saliency extraction frequency on the
DDS videos. 𝑘 next to each ellipse represents the frame rate of
the first phase, i.e., extract saliency once every 𝑘 frames.

5 LIMITATIONS AND DISCUSSION
More vision tasks: In this short paper, we use object detection as an
example application to demonstrate the potential performance gain
brought by the idea of saliency. The concept of saliency is compatible
with all vision DNNs and thus our approach could be applied to
other computer vision tasks. However, there is no guarantee that our
approach would yield substantial performance gain on these tasks as
compared to existing baselines.
Other camera/network settings: In this paper, we make the assump-
tion that the cameras have very limited local compute resources and
are only able to encode and stream video frames. If the camera could
support more expensive operations such as running DNN inference,
we could support more designs, e.g., running a cheap client-side
model to identify pixels important to inference accuracy. Also, our
current design can support parameter tuning to adapt to dynamic
network bandwidth. For example, under bandwidth-constrained con-
ditions, we could decrease the frequency at which saliency is ex-
tracted in order to reduce bandwidth usage. The logic of tuning these
parameters for different network settings is part of our future work.
System usage and overhead: Saliency computation involves back-
propagation operations and is expected to incur substantial server-
side GPU memory usage. Our measurement with FasterRCNN [20]
shows that as compared to forward inference, saliency computation
incurs 82% more GPU memory usage. However, our measurement
shows that it would not involve substantial overhead in terms of
CPU usage and main memory: as compared to forward inference,
saliency computation incurs approximately the same CPU usage and
main memory usage.
Limitations of current datasets: We collect all videos from the
highway traffic camera dataset used by the DDS paper [10] and the
videos used by the Boggart paper [5]. It is possible that individual
videos contain biases due to camera positions and road conditions.
For example, if the camera is positioned such that a large proportion
of the video frames contain no object or very few vehicles on the
road, then the room for improvement would be relatively small as
there are few objects of interests for which we can improve inference
accuracy. However, the datasets we selected contain videos featuring
a variety of contents, which help reduce the biases of individual
videos.

6 POSSIBLE EXTENSIONS
So far, we have only scratched the surface of server-driven video
analytics systems. Though our initial design (described in §4) al-
ready shows impressive improvement, it is by no means optimal;
instead, we hope that it would inspire more research to explore the
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broader design space of server-driven video analytics systems. In
particular, our design can be extended along at least five dimensions,
which gives rise to new challenges for the mobile and networking
communities.

Fine quality granularity: Our initial design in §4 (and other server-
driven solutions) employs only two quality levels (a high quality for
high-saliency macroblocks and a low quality for remaining pixels).
Our analysis, however, shows a log-linear distribution of the saliency
values across pixels (i.e., the saliency values are significantly dif-
ferent even among the top 10% macroblocks that are assigned with
high quality), which naturally suggests the use of multiple quality
levels to differentiate the impact of macroblocks.

Saliency-aware temporal encoding: To focus on the spatial quality
assignments driven by server-side feedback, we disabled temporal
encoding (e.g., motion vectors) in this preliminary work. Temporal
encoding, such as motion vector estimation, is complementary to
spatial encoding, and we will study it as part of the future direction.
While adding the temporal encoding (as supported in existing video
codecs) is logically straightforward, the fact that the saliency-based
feedback varies across frames means that care should be taken to
stabilize the saliency-based quality assignment across frames in
order to facilitate efficient use of motion vectors.

Efficient feedback extraction: A high-level message from this short
paper is to rely on saliency from the server-side DNN, but extracting
its values (and other fine-grained information) from the server-side
DNN involves additional compute overheads (e.g., backward prop-
agation), which might be crucial under server-side resource con-
straints. While we empirically found that lowering the frequency
of saliency computation helps, we also notice that there are sev-
eral optimizations proposed in other contexts to speed up backward
propagation and saliency inference, by exploiting sparsity of gradi-
ents [21] or approximating saliency with a cheaper model [8].

Server-driven input: Besides the particular design choices men-
tioned in section §4.2, there are a variety of designs that make clever
use of saliency in server-driven video analytics systems. In particular,
we could adapt the input to the DNN based on server-side extracted
saliency values. For example, the server could ask the client (video
source) to lower the quality of certain regions with lower saliency
values, thus allowing these regions to be encoded with lower quality
in future streaming through a closed feedback loop. Consider the
case where the location and angle of the camera is fixed. In this
scenario, this approach would enable the system to quickly identify
regions in video frames that consistently do not contain objects (e.g.,
static and fixed background) and label them as areas that should be
consistently encoded in low quality in the future.

Cheap client-side saliency extraction: The idea of using saliency
for improving video analytics can be extended beyond server-driven
video analytics systems. One way of using saliency in a different
scenario is to train a cheap quality selector on the edge clients that
quickly and cheaply estimates the saliency values for all macroblocks
in a frame and determines near-optimal quality levels for them. This
design might reduce end-to-end delay and server-side computation
load significantly as compared to systems in the server-driven para-
digm. However, there exists a trade-off between the compute cost of
the model and the accuracy of extracted saliency, and how to find a
design that optimizes this trade-off is part of our future work.

(a) DDS videos

(b) Boggart videos
Figure 6: Accuracy-bandwidth trade-off comparison between
several server-driven video streaming systems and our practical
design on two video datasets featuring different contents. 𝛼 and
𝑘 are the QP value and the frame rate (in the first phase) at
which the saliency feedback is extracted.

7 RELATED WORK
Besides those based on the server-driven approach (§2), here we
briefly discuss alternative designs that optimize the trade-offs be-
tween bandwidth usage and inference accuracy.

A common approach runs certain simple logic (using the camera’s
limited local compute resource) to identify which frames are of little
contribution to the inference accuracy and thus can be discarded [6,
7, 15, 27]. However, this approach encodes the remaining frames
with uniform quality, and thus wastes bandwidth to encode the
background. Another approach deploys cheap camera-side vision
models to distinguish objects and background, and then uses low
quality to encode the background to save bandwidth [9, 28]. Due to
the limited compute resource, however, the camera-side model is
not accurate enough to detect all potential objects (especially small
or partially occluded objects), causing the server-side DNNs to miss
these objects, as observed in [10].

Another line of research extracts and compresses intermediate fea-
tures of the video by camera-side DNN and streaming the features to
the server for analytics [3, 11, 14, 18, 26]. Though it is promising for
video/image classification, it cannot efficiently compress the video
for object detection since object detection requires knowing much
more information, like the location and the size of multiple objects,
to deliver accurate object detection results while classification only
needs to generate a correct class label.
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