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ABSTRACT
A major difficulty in debugging distributed systems lies in manually determining which of the many available
debugging tools to use and how to query that tool’s logs. Our own study of a production debugging workflow
confirms the magnitude of this burden. This paper explores whether a deep neural network trained on past bug
reports and debugging logs can assist developers in distributed systems debugging. We present Revelio, a debug-
ging assistant which takes user reports and system logs as input, and outputs debugging queries that developers
can use to find a bug’s root cause. The key challenges lie in (1) combining inputs of different types (e.g., natural
language reports and quantitative logs) and (2) generalizing to unseen faults. Revelio addresses these by employ-
ing deep neural networks to uniformly embed diverse input sources and potential queries into a high-dimensional
vector space. In addition, it exploits observations from production systems to factorize query generation into two
computationally and statistically simpler learning tasks. To evaluate Revelio, we built a testbed with multiple
distributed applications and debugging tools. By injecting faults and training on logs and reports from 800 Me-
chanical Turkers, we show that Revelio includes the most helpful query in its predicted list of top-3 relevant
queries 96% of the time. Our developer study confirms the utility of Revelio.

1 INTRODUCTION

Developers often must translate informal reports about
problems provided by a user into actionable information
that identifies the root cause of a bug. An ever-growing list
of debugging tools aid developers in such root cause di-
agnosis. These tools can log the behavior of applications
running on end hosts (Appdynamics.com, 2022; Open-
tracing.io, 2022; GNU.org, 2022), end host networking
stacks (Tcpdump.org, 2022; McCanne & Jacobson, 1993),
and network infrastructure (Narayana et al., 2017; INT,
2021). Some tools also track and relate execution across
subsystems in a distributed system (Mace et al., 2015;
Sigelman et al., 2010; Zipkin.io, 2022). In addition, each
tool allows developers to query the collected logs (e.g., us-
ing BPF expressions or SQL queries) to hone in on inter-
esting data.

Yet, debugging distributed systems remains difficult,
largely because it typically involves multiple manual
steps (Abuzaid et al., 2018): understand user reports1, it-
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1We focus on user reports, but note that our approach general-
izes to auto-generated natural language crash reports.

eratively issue debugging queries to test hypotheses about
potential root causes, and finally develop a fix. As a con-
crete example, consider debugging a client interaction with
a web service that results in an unusually slow page load.
The developer receives a user report about the incident and
has to develop a bug fix. However, the problem could be in
many possible subsystems. At the client, the browser could
be executing malformed HTML. At the server, there could
be an unreachable database, a program error in the applica-
tion frontend, or a misconfigured network forwarding table.

In the example above, the developer’s difficulty is not the
lack of tools; on the contrary, dozens of rich debugging
frameworks exist for each subsystem (§7). Instead, the
challenge lies in manually determining which debugging
queries to issue, on which subsystems’ logs, and with what
parameters. Further, the answer to each question above can
depend on vast and heterogeneous logs. Indeed, distributed
systems increasingly comprise many loosely coupled sub-
systems or microservices (Lyft Engineering, 2022), each
with their own logging framework(s). As a result, devel-
opers face a significant cognitive burden to understand and
correlate debugging information that exhibits heterogeneity
in (1) data types (e.g., natural language reports, numerical
switch counters), (2) data sources (e.g., network infrastruc-
ture, end-host stack), and (3) abstraction levels (e.g., user
reports, system logs, network counters).
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Today, developers overcome these challenges using their
hard-won intuition from debugging similar problems in
the past, remembering which subsystems they investigated,
and what debugging queries they issued. However, our de-
veloper survey and analysis of 4 months of debugging re-
ports at a major SaaS company (Anon) revealed that this
manual approach consumes significant developer time (§2).
At Anon, moving from a user report to a root cause took de-
velopers 8.5 hours on average, despite the use of state-of-
the-art debugging tools, and the fact that 94% of faults were
repeat instances of the same few types (e.g., resource un-
derprovisioning), with only locations varying. Prior studies
of other production systems have similarly noted the sig-
nificant time spent on root cause analysis, relative to tasks
such as triaging (Chen et al., 2019; Pham et al., 2020).

In this paper, motivated by the prevalence of large histori-
cal debugging datasets in software organizations (Jackson,
2021; Orate, 2019) and the recurring nature of faults, we
ask: can a machine-learning (ML) model learn developer
intuition from past debugging experiences to accelerate
root cause finding? More precisely, given debugging data
from when a report was provoked, can an ML model auto-
matically generate a debugging query that allows the devel-
oper to extract the most informative subset of logs? Further,
is the model’s output useful: does it let the developer diag-
nose bugs faster than the status quo?

To answer these questions, we developed Revelio (Fig-
ure 1), whose goal is to help developers use existing de-
bugging tools more effectively. Revelio takes as inputs user
reports and system logs from the target deployment, and
outputs a ranked sequence of debugging queries that (when
executed) elucidate the root cause. We chose to output a
query sequence for several reasons. First, as evidenced by
our production debugging analysis (§2), much developer
time and effort in root cause analysis is spent selecting a
subsystem to investigate, and determining how to use ex-
isting querying (or dashboard) tools to analyze its collected
logs; queries capture both aspects. Second, bugs can often
be tackled from multiple vantage points in distributed sys-
tems, e.g., congestion between two microservices can be
resolved by either moving an application VM or changing
inter-service routing rules. A sequence ensures that devel-
opers can extract root cause insights from those different
vantage points to help determine the appropriate fix.

1.1 Challenges and Contributions

1. Extensible model using distributed vector representa-
tions. To combine heterogeneous data sources (e.g., nat-
ural language user reports, numerical switch counters),
we use neural networks that map each input to a high-
dimensional distributed vector representation (Alon et al.,
2019; Mikolov et al., 2013), akin to intermediate represen-
tations like SSA (Appel, 1998) in programming languages.

Figure 1: Revelio takes as input a user report and system logs,
and outputs (for the developer) a ranked sequence of debug-
ging queries that highlight the root cause.

This makes our architecture extensible: a new type of de-
bugging data can be incorporated by learning a mapping
from that data type to a high-dimensional vector.

2. Modeling queries as vectors using graph convolutional
networks (GCNs). Ideally, we should be able to convert
queries into the same vector representation as our inputs;
we could then find the relevance of a query to a particular
debugging scenario by applying standard machine-learning
concepts such as a similarity score between the query and
input vectors. One approach is to simply assign a unique la-
bel to each query and employ a multi-label classifier to gen-
erate queries. However, this performs poorly (§6.2) because
the opacity and independence of such labels fail to exploit
the fact that debugging queries for a tool are drawn from the
same grammar. Instead, debugging queries are more faith-
fully modeled as abstract syntax trees (ASTs) in the syntax
of the query language. To leverage this richer query for-
mat, we use GCNs (Kipf & Welling, 2016) to convert query
ASTs into the same vector representation as our inputs.

3. Handling a large search space of queries using modu-
larization. The search space of potential queries is massive
due to the presence of many (1) query templates, i.e., skele-
ton queries for a given subsystem with unspecified param-
eters, and (2) query parameters that cover the scale of pro-
duction systems (e.g., every IP address in the system could
be a candidate value for a parameter). To handle this large
search space, we modularize our ML model into two com-
ponents. The first model uses user reports and system logs
to predict a query template; then the second model uses
only the predicted template and system logs (not user re-
ports), to predict numeric parameters. This is motivated by
our finding that production faults typically involve recur-
ring types (§2), and can thus be debugged using a small set
of templates–one per fault type. Modularization shrinks the
output space of the first model, simplifying training compu-
tationally, and the input space of the second model, making
it less likely to overfit to spurious features.

4. Generalizing to unseen faults using abstraction. To
handle a large fraction of bugs in production settings, an
ideal model should generalize to output useful queries for
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occurrences of previously seen bugs at new locations (§2).
To do this, we transform concrete switch/function ids into
new, abstract ids based on rank on some metric, e.g., queue
size; consequently, the ids in one setup and another need
not be the same, allowing us to generalize to new fault lo-
cations. For example, if the model captures a dependence
on the largest router queue (which in the training set was
Router X), it can generalize during testing to a different
Router Y with the largest router queue.

1.2 Evaluating Revelio

New distributed systems debugging testbed. While or-
ganizations running distributed systems routinely collect
the described debugging data, much of it is proprietary.
Thus, to evaluate Revelio, we built a testbed (§5) on
top of the Mininet emulation platform (Lantz et al.,
2010). Our testbed currently integrates four debugging
tools: Jaeger (Jaegertracing.io, 2022), Marple (Narayana
et al., 2017), cAdvisor (Google, 2022), and tcpdump (Tcp-
dump.org, 2022). It supports three industry-developed dis-
tributed applications: Reddit (Reddit, 2016) (monolithic),
Sock Shop (Weaveworks, 2017) (microservice), and On-
line Boutique (Google, 2019) (microservice). In addition,
our testbed includes an automatic fault injector that was in-
formed by our analysis of production bugs (§2 and §5.3).
To generate a realistic debugging dataset, we enlisted 800
Mechanical Turk users to interact with 85 faulty versions
of each application and paired the uploaded user reports
with system logs from the testbed. The testbed, dataset,
and Revelio are available at https://github.com/
debugging-assistant/.

Testbed evaluation, developer study. We evaluated Revelio
using the above dataset, and with a developer study (§6.3).
Our key findings are: 1. across the set of potential queries
supported by our debugging tools, for repeat occurrences of
the same faults, Revelio ranks the correct (i.e., the one that
most directly highlights the root cause) query in the top-k
96% (k=3), 100% (k=4), and 100% (k=5) of the time, 2.
Revelio’s model successfully generalizes to output the cor-
rect query 87% (k=3), 88% (k=4), and 100% (k=5) of the
time for faults that manifest in previously unseen locations,
and 3. developers with access to Revelio correctly identi-
fied 90% of the root causes (compared to 60% without Rev-
elio), and did so 72% (14 mins) faster. We additionally con-
ducted quantitative experiments that demonstrate the im-
portance of each of our design choices (i.e., abstraction,
GCNs, and modularization) and show that Revelio outper-
forms simpler ML approaches.

2 ROOT CAUSE ANALYSIS IN PRODUCTION

To understand the operation and limitations of debugging
tools and workflows in production distributed systems, we
conducted a study at a major SaaS company (Anon). Our

analysis involved 7 services at Anon that collectively han-
dle 83 million user requests per day. Across these services,
we examined the debugging process through a developer
survey and a manual analysis of completed debugging tick-
ets over a 4-month time period. Our analysis and results
follow a general taxonomy based on a literature survey
we conducted of publicly reported bugs in production dis-
tributed systems (§A.1).

Debugging workflow. Developers at Anon use a
variety of state-of-the-art monitoring tools (e.g.,
Splunk (Splunk.com, 2022), Datadog (Datadoghq.com,
2021), others (Lightstep.com, 2022; Newrelic.com, 2022;
Pingdom.com, 2022; Icinga.com, 2022)) that continuously
analyze system logs, visualize that data with dashboards,
and raise alerts when anomalous or potentially buggy
behavior is detected. Alerts are raised on a given time-
series based on either manually-specified heuristics and
thresholds, or standard statistical analysis techniques that
compare recent data to historical baselines (Lightstep.com,
2022; Taylor & Letham, 2018; Xu et al., 2018; Twitter
Engineering, 2015). As user or internal reports are filed,
the burden of debugging falls largely to developers.

For each report, developers must (1) filter through the
raised alerts (across subsystems) to determine which are
worth investigating and pertain to actual bugs and the issue
at hand (vs. false positives), and (2) for bugs, find the root
cause by analyzing the system as a whole. Both steps in-
volve iteratively analyzing low-level system logs, inspect-
ing prior debugging tickets and the current report (both
written in natural language), and issuing debugging queries
using interfaces that run atop the same logs used to raise
alerts (Grafana.com, 2022; Narayana et al., 2017). Once a
root cause is identified, a summary of the issue, root cause,
and debugging process (e.g., investigated subsystems, is-
sued queries) is documented as a completed ticket.

Analysis of historical debugging tickets. We manually an-
alyzed all 176 debugging tickets that were created for
the aforementioned services between November 2019 and
February 2020. Our analysis involved manually clustering
the tickets according to their root causes as documented by
Anon’s developers. Table 1 summarizes our findings, from
which we make three primary observations:

1. A few recurring categories of root causes collectively
represent the vast majority (94%) of bugs.

2. The faults in a given category often manifest at dif-
ferent locations in the distributed system. For exam-
ple, numerous “Resource underprovisioning” tickets
involve high CPU loads but pertain to different servers,
e.g., gateway vs. storage servers.

3. Identifying the root cause for a fault is time consum-
ing, taking an average of 8.5 hours (min: 14 min, max:
2.9 days). We found that these lengthy durations are
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Table 1: Summary of closed debugging tickets at Anon over a 4-month period. Examples have been partially anonymized.
Debugging times are reported in minutes.

Root-Cause
Category

#
Tickets

#
Locations Example Root Cause Avg. Diagnosis

Time
Resource under-
provisioning 17 11 Load balancer is consuming all available memory and starving

other co-located services 293

Component
failures 58 29 3 nodes for a service were down, leading to queued 400 ER-

RORs 176

Subsystem
misconfigs 11 7 Incorrect host mapping configuration in Zookeeper caused a

failure, and prevented cluster from servicing any events 276

Network
congestion 5 4 A spike in wide-area traffic caused unusually low data transfer

rates between city1 and city2 725

Network-level
misconfigs 18 10 Instances in a region are pointing to a NAT instance with incor-

rectly configured security groups, leading to dropped traffic 92

Subsystem/Source-
code bugs 31 22 Service returning 5xx errors due to a code change that added a

condition on the availability of a parent asset ID 1607

Incorrect data
exchange 26 16 4xx errors were being raised because the noise classifier service

is sending additional data with each stock request 417

One-off/unknown 10 8 278 customer accounts were canceled for unknown reason 464

largely a result of the error-prone nature of root cause
analysis: developers at Anon must explore multiple
subsystems (5 on average) and issue many debugging
queries (8 on average) to find the root cause of a fault.

Takeaways. Our findings at Anon collectively show that,
while debugging tools have considerably improved (mainly
through improved alert-raising and richer query interfaces),
post-alert debugging, or moving from alerts to root causes
of faults, is largely manual and time consuming. These dif-
ficulties show that existing monitoring tools and anomaly
detectors commonly fail to elucidate the root cause of the
problem, and still require much developer effort to syner-
gize past and present system-wide data. The focus of this
paper is on automating the post-alert process for develop-
ers, i.e., ingesting diverse system logs and natural language
reports to automatically suggest debugging queries.

Problem tackled by Revelio. Query-driven debugging is
already a part of the developer ecosystem, and queries
integrate directly with other common tools, e.g., pairing
queries with dashboards that display logs of interest. Reve-
lio outputs debugging queries that highlight the root cause
of a bug. To the best of our knowledge, there does not ex-
ist a solution for automating such query generation. Fur-
ther, we believe that ML is the appropriate tool as it is un-
clear how to design automated heuristics that incorporate
such diverse data sources and output full-fledged debug-
ging queries (as opposed to, say, scalar alert thresholds).
Additionally, the repetitive nature of faults also makes de-
bugging amenable to an ML approach. Revelio is intended
to augment (not replace) developers in the debugging pro-
cess for two reasons. First, there often exists multiple ways
to address a problem, and the ‘right’ one may depend on
context beyond the purview of Revelio, e.g., financial con-
straints. A sequence of debugging queries can help char-
acterize the root cause from multiple vantage points in the
system. Outputting queries rather than a final fix provides a

failsafe to ensure that suboptimal or incorrect fixes do not
end up in production services.

Goals and non-goals. We note that our focus here is en-
tirely on faults that fall into recurring categories—recall
that such faults constitute the vast majority of faults at
Anon, and despite their recurring nature, still take signif-
icant time to diagnose. Importantly, we do not target new
fault categories and one-off faults that bear no similarity to
prior ones, and instead leave debugging of those scenarios
to future work. Additionally, our goal is to assist in the de-
bugging process after a user report or an automatic alert
has been detected. Thus, Revelio is not intended to replace
statistical anomaly detectors, but instead to help with root
cause finding after the anomaly detector has raised an alert.

3 OVERVIEW OF REVELIO

At a high level, Revelio takes two inputs: (1) a user report
filed by a system user, and (2) the system logs collected dur-
ing the user’s interactions with the system. The two sources
provide distinct perspectives into the state of the system
when a fault occurs: the former from an external and the lat-
ter from an internal viewpoint. Further, the two data sources
differ fundamentally: system logs are highly structured, ac-
curate, and contextually close to a developer’s debugging
options; user inputs are often noisy, unstructured (e.g., raw
text), and abstract with respect to low-level execution (e.g.,
a user may report that the system is slow to respond with
no further information). As its output, Revelio generates a
ranked list of top-k debugging queries that are directly exe-
cutable on the target debugging framework(s) and highlight
the root cause of the fault.

3.1 Challenges

Revelio must overcome four key challenges to generate de-
bugging queries. First, the model has to combine and re-
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Figure 2: Example showing how rank-ordering helps to generalize to faults of the same type at different locations. After ordering
(right), despite the fault location being different, the queue depth order statistics in testing are correlated with those in training.
In contrast, without ordering (left), the unseen fault location results in queue depth values that are dissimilar from training data.

late diverse and seemingly disparate data inputs. Second,
the output space of queries is highly structured, making it
harder than standard multi-label classification where each
label is independent (BakIr et al., 2007). This is because
all debugging queries for a tool are drawn from the same
language grammar, unlike opaque and independent labels.
Third, the space of potential queries for a given input is
large, requiring new techniques to scale to large distributed
systems. Fourth, as per §2, the model must generalize in a
specific sense: if a fault occurs at one location during train-
ing and is debugged with a specific query, then, during test-
ing, the model must predict the same query with a different
parameter if the same fault occurs at a different location.

3.2 Solutions

Challenge 1: Diverse data. We handle diverse data sources
by converting each into a vector and concatenating all vec-
tors to form the system state vector. This has two benefits.
First, each data source is normalized for downstream oper-
ations in the ML model. Second, the architecture is extensi-
ble: a new data source (e.g., crash reports) can be added by
converting it into a vector (either learned or manually) that
is then concatenated with the existing system state vector.

Challenge 2: Predicting queries. To generate queries,
which can be represented as abstract syntax trees (ASTs)
in the grammar of a tool’s query language, we employ a
Graph Convolutional Network to convert the AST into a
query vector. A vector-based representation is easier to use
with the rest of the ML model relative to richer represen-
tations such as trees. During training, given pairs of query
and system vectors, we find model parameters that maxi-
mize the probability that these query vectors were predicted
from these system vectors. During inference, given the ML
model’s parameters, we find the query that maximizes the
probability of a query vector given the system vector.

Challenge 3: Scaling to large systems. Revelio has to

search over a large space of queries to output the best query
in response to a given input. This search space scales with
the size of the distributed system. To handle this, we exploit
modularity and factorize our ML model into two cascaded
components. The first uses user reports and system logs to
generate query templates, which are skeleton queries for a
particular subsystem with all numeric parameters left un-
specified (e.g., SELECT FROM ). The second compo-
nent then predicts the corresponding parameters using only
the predicted template and system logs.

This approach is motivated by two ideas. First, production
faults typically involve recurring types (§2), and can thus
be debugged using a small number of templates (one per
fault type). Second, we assume that system logs sufficiently
highlight the set of potential parameter values and the rela-
tive importance of each; as per §3.1, user reports are often
abstract and rarely list parameter values (e.g., switch IDs).
Modularization thus shrinks the output space of the first
model, simplifying training computationally, regardless of
system scale. It also shrinks the input space of the second
model, making it less likely to overfit to spurious inputs,
which in turn improves accuracy and generalizability.

Challenge 4: Generalizing to new fault locations. Given
the scale of production systems, it is infeasible to rely on
training data that captures all possible locations of a given
fault category. Thus, our model should generalize to dif-
ferent locations for fault types seen during training. To aid
with such generalization, we convert concrete switch/func-
tion ids in the system logs into abstract ids based on the
rank order per feature (e.g., queue depth). This allows our
models to learn the relevance of a given template or the im-
portance of a particular subsystem based on a stable prop-
erty like the subsystem’s rank on a feature rather than a
volatile property, e.g., switch ID (Figure 2).

For example, during template prediction, the model is able
to learn about the applicability of a template to the order
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Table 2: Variables in Revelio’s ML model. Figure 11 in §A
lists example input values for each.

Name Description Example

T Query template SELECT queue size FROM
logs WHERE switch id =

B
Blanks in T
{b1, b2, ..., bz} bi = in the above example

U
Query parameters
{u1, u2, ..., uz} ui = switch ID

R User report “Page is loading slowly”
L System logs OpenTracing and Marple logs

statistics (David & Nagaraja, 2004) of feature values across
the system, rather than to the numerical or ordinal values of
these features at specific subsystems. This is important be-
cause, if a given fault occurs at two different locations (both
of which warrant the same template), the order statistics of
feature values may be correlated, whereas the specific value
assignments definitively will not. Similarly, for parameter
prediction, ordering information is more robust to the addi-
tion, deletion, or restructuring of subsystems.

4 REVELIO’S ML MODEL

To enable Revelio’s prediction capabilities, we need to in-
duce a distribution P(Q|R,L) where Q is a debugging
query, R is a user report, and L refers to the system logs
(Table 2 lists the model’s variables). Once the parameters
of this distribution have been learned by maximum like-
lihood, the distribution allows us to predict the query Q
that maximizes P(Q|R,L). The required training data is a
set of triples ⟨R,L,Q⟩. While the above formulation seems
straightforward, it involves learning a probability distribu-
tion over all possible queries and across all tools, which is
challenging and needs a substantial amount of data. Thus,
we instead split up each query Q into a query template T
(e.g., SELECT FROM ) and a set of values U (to fill in
the blanks). This lets us factorize the prior distribution as:

P(Q|R,L) = P(T,U |R,L) = P1(T |R,L)P2(U |T,R,L)
(1)

To simplify our training further, we make an independence
assumption on P2 by assuming that R is not likely to help
predict U (as described in §3.2). Thus, we have:

P2(U |T,R,L) = P2(U |T,L) (2)

We make a second independence assumption on the pa-
rameters within each blank and further factorize this into
a product of distributions over values ui for each blank bi
in the template T :

P2(U = {u1, u2, ..., uz}|T,L) =
∏

i∈[1,z]

P2(ui|bi, T, L) (3)

where z is the total number of blanks in the template.

From an inference standpoint, this means we have a 2-
phase query generation process: we first generate a query
template and then fill in the blanks with appropriate values
using the system logs (Figure 3). We next detail how we
model each of the distributions (P1 and P2), as well as our
learning and inference procedures for each.

4.1 Predicting Probabilities for Query Templates (P1)

Assume the user report R to be in the form of raw text
and L to be a vector obtained by concatenating ordered
vectors for each feature (Figure 10 in §A) extracted from
the system logs (e.g., time-windowed average, minimum
queueing delay). Recall from §3.2 that rank ordering per
feature in L enables our model to learn about the order
statistics of feature values across subsystems, rather than
about numerical or ordinal values at specific subsystems
(Figure 2). From here, a straightforward way of modeling
P1(T |R,L) would be to use a multi-label classifier with
each template T being a different label. However, as dis-
cussed in §3, query templates are structured and made up of
smaller atomic components (e.g., IF, MAX statements). In
other words, the ASTs of many query templates share com-
mon subtrees. Thus, simply treating each template as an in-
dependent output label is wasteful in terms of not sharing
statistical strength.

Therefore, we adopt a different approach to modeling the
output templates. In order to preserve the structural aspects
in queries, we represent each template T in the form of
an abstract syntax tree (AST). Each node in the tree is an
operator (e.g., SELECT) and the edges represent how the
operators are composed together to form larger trees (Fig-
ure 11).

We use a Graph Convolutional Network (GCN) (Kipf &
Welling, 2016) to construct a vector representation vT for
each query template’s AST. The AST representation of the
debugging query is the input to the GCN, with each node
mapped to a vector embedding. The GCN, in turn, outputs
a vector representation that is directly comparable to the
vectors representing system logs. The GCN updates each
node’s vector representation in the AST by pooling infor-
mation from all its neighbors and performs this process
multiple times, allowing it to combine information from
all nodes in the tree. The GCN outputs a vector for each
node in the tree – we take the vector of the root node vT to
represent the tree’s information.

In parallel, we use a contextual text encoder (BERT) (De-
vlin et al., 2018) to convert the issue report R into a vec-
tor vR and pass the log L through a linear neural network
layer to get a vector vL. vR and vL are concatenated and fed
through a non-linear layer followed by a linear layer to get
a single vector vS representing the system state from both
internal and external viewpoints. Finally, we use both vS
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Figure 3: Overview of Revelio’s factorized, 2-phase approach to generating debugging queries for root cause diagnosis.

and vT to obtain a measure for the likelihood for the tem-
plate T being applicable to the debugging scenario ⟨R,L⟩
(i.e., the probability of T given R and L). The ideal debug-
ging query paired with the debugging scenario gets a high
score (S), while any other query T ′ paired with the same
scenario gets a low score. The sequence of operations is
summarized as:

vT = GCN(T )[root]

vR = BERT(R)

vL = LINEAR(L)

vS = LINEAR(RELU([vR; vL]))

S(T,R,L) = LINEAR(RELU([vS ; vT ]))

P1(T |R,L) = SOFTMAX(S(T,R,L)) =
eS(T,R,L)∑
T ′ eS(T ′,R,L)

where [; ] represents a concatenation of two or more vectors
and GCN(T )[root] represents indexing the output of the
GCN to get the vector of the root node.

The above operations represent a continuous flow of in-
formation through a single DNN whose parameters θ can
be trained, using the training dataset D, through back-
propagation and stochastic gradient descent (Goodfellow
et al., 2016). We use the following maximization objective
to learn the parameters:

max
θ

L(θ) =
∑

(T,R,L)∼D

logP1(T |R,L) (4)

Enumerating all trees T ′ is intractable, so we employ Noise
Contrastive Estimation (NCE) (Gutmann & Hyvärinen,
2010) and draw m = 2 negative samples to form each T ′

to approximate the objective.

4.2 Predicting Values to Fill Query Templates (P2)

Now that we have a method to pick a template T ∗, we must
fill in the values for each blank b in T ∗. Each template im-
plicitly specifies the type of subsystem that is relevant for
the fault at hand. Thus, using the template, we first extract
a list of all relevant subsystems from the system logs L.
For each subsystem u in this list, we have a feature vec-
tor Lu which summarizes all of its logs (Table 4). We also
include ranking information ranku for each feature in Lu

(e.g., u’s rank in queue depth across all switches). Note that
ranks embed the same information as ordering from §4.1.
We use these features, along with a vector representation
of the blank in the template (described below), to pick the
most likely subsystem to fill in the blank.

We feed the template (AST) T ∗ through the same GCN
module as in §4.1 and choose the vector representation for
blank b to be the output vector of its corresponding node
in the tree. This allows us to represent the requirements of
b using the properties of its neighboring nodes in the AST.
Our goal is to then pick the most suitable subsystem u for
the blank, and return the corresponding system identifier
(e.g., IP address or port number). We use similar operations
to those in §4.1 to pick the most likely u to fill b:

vb = GCN(T )[b]

S(u, b, T, L) = LINEAR(RELU(LINEAR(vb;Lu; ranku)))

P2(u|b, T, L) = SOFTMAX(S(u, b, T, L))

where ranku indicates the rank of subsystem u in its sub-
system’s logs L, based on the feature of interest (e.g., rank
of a switch, across all switches, on mean queue depth). We
then use an objective similar to Eq. 4 to maximize P2 over
ground truth data and learn the model parameters ϕ.

4.3 Inference: choosing the queries

Once each of the two models above have been trained, dur-
ing inference, we find the combination of query template
and query parameters that maximizes the probability that
the resulting query would result from the given system state
vector. This probability in turn is the product of the two
probabilities predicted by each of our models P1 and P2.

Q∗ = (T ∗, U∗) = argmax
T,U

P1(T |R,L)P2(U |T, L) (5)

We can also pick the top k most relevant queries, rather
than just the single most relevant one, using the ranking
produced by the probabilities above. If |T | × |U | proves to
be very large, we can approximate the above by considering
only the top few templates according to P1(T |R,L).

Implementation details. For all FFN layers in our rank-
ing model, we use two linear layers, each with hidden
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Figure 4: A slice (2/14 microservices) of our testbed for Sock
Shop (Weaveworks, 2017); other apps are shown in §A. De-
bugging tools and fault injection are omitted for space.

size 300, along with ReLU non-linearity. The GCN also
uses a hidden vector size of 300. We use the Adam opti-
mizer (Kingma & Ba, 2014) with a learning rate of 0.0001.

5 SYSTEMS DEBUGGING TESTBED

Developing and testing Revelio requires access to a dis-
tributed systems environment with debugging data and sys-
tem logs. Industrial systems (including Anon) satisfy these
requirements internally (Jackson, 2021; Orate, 2019) but,
to our knowledge, no such environment exists for public
use. While we were able to analyze debugging reports at
Anon, we could not access (stored) system logs, precluding
our use of Revelio at Anon. We instead opt for an extensible
in-house testbed (Figure 4) that incorporates state-of-the-
art distributed apps, debugging tools, and fault injection.

5.1 Single-Machine Emulation of Distributed Apps

Applications. Our testbed considers three distributed
web apps: Reddit (Reddit, 2016) (monolithic), Sock
Shop (Weaveworks, 2017) (microservice-based), and On-
line Boutique (Google, 2019) (microservice-based). For
each, we use the publicly available source code that was
provided by the corresponding organization and is intended
to capture the technologies and architectures employed in
production. §A.2.1 provides additional details.

Our goal is to run each application in a distributed and con-
trolled manner, in order to scale to large workloads and de-
ployments, consider broad sets of realistic distributed de-
bugging faults, and ultimately generate complete debug-
ging datasets for Revelio. One approach would be to run
each application service on VM instances in the public
cloud. However, public cloud offerings typically hide inter-
instance network components (e.g., switches) from users,
precluding the use of in-network debugging tools (§7).

Instead, we use local emulation whereby we run each sub-
system (or service) in a different container on the same ma-
chine, and specify the network infrastructure and connec-
tivity between them. We use Containernet (Peuster et al.,
2016), an extension of Mininet (Lantz et al., 2010) that can

coordinate Docker (Docker.com, 2022) containers, each
running on a dedicated core; we assign a separate core for
network operation (i.e., P4 (Bosshart et al., 2014) switch
simulation). Testbed throughput can be scaled up by us-
ing more physical machines through distributed emula-
tion (Wette et al., 2014).

For each application, we configure its subsystem/service
containers into a star topology. At the center is a router
which can cause layer 3 faults (e.g., firewall configura-
tion errors). Each subsystem is connected to this router
via two P4 programmable switches. We set routing rules
to ensure that all subsystems are appropriately reachable.
Finally, a NAT connects the central router to the host ma-
chine’s Internet-reachable interface.

5.2 Integrating Debugging Tools

Our testbed has 4 debugging tools (details in §A.2.2):

• Marple (Narayana et al., 2017) is a query language for
network monitoring that uses SQL-like constructs (e.g.,
groupby, filter) to support queries that track 1) per-packet
and per-switch queuing delays, and 2) user-defined ag-
gregation functions across packets.

• tcpdump (Tcpdump.org, 2022) is an end-host network
stack inspector which analyzes packets flowing through
the host’s network interfaces, and supports querying by
filtering on packet headers (e.g., by source address).

• Uber’s Jaeger (Jaegertracing.io, 2022) is a distributed
tracing system which follows the OpenTracing specifi-
cation (Opentracing.io, 2022). Developers embed trace-
points into application source code to log custom state,
and then aggregate tracepoint and timing information to
understand the flow of user requests across subsystems.

• Google’s cAdvisor (Google, 2022) profiles the resource
utilization of individual containers, logging the follow-
ing per second: instantaneous CPU usage, memory us-
age, disk throughput, and total page faults.

5.3 Fault Injection Service

To create data from realistic debugging scenarios, we cre-
ated an automatic fault injection service. We note that our
goal is not necessarily to match the system scale at which
production faults were reported, but instead to evoke the
user reports, system log patterns, and queries that corre-
spond to the reported fault categories. Our service is guided
by our literature survey of production faults and our find-
ings at Anon (§2 and §A.1). Specifically, we incorporate
faults that cover all of the observed categories, and match
the ratios across categories with the data from Anon (Ta-
ble 1). These categories cover both observable performance
(i.e., increased response times) and functionality (i.e., miss-
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Table 3: Summary of debugging queries and user reports.
Metric Reddit Sock Shop Online Boutique

# of Unique Faults 76 102 80
# of Unique Queries 118 320 269

Query Vocabulary Size 60 136 122
Report Vocabulary Size 1040 1327 1258

Table 4: Metrics in system logs. Marple, Jaeger, and cAdvisor
metrics are recorded per-switch, per-function (across Jaeger
traces), and per-container respectively; tcpdump is omitted
for space.

Marple Jaeger cAdvisor
Packet count # of accessed variables CPU utilization
Queue depth Duration of execution Memory utilization

N/A # of exceptions thrown Disk throughput

ing or inconsistent content, crashes) issues for the apps we
consider. Table 10 (in §A) lists the faults we inject.

6 EVALUATION

Data collection. To extract system logs, user reports, and
debugging queries from our testbed, we conducted a large-
scale data collection experiment on Amazon Mechanical
Turk. For each application, we set up an EC2 instance per
fault that we consider (Table 3). Each instance runs the en-
tire testbed for that application, with the associated fault
injected into it. Application data is collected using scripts
included in each application repository.

Our experiment supported only “master” Turk users,
and each user was only allowed to participate once per
fault+application pair. Each user was assigned to a spe-
cific instance/fault at random, and was presented with a UI
that pointed to the corresponding instance’s frontend web
server. Users were asked to perform multiple tasks within
each app, including loading the homepage, clicking on item
pages or user profiles, adding comments, and adding items
to their carts. Prior to the experiment, users were shown
example page loads (to ensure familiarity).

For each task, users were asked to report performance and
functionality issues via multiple choice and free-form ques-
tions. During each experiment, the standard system logs for
each testbed tool were collected on the instance (Table 4).
We condense and featurize the time-series data for each
metric using standard statistics, e.g., min, max, avg. User
reports were paired with the associated system logs. We
allowed up to 5 concurrent users per instance, and system
logs reflect the interactions of all concurrent users. To com-
plete our dataset, for each fault, we generate a debugging
query with the appropriate tool that sufficiently highlights
the root cause. This query is intended to represent the result
of a past, successful, debugging experience. In our experi-
ments, we generated ideal debugging queries using perfect
knowledge of the bugs applied to our testbed. Such queries
are intended to reflect the outcomes from successful prior
debugging; we also generated incorrect queries with nega-

Figure 5: Cumulative distribution (per app) of the rank of the
correct query over our test set of repeat faults.

Figure 6: Cumulative distribution (per app) of the rank of the
correct query over our test set of previously unseen faults.

tive labels to ensure a balanced dataset. Table 3 summarizes
our dataset, and Table 9 (in §A) lists user reports.

Methodology. We divided the dataset for each application
into 53% for training, 13% for validation, and 34% for
testing. We further divided our testing data into two test
sets, test generalize and test repeat. test generalize evalu-
ates Revelio’s ability to generalize to new locations for pre-
viously seen fault types, and includes only data for faults
that have matching query templates in the training data, but
different parameters. test repeat evaluates Revelio’s ability
to suggest relevant queries for repeat faults, and includes
only data for faults that have matching query templates and
parameters in the training data. All results test the best ob-
served model from the validation set on the test sets.

Metrics. We evaluate Revelio using two main metrics: 1)
rank of the correct query (i.e., the query that most directly
highlights the root cause) among the ordered list of the
model’s predicted queries, and 2) top-k accuracy, defined
as the presence of the correct query in the top-k predictions.

Result presentation. Results for Online Boutique are sim-
ilar to the other two apps, but omitted for ease of presenta-
tion. All deep-dive results (§6.2) use Reddit, but the trends
hold for all three of the considered apps.

6.1 Evaluating Revelio’s Queries

Repeat faults. For each fault in test repeat, we measured
the rank of the correct query in Revelio’s predictions. As
shown in Figure 5, for 80% of the Reddit test samples, Rev-
elio assigns a rank of 1 to the correct query. Further, for
96% of the Reddit test cases, the correct query is in the top
3 predicted queries. Performance is similar for Sock Shop,
with the correct query being in the top 3 100% of the time.

Generalizing to new fault locations. Figure 6 shows re-
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Table 5: Examples where Revelio’s top-ranked predictions do not match the ground truth. In all cases, Revelio’s top query is
highly relevant, but characterizes the fault from an alternate system vantage point. Queries are condensed for ease of disposition.

Ground Truth Query Revelio’s Top-Ranked Predicted Query
stream = filter(T, switch==3) SELECT span FROM spans WHERE name="GET comments"

result = groupby(stream, [srcip, dstip, srcport, dstport, proto], count); (This Jaeger query also helps identify the Memcache failure by
(This Marple query highlights the lack of network traffic to/from a (failed) Memcache instance.) honing in on the tracepoint with the corresponding ’connection failed’ error message.)

SELECT * FROM cpu usage WHERE host="mn.h1" SELECT span FROM spans WHERE name=" byID"
(This cAdvisor query helps to identify that a given host (This Jaeger query also helps highlight the host’s underprovisioned

is consistently running at 100% CPU utilization, and is thus underprovisioned). CPU resources by showing the ensuing high function execution times on the host.)
SELECT span FROM spans WHERE name=" find rels" stream = filter(T, switch==1)

(This Jaeger query helps to identify that a bug in result = groupby(stream, [srcip, dstip, srcport, dstport, proto], count);
a function is resulting in no queries being issued to a MongoDB database.) (This Marple query shows the lack of network traffic between the host of a buggy function and the database.)

Table 6: Impact of different input sources on Revelio’s perfor-
mance. Results list avg rank (% in top-5) and are for Reddit.

Scenario test repeat test generalize
User report+system logs 1.33 (100%) 1.97 (100%)

Only system logs 1.86 (100%) 2.29 (90.2%)

sults for the more challenging scenario of new fault loca-
tions for repeat fault types (i.e., test generalize). As shown,
Revelio consistently predicts the correct query: Revelio’s
model assigns a rank of 1 to the correct query 60% and 85%
of the time for Reddit and Sock Shop respectively. For both
apps, the correct query was always in the top-5 predictions.

Benefits of query sequences. We analyzed scenarios in
which the correct query was not ranked as 1. We find that
in these cases, despite not matching the ground truth, Rev-
elio’s highly ranked queries typically relate to the fault at
hand, but characterize it from different vantage points; the
ground truth query is usually in the top 2-3 queries. Table 5
provides three representative examples. The first example
pertains to a fault in which Memcache is down for Red-
dit. The correct query is a Marple one which tracks packet
counts at the switch directly connected to the failed sub-
system. However, Revelio’s top query used Jaeger to hone
in on a tracepoint that contains an error message noting the
inability to connect to Memcache. Similarly, in the second
example, a Sock Shop subsystem is not provisioned enough
CPU resources. The correct query was a cAdvisor one that
explicitly tracked the container’s CPU usage, but Revelio’s
top query used Jaeger to track the high residual function
execution times for the corresponding microservice.

6.2 Understanding Revelio

Importance of user reports. By default, Revelio’s model
accepts both natural language user reports and quantitative
system logs. To understand the importance of considering
user reports in query generation, we evaluated a version of
Revelio that excludes user reports from its input set; note
that system logs cannot be excluded as they are required
for parameter prediction. As shown in Table 6, Revelio sig-
nificantly benefits from having access to both inputs. For
example, on test generalize, the average rank of the correct
query is 1.97 and 2.29 with and without user reports.

Simpler ML approaches. To understand the importance of
Revelio’s design (§4), we compared it with the following

Table 7: Comparison with simpler ML approaches. Results
list avg rank (% in top-5) for Reddit.

Model test repeat test generalize
Revelio 1.33 (100%) 1.97 (100%)

Revelio monolithic 17.5 (15.1%) 22.4 (18.5%)
Revelio no rank order 1.29 (100%) N/A

Revelio classifier 2.41 (88.7%) 2.69 (86.9%)

Figure 7: Top-5 query accuracy when training Revelio on ran-
dom subsets of the data. Results are for Reddit.

variants: 1) Revelio monolithic uses a single model to out-
put a fully-formed query, 2) Revelio no rank order elimi-
nates the rank ordering of features in Revelio’s models, and
3) Revelio classifier uses a multi-label classifier to select
query templates rather than employing a GCN to construct
a vector representation of each template’s AST.

Table 7 lists our results which highlight three points.
First, Revelio outperforms Revelio monolithic on both
test sets, highlighting the importance of factorization in
terms of simplifying (both computationally and statisti-
cally) query prediction, particularly for generalization. Sec-
ond, by rank ordering feature values, Revelio achieves an
average rank of 1.97 for test generalize; in contrast, Reve-
lio no rank order is fundamentally unable to predict tem-
plates and parameters (and thus, queries) for repeat fault
types in new locations. Third, Revelio’s improved per-
formance over Revelio classifier illustrates the importance
of extracting semantic information about query structure,
which a classifier cannot.

Data and training costs. Training Revelio (using stochas-
tic gradient descent (Ruder, 2016)) took 55 minutes in our
experiments, roughly evenly split across the template and
parameter prediction models. However, due to computa-
tional or security restrictions, organizations may be unable
to train on all of the available debugging data, e.g., Anon
archives years of the debugging data that Revelio requires.
Figure 7 shows that Revelio’s accuracy remains relatively
stable as the training dataset shrinks: with only 60% of
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training data, top-5 accuracy drops to 92% and 82% for
the test repeat and (harder) test generalize test sets.

Additional results. §A.3 presents further results from ab-
lation studies highlighting (1) Revelio’s ability to operate
across multiple tools simultaneously with low penalty in
the efficacy of its outputs (compared to results when using
a single model per tool), and (2) the importance of each
considered system log feature.

6.3 Developer Study

To evaluate Revelio’s ability to accelerate end-to-end root
cause diagnosis, we used our testbed to conduct a developer
study. 20 developers were presented with the testbed’s tools
and logs, both with and without Revelio, and were tasked
with diagnosing the root cause of multiple high-level user
reports. §A.4 describes the study methodology and results.
In summary, developers with access to Revelio were able
to correctly identify 90% of the root causes (compared to
60% without Revelio), and did so 72% faster.

7 RELATED WORK

We discuss the most closely related approaches here, and
present additional related work (e.g., for triaging) in §A.5.

7.1 Debugging Tools for Distributed Systems

There exist dozens of powerful logging and querying tools
for distributed systems (Mace et al., 2015; Scott et al.,
2016; Sigelman et al., 2010; Mace & Fonseca, 2018; Fon-
seca et al., 2007; Kaldor et al., 2017), networks (Handigol
et al., 2014; Narayana et al., 2016; 2017; Moshref et al.;
Tammana et al., 2015; 2016; Tcpdump.org, 2022), and end-
host stacks (GNU.org, 2022; Alpern et al., 2000; Netravali
& Mickens, 2019; Feldman & Brown, 1988; Ko & Myers,
2008; Lienhard et al., 2008; Viennot et al., 2013; Gyimóthy
et al., 1999; Korel & Laski, 1988). However, these tools
have two limitations. First, they focus on specific subsys-
tems. Hence, they are not coordinated and lack the full con-
text needed for system-wide debugging. Thus, the cognitive
burden of deciding which tools to use, when, and how falls
on developers. Revelio interoperates with these tools and
alleviates this burden by automatically predicting helpful
debugging queries. Second, these tools ignore natural lan-
guage inputs, despite the fact that they provide debugging
insights (Potharaju et al., 2013; Govindan et al., 2016) (§6).

7.2 Leveraging Natural Language Data Sources

Program debugging: NetSieve (Potharaju et al., 2013)
uses NLP to parse network tickets by generating a list of
keywords and using a domain-specific ontology model to
extract ticket summaries from those keywords; summaries

highlight potential problems and fixes. While NetSieve au-
tomates parsing, much manual effort is still required in (1)
offline construction of an ontology model, and (2) deter-
mining what constitutes a keyword. In contrast, Revelio’s
models learn automatically from data, with minimal man-
ual effort, and generate queries for root cause diagnosis
rather than potential fixes from a restricted set of actions.
Net2Text (Birkner et al.) translates English queries into
SQL queries, issues those queries, summarizes the results,
and translates them back into natural language for easy in-
terpretation. Revelio, instead, ingests high-level user issues
and system logs; the unstructured and abstract nature of this
input makes Revelio’s problem harder than Net2Text’s.

Program analysis and synthesis: NLP techniques have
been utilized in multiple aspects of software develop-
ment (Ernst, 2017). Examples include detecting opera-
tions with incompatible variable types (Haq et al., 2015)
and converting natural language comments into asser-
tions (Goffi et al., 2016). More recently, NLP has also been
used in code generation by converting developer-specified
requirements in natural language to structured output in
the form of regular expressions (Locascio et al., 2016),
Bash programs (Lin et al., 2018), API sequences (Gu et al.,
2016), and queries in DSLs (Desai et al., 2016). Though
these projects show the potential to extract meaning from
natural language debugging data, they are limited to ingest-
ing a single stream of data from a single subsystem. In con-
trast, Revelio combines and extracts meaning from varied
input forms to construct structured queries.

8 CONCLUSION

Revelio employs ML to generate debugging queries from
system logs and user reports to help developers find a prob-
lem’s root cause faster. Much work remains before this
general vision of an ML-enhanced debugging assistant for
distributed systems is ready for production use. Notably,
Revelio must present a uniform interface to all debugging
tools and learn from logs, reports, and queries in an online
manner. Despite this, Revelio makes significant progress
towards live deployment, demonstrating the importance (in
this context) of unified vectors to represent diverse system
data, modularity, abstraction to generalize to production
systems, and the leveraging query structures in generating
debugging queries.
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A APPENDIX

A.1 Literature Survey

We surveyed many recent papers and blog posts that doc-
ument or measure bugs in production settings. Our sur-
vey includes major outages in large-scale services (e.g.,
Dropbox (Dropbox, 2019), Kubernetes (Saltside Engineer-
ing, 2017)), bugs in cloud services (e.g., Google (Sigelman
et al., 2010), Facebook (Kaldor et al., 2017), Azure (Liu
et al., 2019)), and experiences with open source systems
(e.g., Cassandra, HDFS (Yuan et al., 2014)). Our survey
revealed the following bug categories:

1. System software and configuration faults.
• Resource underprovisioning (Kaldor et al., 2017;

Saltside Engineering, 2017): In such bugs (e.g., at
Facebook (Kaldor et al., 2017)), the containers or
VMs running parts of a distributed system are al-
located insufficient CPU, memory, disk, or network
bandwidth.

• Component failures (Fonseca et al., 2007; Yuan
et al., 2014; DHH, 2018; Vagner & Molla, 2019;
Dropbox, 2019): Failures are common at scale, and
can result from a faulty physical machine, a bug
in the machine’s hypervisor, or an unduly small
amount of memory being allocated to a particular
component.

• Subsystem misconfigurations (Yuan et al., 2014;
Vagner & Molla, 2019; Liu et al., 2019): Errors in
the internal configuration files for a given subsystem
are common, especially given complex interopera-
tion with other subsystems. Examples include incor-
rect hostname mappings that result in improper traf-
fic routing and poorly configured values for timeouts
or maximum connection limits (Liu et al., 2019).

2. Network faults.
• Network congestion (Kaldor et al., 2017): Within

data centers (Kaldor et al., 2017), queues build up
at various network locations (e.g., virtual and physi-
cal switches) that connect subsystems, either due to
temporarily increased application traffic (e.g., TCP
incast (Chen et al., 2009)) or cross traffic.

• Incorrect network configuration (Kaldor et al.,
2017; Yuan et al., 2014; Vagner & Molla, 2019):
Network devices (e.g., firewalls, NATs, switches)
between subsystems that communicate via RPCs
may be incorrectly configured with forward/drop
rules. This could cause unintended forwarding of
packets to a destination or incorrect packet dropping.

3. Application logic faults.
• Bugs within subsystems (Sigelman et al., 2010;

Qin et al., 2005; Lu et al., 2008; Arora et al.,

2018; Lu et al., 2005; Donohue, 2017; Saltside
Engineering, 2017): Bugs in application logic are
prevalent in practice (Netravali & Mickens, 2019;
Abuzaid et al., 2018), and can result in a wide range
of system effects. For example, certain bugs arise
from (accidentally) inverted branch conditions that
trigger seemingly inconsistent behavior: an applica-
tion may traverse an incorrect branch and display in-
correct content or result in a program error. In con-
trast, certain code changes can trigger performance
degradations, e.g., if unnecessary RPC calls are gen-
erated between microservices.

• Incorrect data exchange formats and values (Liu
et al., 2019): Particularly in microservice settings as
in Azure services (Liu et al., 2019), bugs can arise
if the RPC formats of the sender and receiver do not
match. For instance, a change in the API exposed by
one microservice could result in a bug if its callers
are unaware of this change. Also included in this cat-
egory are certificate or credential updates that have
only been partially distributed (resulting in access
control errors).

A.2 Additional Testbed Details

A.2.1 Overview of Applications

Reddit: Reddit is a popular discussion website whose
three-tier backend architecture is representative of many
distributed applications that utilize the monolithic archi-
tectural paradigm. In the front-end tier, HAProxy (hap,
2022) load balances traffic across web servers. The appli-
cation tier, implemented using the Pylons framework for
Python (pyl, 2022), embeds the core application program
logic and accesses data objects from the storage tier. The
storage tier consists of three data stores: PostgreSQL (pos,
2022) is mainly used as a key/value store for objects such as
accounts and comments; Cassandra (cas, 2022) is used as a
key/value store for precomputed objects such as comment
trees; and Memcache (Dormando, 2022) is used for caching
throughout the system. Reddit also uses the RabbitMQ
message broker (rab, 2022) to manage asynchronous writes
to the storage layer.

Sock Shop: Developed by Weaveworks, Sock Shop is an e-
commerce application that employs a microservice-based
backend architecture. Sock Shop incorporates 14 differ-
ent microservices, including a user-facing Node.js fron-
tend microservice, a shopping cart management microser-
vice, a catalog microservice, and so on. Each microser-
vice includes an application server whose logic is imple-
mented in one of a variety of programming languages
(e.g., Java, Go), and select microservices additionally op-
erate an individually-managed datastore. For instance, sep-
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Figure 8: Comparing the average rank for single-tool and
multi-tool versions of Revelio. Results are for Reddit.

arate MongoDB database instances (Inc., 2019) are used
for cart information, processed order transactions, and user
profiles, while catalog information is stored in a MySQL
database (Mysql.com, 2022). As with Reddit, RabbitMQ
manages inter-microservice communication.

Online Boutique: Online Boutique is another
microservice-based e-commerce platform from Google
that includes 10 distinct microservices that are imple-
mented in Python, Go, C#, Java, and JavaScript. Microser-
vices include a frontend HTTP server (implemented in
Go), a payment microservice, a cart microservice, and
an ad microservice. Each microservice operates its own
datastore, e.g., the cart microservice stores a user’s to-be-
purchased items in Redis (Redis.io, 2022). Microservices
communicate using the gRPC framework (Envoyproxy.io,
2022).

A.2.2 Overview of Debugging Tools

Marple: Marple (Narayana et al., 2017) is a query lan-
guage for network performance monitoring that uses SQL-
like constructs (e.g., groupby, filter). To operate, Marple
assigns each network switch and packet a unique ID,
and supports queries that track 1) per-packet and per-
switch queuing delays, and 2) user-defined aggregation
functions across packets. In our implementation, switches
log queue depths that each arriving packet encounters, and
the packet’s 5-tuple (src/dest ip addresses, src/dest ports,
and protocol). This is sufficient to track queueing infor-
mation and high-level statistics such as packet counts. We
write queries in Marple to capture and track these val-
ues, and then use Marple’s compiler to generate P4 pro-
grams (Bosshart et al., 2014) that can run directly on our
emulated switches. Switches stream query results to a data
collection server running on the same host machine for fur-
ther analysis.

tcpdump: tcpdump is an end-host network stack inspector
which analyzes all incoming and outgoing packets across
all of the host’s network interfaces. tcpdump’s command
line interface supports querying in the form of packet con-
tent filtering (e.g., by hostname, packet type, checksum,
etc.), which can be applied at runtime or offline. In our im-
plementation, tcpdump is configured to collect all network

packet information in a pcap file, and filters are applied of-
fline.

Jaeger: Uber’s Jaeger framework is an end-to-end dis-
tributed systems tracing system which, like its predeces-
sors Dapper (Sigelman et al., 2010) and Zipkin (Zipkin.io,
2022), implements distributed tracing according to the
OpenTracing specification (Opentracing.io, 2022). With
Jaeger, developers embed tracepoints directly into their
system source code (or RPC monitoring proxies (Grpc.io,
2022)) and specify custom state (e.g., variable values) to
log at each one. By aggregating tracepoint and timing in-
formation, Jaeger provides distributed context propagation
so developers can understand how data values and control
state flows across time and subsystems. We modified each
application’s source code (application tier for Reddit, and
each microservice frontend for Sock Shop and Online Bou-
tique) to include tracepoints for each function accessed dur-
ing HTTP response generation. As per the examples pro-
vided by OpenTracing (Opentracing.io, 2022), at each tra-
cepoint, we log the accessed variables, function execution
duration, and any thrown exceptions. During execution, all
tracepoint information is sent to a Jaeger aggregation server
running on the same host machine for subsequent querying.

cAdvisor: Google’s cAdvisor framework profiles the re-
source utilization of individual containers. To do so, cAd-
visor runs in a dedicated container, which coordinates with
a Docker daemon running on the same machine to get a
listing of all active containers to profile (and the process ids
that each owns). With this information, cAdvisor uses the
Linux cgroups kernel feature to extract resource utilization
information for each container. We use cAdvisor’s default
configuration, in which the following values are reported
every 1 second: instantaneous CPU usage, memory usage,
and disk read/write throughput, and cumulative number of
page faults. Resource usage information collected by cAd-
visor is dynamically sent to a custom logging server run-
ning on the same host machine for subsequent querying.

A.3 Additional Results Analyzing Revelio

Multi-tool vs. single-tool models: We performed another
ablation study where we compare Revelio when training
and testing on logs from each tool together (multi-tool
model), and in isolation (single-tool model). For each iso-
lated tool, we prune the training, validation, test repeat, and
test generalize sets to include only faults pertaining to that
tool. Figure 8 shows that the per-tool models achieve better
average ranks than the combined (default) model. The rea-
son is that focusing on one tool allows Revelio to predict
templates and parameters from a smaller space. However,
Revelio pays only a small penalty for operating across de-
bugging tools: the average rank in the combined model is
only 33% higher than the best per-tool model. This is key
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Figure 9: Summary of time saved in debugging each fault in
our developer study. Bars represent average time spent across
all developers who correctly identified the root cause.

Table 8: Revelio’s performance when metrics from system
logs are selectively removed. Removed Marple, Jaeger, and
cAdvisor features are shown in blue, red, and grey, respec-
tively. Results list avg rank (% in top-5) and are for Reddit.

Removed Feature test repeat test generalize
Packet count 2.14 (100%) 7.93 (80.4%)

Queueing delay 2.27 (96.1%) 2.51 (92.4%)
Variable count 1.67 (96.1%) 3.54 (71.7%)

Duration of execution 7.29 (88.2%) 4.11 (89.1%)
CPU utilization 1.65 (96.1%) 4.37 (83.7%)

Memory utilization 1.75 (100%) 2.50 (88.0%)

to Revelio’s ability to alleviate the burden of determining
which tool to use for a particular scenario.

System log analysis: To understand the relative importance
of each metric in the system logs, we evaluated a vari-
ety of Revelio models that were trained with each log fea-
ture removed, in turn (Table 8). As shown, removing the
per-switch packet counts from the network logs led to the
largest accuracy degradation, with a drop in average rank
from 1.97 to 7.93 (for test generalize). Importantly, remov-
ing each considered feature led to marginal degradations in
Revelio’s performance, highlighting their utility.

A.4 Developer Study

To evaluate Revelio’s ability to accelerate end-to-end root
cause diagnosis, we used our testbed (§5) to conduct a de-
veloper study. Developers were presented with the testbed’s
tools and logs, both with and without Revelio, and were
tasked with diagnosing the root cause of multiple high-level
user reports. In summary, developers with access to Reve-
lio were able to correctly identify 90% of the root causes
(compared to 60% without Revelio), and did so 72% faster.

Setup and methodology. Our study involved 20 PhD stu-
dents and postdoctoral researchers in systems and network-
ing. All participants brought their own laptops, but debug-
ging tasks were performed inside a provided VM for uni-
formity. Prior to the study, the authors delivered a 5-hour
tutorial explaining the testbed and Sock Shop UI/code base;
the study only involved Sock Shop to ease the developers’
ability to become intimately familiar with the application to
debug. For each tool (Marple, Jaeger, cAdvisor, tcpdump,

Revelio), we described its logs, query language, and inter-
face. Developers were given 1 hour to experiment with the
testbed and resolve any questions.

During the study, developers were presented with a series
of six debugging scenarios: 2 in-network faults for routing
errors and congestion (targeting Marple), 2 system configu-
ration faults for resource underprovisioning and component
failures (targeting cAdvisor), and 2 application logic faults
for branch condition and RPC errors (targeting Jaeger); we
exclude end-host network faults due to time constraints.
For each fault type, developers were randomly assigned to
debug one fault using only the testbed’s tools, and one also
using Revelio. Ordering of the faults and tool assignments
was randomized across participants to ensure a fair com-
parison.

For each fault, developers were presented with 1) a user re-
port, 2) system logs for all testbed tools collected during
the faulty run, and 3) the faulty testbed code. Developers
were given 30 mins to diagnose each fault and provide a
short qualitative description of the root cause. For exam-
ple, a routing configuration error that disconnected Cassan-
dra could be successfully reported as “Cassandra could not
receive any network packets, leading to missing page con-
tent.” When a developer believed she had found the root
cause, she informed the paper authors who verified its cor-
rectness. If incorrect, the developer was told to keep debug-
ging until a correct diagnosis was generated, or 30 mins
elapsed. Developers were unrestricted in their debugging
methodologies, e.g., they were not required to use queries,
though most did. Without Revelio, developers had to gen-
erate any query they wished to issue on their own; with
Revelio, developers could generate queries or use the 5 sug-
gested by Revelio.

Revelio’s impact on root cause diagnosis. The results of
our developer study were promising and suggest that Reve-
lio can be an effective addition to state-of-the-art debugging
frameworks in terms of accelerating root cause diagnosis.
Across all of the faults, Revelio increased the fraction of de-
velopers who could correctly diagnose the faults within the
given time frame from 60% to 90%. Further, as shown in
Figure 9, Revelio sped up the average root cause diagnosis
time by 72% (∼14 minutes) in cases where the developers
were able to report the correct root cause.

After the study, we asked each developer qualitative ques-
tions about their experience with Revelio. The most com-
monly reported benefit of Revelio was in shrinking the set
of tools and queries that a developer had to consider. The
primary gripe was with respect to Revelio’s UI, which is
admittedly unpolished. Most importantly, the response to
”Would you prefer to use existing systems and networking
debugging tools with Revelio?”, was “yes” for all 20 par-
ticipants.
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A.5 Additional Related Work

DeepCT (Chen et al., 2019) uses a GRU (Gated Recurrent
Unit) and attention-based model to leverage discussions be-
tween team members to accurately triage an incident. It
incrementally learns knowledge from discussions to better
triage the incident. DeepTriage (Pham et al., 2020) lever-
ages both textual and contextual data from incident reports.
The textual data contains information like the incident title,
summary and the initial discussion entries and the contex-
tual data includes information about the service, severity
of the incident, etc. The authors also identify that only few
discussion items correspond to triaging and several of the
subsequent discussion is on root cause analysis and logging

troubleshooting steps which indicates that identifying the
root cause requires several manual steps and is time con-
suming. While triaging identifies the team to detect root
cause, it doesn’t provide any hints as to the specific metrics
and their relation to the subsystems to help developers.

DISTALYZER (Nagaraj et al., 2012) leverages logs printed
by distributed systems to identify the strongest association
between performance and specific components. These log
snippets are returned to the developer to identify the root
cause of the incident. Due to the presence of several com-
ponents in a distributed system and the fact that a bug can
manifest itself in logs across different components, it is
hard to find the most useful log by association alone and
the developer has to still sieve through all the logs.
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A.6 Diagrams Illustrating Model Operation/Insights

Figure 10: Example illustrating the generation of system log vector L; for simplicity, the example considers only network logs.
Values for each feature (across switches) are first rank ordered, and then the resulting lists are concatenated to form L.

Figure 11: Example inputs for each input variable in Revelio’s model (variables are listed in Table 2 and at the top of this
figure). This example is for a network (Marple) query. For the query template (T), the entire tree represents the template, while
the parameters to be filled in are shaded in grey.
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A.7 Diagrams for Testbed and Dataset

Figure 12: The topology of our distributed systems testbed for Reddit (Reddit, 2016). Each P4 switch has a congestion traffic
sender/receiver to emulate different network conditions, and the testbed incorporates four recent debugging tools and a fault
injection service. We illustrate the Sock Shop (Weaveworks, 2017) topology in Figure 4, and note that Online Boutique (Google,
2019) follows the same architectural patterns.

Table 9: Examples of text in user reports collected from Mechanical Turk participants.
User report text

there is nothing on the page, it is empty, nothing to click on
‘you broke reddit’ with the cartoon showed up

Page took forever to load. Sat at the gray screen for almost a minute, entirely too long..
I clicked to expand for comments, and page went away and defaulted to a grey screen.. No Page

‘Funny 500 Page Message 8’ message below that. Blank otherwise. . Page does not include any usernames

Table 10: Overview of faults injected into our distributed systems testbed. Numbers listed are for Sock Shop(Weaveworks, 2017).
Fault Type Number of Faults Example

Resource underprovisioning 15 Reducting the CPU quota
for the docker container running PostgreSQL

Component failures 15 Take down container for a given microservice
Subsystem misconfigurations 12 Incorrectly configure hostname of a database

Network congestion 13 Generate significant network
cross-traffic between hosts for different microservice

Network-level misconfigurations 16 Incorrect firewall rules at routers to drop
or forward packets on an incorrect interface

Subsystem/Source-code bugs 16 Negated if condition resulting in different execution path
Incorrect data exchange 15 Alter function signature within

a microservice, triggering argument violations


