
Reducto: On-Camera Filtering for Resource-Efficient
Real-Time Video Analytics

Yuanqi Li*, Arthi Padmanabhan*, Pengzhan Zhao, Yufei Wang, Guoqing Harry Xu, Ravi Netravali
UCLA

ABSTRACT
To cope with the high resource (network and compute) demands
of real-time video analytics pipelines, recent systems have relied
on frame filtering. However, filtering has typically been done with
neural networks running on edge/backend servers that are expensive
to operate. This paper investigates on-camera filtering, which moves
filtering to the beginning of the pipeline. Unfortunately, we find that
commodity cameras have limited compute resources that only permit
filtering via frame differencing based on low-level video features.
Used incorrectly, such techniques can lead to unacceptable drops in
query accuracy. To overcome this, we built Reducto, a system that
dynamically adapts filtering decisions according to the time-varying
correlation between feature type, filtering threshold, query accuracy,
and video content. Experiments with a variety of videos and queries
show that Reducto achieves significant (51–97% of frames) filtering
benefits, while consistently meeting the desired accuracy.

CCS CONCEPTS
• Information systems → Data analytics; • Computing method-
ologies → Object detection;

KEYWORDS
video analytics, deep neural networks, object detection

ACM Reference Format:
Yuanqi Li, Arthi Padmanabhan, Pengzhan Zhao, Yufei Wang, Guoqing Harry
Xu, Ravi Netravali. 2020. Reducto: On-Camera Filtering for Resource-
Efficient Real-Time Video Analytics. In Annual conference of the ACM
Special Interest Group on Data Communication on the applications, tech-
nologies, architectures, and protocols for computer communication (SIG-
COMM ’20), August 10–14, 2020, Virtual Event, NY, USA. ACM, New York,
NY, USA, 18 pages. https://doi.org/10.1145/3387514.3405874

1 INTRODUCTION
Video cameras are pervasive in today’s society, with cities and orga-
nizations steadily increasing the size and reach of their deployments.
For example, cities now deploy tens of thousands of cameras, each
continually collecting and streaming rich video data [2, 15, 17, 39].
As camera deployments expand, organizations increasingly rely on
analyzing live video feeds to guide long-running tasks such as traffic
monitoring, customer tracking, and surveillance. Key to the suc-
cess of such applications has been recent advances in computer

* These authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to the Asso-
ciation for Computing Machinery.
ACM ISBN 978-1-4503-7955-7/20/08. . . $15.00
https://doi.org/10.1145/3387514.3405874

vision, particularly neural network (NN)-based techniques for highly
accurate object detection and recognition [22, 45, 47, 49, 65].

In a typical real-time video analytics pipeline [23, 41, 71, 79], a
camera streams live video to cloud servers, which immediately run
object detection models (e.g., YOLO [62]) to answer user queries
about that video. Such pipelines aim to deliver query results with
high accuracy and low latency, but doing so is challenging due to the
high compute and network resource demands of video streaming and
NN-based analysis [23, 41, 79]. To make matters worse, organiza-
tions commonly operate and analyze video from many cameras [40],
further amplifying computation and network overheads.

Significant work has been expended to improve the efficiency
of video analytics pipelines [23, 24, 36, 41, 53, 79]. Across these
systems, a prevailing (and natural) strategy is to improve efficiency
by filtering out frames that do not contain relevant information for
the query at hand [23, 24, 36, 43]. Conceptually, filtering out a frame
requires understanding how that frame would affect a query result.
To make such decisions without needing the actual query results
(which would negate filtering benefits), existing systems employ
various levels of approximations based on either (1) compressed
object detection models (e.g., Tiny YOLO [62]) that compute lower-
confidence results [36], (2) specialized binary classification models
that eliminate frames that do not contain an object of interest [23, 43],
or (3) simple frame differencing to eliminate frames whose low-level
features (e.g., pixel values) have not changed substantially (based on
a static threshold) and are expected to produce the same results [24].

On-camera filtering. In this paper, unlike prior filtering approaches
that typically run on edge [54] or backend servers, we seek to fil-
ter frames at the beginning of the analytics pipeline – directly on
cameras. Like edge server approaches, on-camera filtering has the
potential to alleviate not only backend computation overheads (by
reducing the number of frames that must be processed by the back-
end object detector), but also end-to-end network bottlenecks be-
tween cameras and backend servers, particularly for wireless cam-
eras [23, 33, 81]. Furthermore, an on-camera approach can also
sidestep the management and cost overheads of operating edge
servers [52, 63]. We note that in targeting on-camera filtering, our
aim is to eliminate the reliance on edge servers for filtering by
making use of currently unused resources. Our on-camera filtering
techniques could also run on edge servers (if present), outperforming
existing strategies while consuming fewer resources (§5).

Despite the potential benefits, our study of commodity cameras
and surveillance deployments paints a bleak resource picture (§2.1).
In contrast to edge servers, smartphones, or recent smart cameras that
possess GPUs and AI hardware accelerators, deployed cameras often
have low-speed CPUs (1 GHz) and modest amounts of RAM (256
MB). These resources preclude even compressed NNs for filtering
(e.g., Tiny YOLO runs at < 1 fps), and instead can only tolerate
specialized binary classification NNs or frame differencing strategies.
Unfortunately, we find that these approaches are far more limited for
filtering (§2.2). Binary classification strategies forego between 17-
74% of potential frame filtering opportunities by filtering based on

https://doi.org/10.1145/3387514.3405874
https://doi.org/10.1145/3387514.3405874

object presence rather than changes in query result, e.g., a parking lot
can contain parked cars, but the overall count or locations of the cars
may not change. In contrast, existing frame differencing strategies
consistently violate query accuracy requirements by filtering out
necessary frames (reasons described below).
Goal and insight. This paper asks: can we integrate on-camera
filtering into video analytics pipelines in a way that achieves most
of the potential filtering benefits without violating accuracy goals?
Due to the aforementioned filtering limitations inherent to binary
classification, we turn to frame differencing with low-level features.

Our key insight is that the lack of accuracy preservation with
existing frame differencing strategies is not a problem inherent to
low-level features, but rather a problem of these features not being
used appropriately. For example, Glimpse [24] filters by compar-
ing pixel-level frame differences against a static threshold, and is
unable to adapt to the heterogeneous queries (e.g., detection, count-
ing) and dynamic video content that analytics pipelines are faced
with [41, 50]. This is because the same difference values may carry
different meanings (in terms of changes in query results) for differ-
ent video content and query types, e.g., a traffic light may warrant a
lower threshold than a busy highway. We assert that if we can (1) es-
tablish a correlation between feature types, their filtering thresholds,
and query accuracy, and (2) dynamically adjust this correlation in re-
sponse to changes in queries and video content, these cheap features
can be surprisingly effective (more than NN-based techniques!) in
indicating if filtering a frame will cause accuracy violations.
Reducto. Based on this insight, we developed Reducto, a simple and
yet inexpensive solution to the real-time video analytics efficiency
problem, that tackles three main challenges.
(C1) What low-level video features to use? The computer vision
(CV) community [20, 24, 44, 46, 59, 60, 66, 68, 82, 83] has dis-
covered a slew of low-level video features that extract frame differ-
ences [21], such as Edge and Pixel. To find the most appropriate
features for on-camera filtering, we carefully studied a represen-
tative set of them (§3). An important observation we make is that
the “best” feature (i.e., the one that most closely tracks changes in
query results) to use varies across query classes more so than across
different videos (see §4.2). This is because each feature uniquely
captures a certain low-level video property; different query classes
are interested in different video properties, and hence fit the best with
different features. Based on this observation, the Reducto server per-
forms offline profiling of historical video data to determine the best
feature for each query class. The server notifies the camera of the
feature it should use for each new query. Note that this is in contrast
to existing strategies that always use the Pixel feature [24].
(C2) How to select filtering thresholds? Filtering frames using a
differencing feature inherently requires cameras to select a parameter
(i.e., a differencing threshold). Selecting the appropriate threshold is
paramount as this value directly impacts the accuracy and filtering
benefits of Reducto: too low of a threshold will sacrifice filtering ben-
efits, while too high of a threshold may sacrifice accuracy. However,
selecting this threshold value is difficult as the optimal threshold
varies rapidly, on the order of seconds, due to the inherent dynamism
in video content (§4.3). This rapid variance precludes the static
thresholds used by prior systems [24], and also prohibits servers
from making threshold decisions. Instead, threshold selection must
be adaptive and be done by cameras, online.

To overcome these challenges, we use lightweight machine learn-
ing techniques to predict, at a fine granularity on the camera (e.g.,
every few frames), which threshold to use for the selected feature.

To do this, we train a cluster-based model for each query and server-
specified feature, based on the observation that there is a strong
correlation between the thresholds of the feature and the query ac-
curacy (see §4.3). Clustering is done over all pairs of observed
difference values (in the training set) and their highest feature values
that hit the accuracy target. For each observed difference value, the
camera selects the cluster in which the value falls and performs
filtering using the average filtering threshold of that cluster. Note
that such models are cheap regression models that can run in real
time even under the camera’s tight resource constraints.

(C3) What if the model is incomplete? The model used to predict
thresholds for the selected feature may lack sufficient coverage,
particularly when video characteristics drastically change (e.g., rush
hour starts). Unfortunately, how and where to detect such scenarios
is challenging because detection relies on analyzing the accuracy of
recent frames; for example, a change may have occurred if we see a
significant accuracy drop for recent frames. However, the question
is how to see the accuracy drop – the camera is unaware of the true
accuracy as it does not run DNN object detectors, while the server
only receives a subset of frames that the camera deems as relevant.

To address this issue, the Reducto camera constantly checks if
the feature value for the current frame falls into an existing cluster
in the model. If not, this indicates a potentially significant (and
previously unseen) change in video characteristics, so the camera
halts filtering and notifies the server to retrain the model. Note that
our linear model is not only efficient to run but also efficient to train,
enabling the server to train a new model online upon a request from
the camera. Once trained, the new model is streamed back to the
camera, which uses it until a subsequent update is required.

Result summary. We evaluated Reducto using multiple datasets of
live video feeds covering 24 hours from 7 live traffic and surveillance
cameras. We consider three classes of queries that track people and
cars: tagging, object counting, and bounding box detection. Running
on both Raspberry Pi and VM environments similar to commodity
camera settings, we find that Reducto is able to filter out 51–97%
of frames compared to traditional pipelines, resulting in bandwidth
savings of 21–86%, 50-96% reductions in backend computation
overheads, and 66–73% lower query response times. Importantly,
in our experiments, Reducto achieves such filtering benefits while
always meeting the specified query accuracy targets. Reducto also
outperforms two recent video analytics systems: Reducto filters out
93% more frames than the FilterForward [23] edge filtering system,
and achieves 37% more backend processing improvements than
Chameleon [41]. Source code and experimental data for Reducto are
available at https://github.com/reducto-sigcomm-2020/reducto.

2 MOTIVATION
This section explores two questions: (1) what compute/memory
resources do commodity and state-of-the-art smart cameras possess
(§2.1)?, and (2) how well do existing filtering techniques perform in
such settings (§2.2)?

2.1 Smart Camera Resource Overview
To better understand the available resources for filtering on cameras,
we analyzed publicly available information about multiple surveil-
lance deployments, and conducted a small-scale study of local city
and campus-wide camera installations. We found that there is a large
resource divide between state-of-the-art cameras and commodity
cameras which are widely deployed. Given that large-scale camera
deployments are financially expensive to install and maintain, we do

https://github.com/reducto-sigcomm-2020/reducto

RAM Tiny YOLO: Object Detection NoScope: Binary Classification
0.5GHz 1.0GHz 1.5GHz 0.5GHz 1.0GHz 1.5GHz

128MB NA NA NA NA NA NA
256MB NA NA NA NA NA NA
512MB 0.19 0.39 0.64 28.39 56.25 85.9

1024MB 0.20 0.42 0.66 26.9 58.36 84.1

Table 1: Inference speed (in fps) of compressed object detection and
binary classification models in resource-constrained (camera-like) envi-
ronments. NA means the model lacked sufficient resources to run. Pixel-
based frame differencing (omitted for space) always ran at over 300 fps.

not anticipate an immediate overhaul that replaces commodity cam-
eras with state-of-the-art ones. Instead, we expect a more gradual
shift, and thus believe that camera-based filtering must consider the
resource availability on both classes of devices. Note that we only
focused on smart cameras, or those with some non-zero amount of
general purpose compute resources; cameras without such resources
are unable to handle any on-device filtering.

State-of-the-art smart cameras. Recent smart cameras commonly
include AI hardware accelerators built into their processors, which
speed up tasks such as DNN execution and video encoding [6, 14,
51, 67]. For example, Ambarella [14]’s CV22 System on Chip in-
cludes a quad-core processor (1 GHz) along with the CVflow vector
processor designed explicitly for vision-based CNN/DNN tasks (e.g.,
object tracking on 4k videos at 60 fps). Some cameras also ship with
small on-board GPUs as an alternate way to accelerate similar work-
loads [11, 13]. For instance, DNNCam [11] ships with an NVIDIA
TX2 GPU and 32 GB of flash storage and has a unit price of $2,418.
These resources support real-time object recognition (i.e., 30 fps or
higher) and thus can be used to run NN-based filtering techniques
directly on cameras.

Commodity and deployed cameras. In contrast to the promising
filtering resources on state-of-the-art cameras, deployed surveillance
cameras paint a much bleaker resource picture [16, 72, 75]. These
cameras are considerably cheaper (generally $20–100), and ship
with far more modest compute resources typically involving a single
CPU core, CPU speeds of 1-1.4 GHz, and 64-256 MB of RAM. We
verified the widespread deployment of such low-resource cameras by
speaking with security teams for UCLA and Los Angeles—none of
their deployed cameras included AI hardware accelerators, GPUs, or
colocated edge servers, but they all possessed cheap CPU resources.

2.2 Limitations of Existing Filtering Techniques
We now explore how existing filtering techniques would fare on de-
ployed smart cameras in terms of speed and filtering benefits. From
§1, there are three main classes of existing filtering techniques:

• The first approach runs a compressed object detection model (e.g.,
Focus [36]) to obtain approximate query results. This approach
determines whether or not to send each frame for full model
execution (rather than just sending the computed result) based on
the confidence in the result that the compressed model produces.

• The second approach runs a cheaper and less general (e.g., trained
for a specific query and video content) binary classification model,
which detects whether an object of interest (for the current query)
is present in a frame or not. Only frames with the object of interest
are sent to the server for processing (e.g., FilterForward [23],
NoScope [43]).

• The third approach is to compute pixel-level frame differences
and filter out frames which, according to a static/pre-defined dif-
ferencing threshold, are largely unchanged from their predecessor
and expected to yield the same query result (e.g., Glimpse [24]).

Speed. We started by evaluating the feasibility of running these
three techniques on cameras for real-time filtering. We considered
the canonical query of counting the number of cars in each frame.
To evaluate frame differencing, we directly ran Glimpse’s trigger
frame selection algorithm using an arbitrary static threshold (more
on this below) [24]. For compressed object detection, we used Dark-
net [61] to train a Tiny YOLO model [62] (8 convolutional layers)
that only recognizes cars based on data labeled with YOLOv3. For
binary classification, we trained a model that mimics the lightest
classification model developed in NoScope [43]; this model has 2
convolutional layers (32 filters each) and a softmax hidden layer.1 In
both cases, training was done for each camera in our video dataset
(§5.1) using 9 10-minute video clips from that camera.

We ran each technique on a new 10 minute clip from each camera
under a sweep of resource configurations: a single core, 0.5-1.5
GHz CPU speed, and 128-1024 MB of RAM. Experiments were
performed on a Macbook Pro laptop with a virtual machine that
restricted resources to the specified parameters. Table 1 lists the
filtering speeds in each setting. As shown, both NN models require at
least 512 MB of RAM to operate, which precludes them from being
used on many deployed cameras. Tiny YOLO is unable to achieve
even 1 fps in any setting; note that even with the 11× speedup
reported when also using background subtraction [36], Tiny YOLO
is still far below real-time speeds. In contrast, when it has sufficient
memory to run, the binary classification model consistently achieves
real-time speeds, e.g., 28 fps and 86 fps with 0.5 GHz and 1.5 GHz
processors, respectively. Further, pixel-based frame differencing is
able to hit real-time speeds across all camera settings. Thus, the rest
of the section focuses on frame differencing and binary classification
(which is at least tenable in some camera settings).

Filtering efficacy. Now that we have identified potential filtering
candidates for our resource-constrained environment, we ask, how
effective are they at filtering out frames? We discuss the two candi-
dates, binary classification and frame differencing, in turn.

To evaluate the potential filtering benefits with binary classifica-
tion, we analyzed object detection results (captured by YOLO [62])
for all videos in our dataset and computed the fraction of frames that
do not contain any object of interest. Note that this represents an
upper bound on the benefits that systems such as NoScope [43] and
FilterForward [23] can achieve. As a reference, we also considered
an offline optimal strategy, where each frame is filtered if its query
result is identical to that of its predecessor. As shown in Figure 1,
binary classification is very limited in its filtering abilities: com-
pared to the offline optimal, binary classification filters out 73.5%
and 16.7% fewer frames for the car and person queries, respectively.
The reason is that there exist many scenarios where query results
remain unchanged across consecutive frames but have non-zero ob-
jects of interest. For example, a car count will be consistently greater
than 1 if the camera is facing parked cars — although one frame
would be sufficient to accurately count the number of cars, binary
classifiers would send all such frames since they all contain objects
of interest. Figures 1(b) and 1(c) illustrate this property for several
representative video clips.

Quantifying the potential filtering benefits with frame differencing
techniques is challenging as they vary based on the tunable filtering
threshold. Instead, the key limitation with respect to filtering effi-
cacy is that existing frame differencing systems employ static and

1We consider NoScope rather than FilterForward here because FilterForward’s reliance
on a DNN for feature extraction precludes its use on a camera; we empirically compare
Reducto’s filtering with that of FilterForward in §5.

0.0 0.2 0.4 0.6 0.8 1.0
Percentages of the potential filtered frames

Pe
op

le
C

ar

(a)

Offline Optimal
Binary
Classifier

0 3 6 9 12 15
Time elapsed in seconds

0

1

2

3

N
um

of
C

ar
s

(b)

0 3 6 9 12 15
Time elapsed in seconds

0
1
2
3
4
5

N
um

of
Pe

op
le

(c)
Figure 1: Binary classification yields limited filtering benefits: (a) the potential fraction of filtered frames, for standard people and car counting queries,
as compared to an offline optimal (which filters based on query results), (b/c) representative video clips highlighting missed filtering opportunities
with binary classification (i.e.non-zero but stable object counts).

0 20 40 60 80 100
Percentage of video used to pick threshold

0.6

0.7

0.8

0.9

1.0

A
vg

.
A

cc
ur

ac
y

Auburn Jacksonhole Lagrange Southampton

Figure 2: Glimpse [24] is unable to meet query accuracy requirements
due to its use of a static threshold. The x-axis lists the fraction of each
video used to select the best static threshold (i.e., max filtering while
meeting the accuracy goal of 90%); the remainder of each video is used
for evaluating the threshold.

pre-defined filtering thresholds, which complicate accuracy preser-
vation. To illustrate the limitations of static thresholds, we evaluated
Glimpse [24] on 4 random videos in our dataset. For each video,
to pick the static threshold to use, we varied the amount of video
(from the start) to use for selecting the best possible static threshold,
i.e., the threshold that filtered the most frames while achieving the
target accuracy. We then evaluated the query accuracy on the rest
of the video that was not used for threshold selection. As shown in
Figure 2, even with the best possible static threshold, Glimpse is
almost never able to meet the target accuracy. Note that this is true
even when we used 90% of each video for threshold selection, and
despite the fact that this evaluation was done on adjacent video from
the same camera. The reason, which we will elaborate on in §4.2,
is that the best filtering threshold depends heavily on video content,
which can be highly dynamic.

Key takeaway. These results collectively paint a challenging picture
for on-camera filtering. Due to resource restrictions, to use existing
techniques in real time, cameras must resort to either binary classifi-
cation models or frame differencing. However, binary classification
is largely suboptimal as it hides many filtering opportunities (i.e.,
where objects are present but query results do not change across
frames). Existing frame differencing strategies, on the other hand,
use static thresholds and are unable to reliably meet accuracy targets.

To make effective use of frame differencing, the key question is
whether it is possible to correlate frame differences with pipeline ac-
curacy so that we can make a more informed decision as to whether
a frame can be filtered out. We answer this question affirmatively in
the next sections, where we describe how lightweight differencing
features across video frames can serve as cheap monitoring signals
that are highly correlated with changes in query results. If applied
judiciously (and dynamically), these strong correlations enable large
filtering benefits that are even comparable to those with the ideal
baseline described earlier in this section.

Feature On-camera
tracking speed

Server
tracking speed

SURF 1.27 26.55
SIFT 1.83 10.71
HOG 2.86 5.90

Corner 27.93 144.86
Edge 65.72 799.14
Area 71.80 1105.11
Pixel 308.60 2714.26

Table 2: Tracking speed (fps) for our candidate raw video features for
frame differencing. High- and low-level features are shown on the top
and bottom, respectively. Camera resources were 1 core, 1.0 GHz, and
512 MB RAM, while servers had 4 cores, 4 GHz, and 32 GB of RAM.

3 FILTERING USING CHEAP VISION FEATURES
Given the limitations of existing filtering strategies for on-camera
filtering (§2.2), we seek a clean-slate approach to filtering based on
frame differencing. In this section, we focus on identifying candidate
features, and in §4, we present Reducto, which determines when and
how to use those features for effective on-camera filtering.

Our goal is to identify a set of raw video features (1) that are
cheap enough to be tracked on cameras in real-time, and (2) whose
values are highly correlated with changes in query results for broad
ranges of queries and videos (unlike prior systems that purely focus
on detection [24]). We began with a representative list of differenc-
ing features used by the CV community [21], and grouped them in
terms of the amount of computation required for extraction. Low-
level features such as pixel or edge differences can be observed
directly from raw images, but contain moderate amounts of noise.
The main concern of using these features is whether or not this noise
outweighs the true differencing values in certain cases. In contrast,
high-level features, such as scale-invariant feature transform (SIFT)
and speeded up robust features (SURF), aim to extract highly dis-
tinctive qualities of an image that are invariant to light, pose, etc., by
analyzing properties such as local pixel intensities and shapes; these
features have more semantic information, and many applications use
such information to relate specific contents across frames. These fea-
tures require multiple steps of computation on raw video values for
extraction, but contain less noise as the noise is often smoothed out
by the computation. The main concern of using high-level features
is, clearly, their high extraction overheads.

Table 2 shows a representative list [37] of (high- and low-level)
features we considered, and summarizes their computation over-
heads (in terms of fps) in both on-camera and server settings. Due
to space constraints, we elide their detailed description and refer the
interested reader to Table 8 (§A) and these survey papers [19, 37, 84]
for details. Further, we note that other features may meet the afore-
mentioned goals and can be easily plugged into Reducto.
Tracking speed. As shown in Table 2, tracking high-level features
is far too slow to operate in real-time on cameras; many of these

0.0 0.5 1.0

0
1
2
3
4

C
ha

ng
e

of
C

ou
nt

in
g

R
es

ul
t Pixel [0.870]

0.0 0.5 1.0

0
1
2
3
4

Edge [0.904]

0.0 0.5 1.0

0
1
2
3
4

Area [0.972]

Relative Differencing Value

0.0 0.2 0.4 0.6 0.8 1.0
Relative Differencing Value

0.0

0.2

0.4

0.6

0.8

1.0

C
ha

ng
e

of
B

ou
nd

in
g

B
ox

R
es

ul
t Pixel [0.949] Edge [0.955] Area [0.845]

Figure 3: Correlations between differencing values and changes in
query results for a 10 seconds clip in Auburn [3]. Top shows a car count-
ing query where each line includes tick marks for min, max, and aver-
age feature value, with ribbons summarizing the distribution; bottom
shows a car bounding box detection query. Results are for a random
video. The legend lists the Pearson correlation coefficient per feature.

features cannot be extracted fast enough even on servers! For in-
stance, SURF and SIFT are restricted to frame rates under 2 fps. In
contrast, low-level features can be extracted on cameras at 28-309
fps. Overall, these results eliminate high-level features from consid-
eration for on-camera filtering and direct us to focus on identifying
the appropriate low-level features that can satisfy our correlation
requirements. We also exclude the low-level Corner feature that
falls just short of our real-time (30 fps) tracking goal.

Correlation with changes in query results. Recall that our goal
is to use differencing features to “predict” whether a change in
query results may occur. Thus, the features we use need not capture
the precise change in magnitude between query results for two
frames, but instead must have strong correlation with whether a
change occurs. Figure 3 summarizes the correlation between the
values for each feature that can operate in real-time and changes in
query results. The two figures highlight the fact that the three low-
level features Pixel (i.e., directly compares pixels), Edge (i.e.,
captures differences in contours of objects), and Area (i.e., captures
differences in areas) are indeed highly correlated (to varying degree–
see §4) with changes in query results despite being potentially noisy
on short time intervals. For example, on counting queries, a change
of just 1 in object count leads to average changes of 0.42, 0.38, and
0.44 for the differencing values w.r.t. the Pixel, Area, and Edge
features, respectively. As a reference, changes in these feature values
are only 0.01, 0.11, and 0.09 when the count results are unchanged.
For the bounding box query, even though the precise bounding box
coordinates for an object change progressively across frames, the
correlation remains strong, with easily visible differences in feature
values for even minor adjustments in bounding box coordinates.
Note that these trends hold for the other videos in our dataset as well
(Figures 14-19 in §A).

4 REDUCTO DESIGN AND IMPLEMENTATION

4.1 Overview
Figure 4 depicts the high-level query execution workflow with Re-
ducto. Currently, Reducto supports the three primary classes of

Diff
Extractor

Reducto Camera

 Traditional
 Pipeline

Query
Listener Dataset	

 Filter

Frames	 Filtered
Frames	

Threshold
Tuner

E
nd R

esults	

O Profiler

Fe
at

ur
e

 	

Filtering
Threshold	

Query	

1	 Model
Trainer 2	

Hashtable	Unmatched
Diff Values	

Diff Values
	

Query	

3	

4	 5	

6	

Reducto Server

 Orig. Frames	

Profiling Results	

Figure 4: Overview of Reducto.

queries used in prior video analytics systems [42, 50]: tagging, count-
ing, and bounding box detection. Descriptions of these queries are
presented in §5.1.

Offline server profiling ➊ (§4.2). The Reducto server first runs an
offline profiler ➊ over several minutes of video that characterize the
typical scenes for that camera. The profiler ➊ then runs traditional
pipelines ➌ on that video and stores the results for subsequent fea-
ture selection. As this characterization data is collected, the profiler
processes each frame in the video to extract the three low-level dif-
ferencing features presented in §3. Our observation (Figure 5) is
that there often exists a single feature that works the best for a query
class across different videos, cameras, and accuracy targets. Hence,
during profiling, the server finds the best feature for each query class
that it wishes to support. At the end of this phase, the best feature
for each query class is identified and stored at the server.2

Per-frame diff extraction ➍ (§4.4). The camera does not stream any
frames until it receives a query. Upon the arrival of a user-specified
query and target accuracy, the server informs the camera of the best
feature for that query. To filter, the diff extractor ➍ continuously
tracks the differences in the specified feature between consecutive
frames. The key question at this point is how to know, for each pair
of consecutive frames, if the difference between them is sufficiently
insignificant so that if the camera sends only the first one to the
server (which reuses its query result for the second), the accuracy
would not drop below the target. In other words, what is the right
filtering threshold to use?

Per-query model training ➋ (§4.3). To answer this question, the
server uses a model trainer ➋ that quickly trains, for each query, a
simple (regression) model characterizing the relationships between
differencing values, filtering thresholds, and query result accuracy.
The model is trained by performing K-means-based clustering over
the original frames sent by the camera during a short period after the
query arrives. Training typically takes several seconds to finish due
to the simple models used. The generated model is encoded as a hash
table, where each entry represents a cluster of differencing values
whose corresponding thresholds are within the same neighborhood
— each key is the average differencing value and each value is the
threshold for that cluster which delivers the required accuracy. To-
gether with the selected feature, this hash table is also sent to the
camera for each query.

2Best features for common query types (e.g., detection) can be pre-programmed or
shared across servers, thereby avoiding profiling.

Per-frame threshold tuning ➏ and filtering ➎ (§4.4). When the
camera receives the feature and the hash table for the query, it starts
filtering frames. To do so, the filter ➎ queries the threshold tuner
➏ for the threshold to use. The tuner looks up the hash table using
the differencing value produced by the diff extractor ➍, finds the
matching key-value entry, and applies the listed threshold (i.e., the
value of the entry).

Occasional model retraining ➋ (§4.5). In some cases, the differ-
encing value may not map to any table entry (e.g., the distances
between the value and the existing keys are too large). This indi-
cates a potential change in video dynamics and implies that the new
scene cannot be effectively captured by the existing clusters. As
an example, the burst of cars at the start of rush hour can lead to
a differencing value significantly different from those seen during
training. In these cases, the threshold tuner ➏ sends these unmatched
values (together with their original frames) to the model trainer ➋,
which adds these new data points into its dataset (along with the
generated query results), re-trains the model, and sends the tuner
➏ an updated hash table to ensure that the model stays applicable
despite changes in the video.

The user can decide whether the camera deletes the frames that
are not sent to the server. If the user wishes to save the frames for
later retrieval or retrospective queries [36, 76], the camera archives
all frames onto cheap local storage.

Tracking granularity. Since Reducto’s goal is to ensure that the
specified accuracy is continuously met, Reducto analyzes differ-
encing features at the granularity of video segments rather than
individual frames. Video segments represent small windows (e.g., N
seconds) of consecutive frames. Analyzing features over segments
enables Reducto to smooth out intermittent noise in feature values
(§3). Thus, the Reducto camera buffers frames for each segment and
selects the filtering threshold for the feature (using the hash table)
when all frames of the segment arrive. The camera then applies the
filter with the selected threshold to each buffered frame to decide
whether it needs to be sent.

Selecting the right segment size is important: a small segment size
is susceptible to inaccuracy due to noisy feature values, while a large
segment size better handles noise but requires more frames to be
buffered prior to making filtering decisions (delaying query results).
We empirically observe that N = 1 second sufficiently balances these
properties, and we present results analyzing how sensitive Reducto’s
results are to segment size in §5.

Discussion. We note that the presented design for Reducto (and our
current implementation) focuses on single queries for a given cam-
era’s video feed. However, the described filtering approach can be
extended to handling multiple queries in a straightforward manner:
filtering decisions can initially be made independently per query
(as described), and then aggregated by taking the union of frames
deemed important for any query. Additionally, we note that Reducto
currently targets detection-based queries that do not carry over in-
formation across frames. For instance, in its current form, Reducto
does not support activity detection queries. We leave support for
these more complex queries to future work.

4.2 Feature Selection via Server-side (Offline) Profiling
During the offline profiling phase, the profiler ➊ uses several minutes
of representative video frames to compute, for each frame, (1) the
object detection results using traditional pipelines ➌, and (2) the
low-level differencing values for each candidate feature. Using these
results, the server determines which feature the camera should use.

Lagrange Southampton Newark
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

.o
fF

ra
m

e
(F

ilt
er

ed
)

Pixel
Edge

Area
Offline

(a) Query: Car bounding box detection

Lagrange Southampton Newark
0.90

0.92

0.94

0.96

0.98

1.00

Fr
ac

.o
fF

ra
m

e
(F

ilt
er

ed
)

Pixel
Edge

Area
Offline

(b) Query: Car Counting
Figure 5: Filtering efficacy of the 3 low-level features across 3 videos
and 2 queries. Y-axis reports the percentages of frames filtered (the
higher the better). Across these videos, Area is best for counting, but
Edge is best for bounding box detection. Results used YOLO and a
target accuracy of 90%.

The best feature to use is the one that maximizes the filtering
benefits (i.e., filters out the most frames) while meeting the accuracy
requirement specified by the user. In order to identify the best feature,
the server analyzes the profiling results on a per-segment basis. For
each segment and for each feature, the server considers a large range
of possible thresholds for the feature. For each candidate feature,
the server then aggregates the largest filtering benefits (obtained
from using the best performed threshold on each segment) across all
segments. These aggregated benefits are used to pick the best feature
for each query class supported by Reducto.

Observation 1: Interestingly, we observe that the best feature tends
to vary across query classes, but remains stable across cameras,
videos, and target accuracies for each class. For example, consider
Figure 5, which shows that the Area feature provides the largest
filtering benefits for counting queries across 3 representative videos.
In contrast, the Edge feature provides the most filtering benefits
for bounding box queries. For reference, Area outperforms Pixel
and Edge on counting queries by 11–70%; and Area trails the two
other features by 5–41% on bounding box queries.

The reason is that different features and queries operate at differ-
ent granularities, and their values change at varied levels with respect
to changes across frames. In other words, minor frame differences
may affect certain queries and feature values more than others. For
example, consider the definitions of the Area and Edge features
(Table 8 in §A). Area compares the size of the areas of motion
across frames, but does not consider the distance that those areas
move. In contrast, Edge is finer-grained and observes changes in
the locations of the edges of objects.

Figure 6 illustrates how these divergences affect the suitability of
each feature with respect to filtering for two query types: bounding
box detection and counting queries. As shown in Figure 6(a), any
motion for an object of interest can alter the corresponding bounding
box coordinates. Whereas the Area feature is largely insensitive to
such minor changes (making it ill-suited for filtering, as it suggests
that the query result should not change), the Edge feature will
detect (even minor) movements to the object’s edges and yield a
high differencing value. In contrast, Figure 6(b) shows that the
coarse-grained nature of the Area feature is well-suited for counting

(a) Area: 0.145, Edge: 0.886

(b) Area: 0.830, Edge: 0.908
Figure 6: Car detection results for two sets of adjacent frames from
the Southampton video; subcaptions list the corresponding differenc-
ing feature values. For bounding box detection queries, slight variations
can change the query result; Edge picks up on these subtle changes
(top) but Area does not. In contrast, counting queries are better served
by Area, which reports significant differences when counts change (bot-
tom), but not when counts stay fixed (top).

0 50 100 150 200 250 300
Time elapsed in seconds

0.0
0.2
0.4
0.6
0.8
1.0

B
es

tT
hr

es
ho

ld

Edge for Detection Area for Counting

Figure 7: Best filtering thresholds vary across (even adjacent) video con-
tents. This experiment used the Southampton video, and two features
over two queries (Area over counting and Edge over bounding box
detection, both for cars); the target accuracy is 90%. Trends hold for
other queries, videos, and accuracy targets (§A).

queries: when a new object enters a scene, it represents a new area
of motion and results in a high differencing value. Thereafter, until
the object count changes, the Area value remains low. The Edge
feature, on the other hand, reports significant frame differences even
when the overall object count stays unchanged (e.g., Figure 6(a)),
making it too conservative for filtering for counting queries.

We verified that this stability in best feature holds across other
query classes (e.g., tagging), objects of interest (e.g., people), target
accuracies (e.g., 80%), and detection models (e.g., Faster R-CNN)
as well; results are shown in §A (Figures 21- 22) due to space restric-
tions. This observation implies that the server need not select features
dynamically, and instead can make one-time feature decisions for
all the query classes it wishes to support.

4.3 Model Training for Threshold Tuning
Knowing which feature to use is not enough; the camera also needs
to know how to tune the filtering threshold for the feature so that
filtering does not create unacceptable degradation in query accuracy.
Observation 2: While for each query class the best feature remains
stable over time, the best threshold (i.e., highest one which meets
the accuracy target) to use for a given feature does not. Figure 7
illustrates this point for two different query classes and their corre-
sponding best features. As shown, the best threshold for each feature
varies rapidly, on the order of segments. Thus, the camera needs
a way to dynamically tune the threshold of the feature to prevent
any unacceptable accuracy drops. However, making this decision
requires understanding how different thresholds relate to the accu-
racy of query results. If the server can establish a mapping between

Figure 8: Simplified clustering results for two car queries: detection
(left) and counting (right) over the Jackson Hole video.

differencing values, thresholds, and result accuracy, the camera can
use such information to quickly find the best thresholds to use.

To generate this mapping, the server requires the camera to send
unfiltered frames over a short window right after the query is regis-
tered. These frames are used as an initial training set — the server
runs the full pipeline on them, producing complete results about
each segment of frames — including query accuracy, fraction of
frames filtered, and extracted feature values — for a broad range of
candidate thresholds. For each segment, we compose a 29-dimension
vector for the segment. This vector contains the average differencing
feature value across the pairs of adjacent frames in the segment,
i.e., a 1-second segment contains 30 frames (30 fps), resulting in 29
differencing values. We then add a data point to our training set for
each candidate threshold; each data point is keyed at the correspond-
ing 29-dimension differencing vector, and labeled with the tested
threshold and the resulting query accuracy. Lastly, we remove any
data points whose accuracy falls below the target accuracy for the
query. The server then clusters these data points using the standard
K-means algorithm based on their differencing vectors. Selecting the
number of clusters entails balancing the overhead of the clustering
algorithm and robustness of the resulting clusters to noisy inputs;
we empirically observe that setting a target of 5 clusters strikes the
best balance between these factors, and we leave an exploration of
more adaptive tuning strategies to future work [31, 32].

Figures 8 illustrates the clustering results for a random 10-minute
clip. As shown, the data is highly amenable to such clustering, and
the results follow a fairly intuitive pattern: to meet a given accuracy
target, the filtering threshold decreases as the differencing feature
value increases. This is because high feature values imply that frames
are changing significantly (e.g., due to motion) — these changes
give Reducto a reason to believe that the query result may change
and thus the camera needs to send more frames.

Once clustering is done, the results are encoded into a hash table
where each entry encodes information about a cluster — keys repre-
sent aggregated differencing values in the cluster augmented with
the size measurement of the cluster (discussed shortly), while values
represent the aggregated labels (i.e., thresholds). In particular, each
key is of the form ⟨center,variance⟩, where center is a 29-dimension
vector computed by performing element-wise averaging across the
vectors in the cluster and variance is another 29-dimension vector
where the ith element represents the longest distance between the ith

elements in any possible pairs of data points in the cluster. In other
words, center encodes the central point of the cluster while variance
measures the size of the cluster (i.e., how far apart data points can
be). Each value is the averaged filtering threshold of all data points
in the corresponding cluster.

4.4 On-Camera Filtering
To filter out frames in real time, the camera continuously tracks
differencing values for the selected feature. At the end of each

0.00 0.16 0.31 0.47 0.62
Differencing Feature

0.00

0.07

0.14

0.21

0.28

Th
re

sh
ol

d
Va

lu
e

People Car

(a) Different objects

0.00 0.05 0.10 0.16 0.21
Differencing Feature

0.00

0.08

0.15

0.23

0.31

Th
re

sh
ol

d
Va

lu
e

Sunny Rainy

(b) Different video contents
Figure 9: Offline training would be limited: comparisons of hash table
entries (i.e., clusters) between (a) detection of different objects (i.e., peo-
ple and car) and (b) different video contents (i.e., sunny and rainy) show
that the clusters differ significantly under these circumstances; results
were obtained from analyzing the entire Auburn video.

segment, the camera decides which frames in the segment should be
sent to the server. To do this, the camera simply looks up the hash
table provided by the server. Specifically, the camera composes a
similar 29-dimension vector a for the segment (by averaging the
vectors for the constituent frames) and queries the hash table. The
lookup algorithm finds the key-value pair ⟨⟨c,v⟩, l⟩ such that (1)
the euclidean distance between a and c is ≤ to that between a and
any other key in the hash table, and (2) the distance between the ith

elements in a and c is ≤ the ith element in v, which represents the
longest distance for the ith dimension in the cluster. This indicates
that the new data point falls well into the cluster (i.e., video contents
changed in a similar way as in the past). Once such a table entry is
found, the camera uses the threshold (i.e., the entry’s value) to filter
out frames in the segment. The remaining frames are compressed
using H.264 at the original video’s bitrate, and sent to the server.

4.5 Online Model Retraining
In scenarios where no matching key-value pair can be found (i.e., a
does not belong to any cluster listed in the hash table), Reducto spec-
ulates that the current video properties are different from those used
by the server to compute the table. In order to prevent degradations
to below the accuracy target, the camera halts filtering and sends
all frames in the segment to the server. The server computes query
results over these original frames so no accuracy loss can occur. The
server also adds these unfiltered frames to its dataset and re-clusters.
The updated hash table is streamed back to the camera once it is
computed, and upon reception, the camera resumes filtering.
Online vs. offline training. In our implementation, model training
(i.e., hash table generation) and retraining (i.e., hash table updates)
are handled in the same way. Upon receiving a query, the server
sends the selected feature and an empty hash table to the camera.
The threshold tuner ➏ would not find any matching entry in the table
and thus would have to stop filtering and send all frames for model
training. Similarly, retraining is also triggered by misses in table
lookups. A question the careful reader may ask is: is it necessary
to perform model training/retraining online? In other words, does
an offline-learned linear model suffice? To answer this question,
we compared the hash table entries (i.e., clusters) generated under
different queries and video contents. The results are illustrated in
Figure 9. As shown, the clusters (and threshold values) differ sig-
nificantly under these different circumstances, indicating that an
offline training approach would be limited for unseen queries and
video contents. Thus, even though Reducto’s initial hash table can
benefit from historical video data, in order to cope with the fact that
it is impractical to foresee all possible queries and video properties,
Reducto also supports online training/retraining.

Camera location FPS Resolution

Jackson Hole, WY [5] 15 1920×1080
Auburn, AL [3] 15 1920×1080

Banff, Canada [1] 15 1280×720
Southampton, NY [10] 30 1920×1080

Lagrange, KY [7] 30 1920×1080
Casa Grande, AZ [4] 30 640×360

Newark, NJ [8] 10 640×360

Table 3: Summary of our video dataset.

5 EVALUATION

5.1 Methodology
Table 3 summarizes the video dataset on which we evaluated Re-
ducto. Our dataset comprises public video streams from 7 live
surveillance video cameras deployed around North America. From
each data source, we collected 25 10-minute video clips that cover a
24-hour period. As a result, video content for a given camera varied
over time with respect to illumination, weather characteristics, and
density of people and cars. Video content also varied across cameras
w.r.t. quality, orientation (e.g., certain cameras were mounted on
traffic lights, while others were recording streets from a side angle),
and speed/density of objects (e.g., rural vs. metropolitan). Figure 20
(§A) provides some example screenshots.

In our evaluation, we considered three main classes of queries,
each with a unique definition of accuracy:

• Tagging queries return a binary decision regarding whether or
not an object of a given type appears in a frame. Accuracy is
defined as the percentage of frames which are tagged with the
correct binary value.

• Counting queries return a count for the number of objects of a
given type that appear in a frame. Accuracy for a frame is defined
as the absolute value of the percent difference between the correct
and returned values.

• Bounding box detection queries return bounding box coordi-
nates around each instance of a given object that is detected in a
frame. Accuracy is measured using the standard mAP metric [28]
that evaluates, for each returned bounding box, whether the en-
closed object is of the correct type and whether the bounding box
has sufficiently large overlap (intersection over union) with the
correct box.

We ran each query class across our entire video dataset for
two types of objects: people and cars. Unless otherwise noted,
ground truth for all video frames and queries was computed us-
ing YOLO [62]. Reported accuracy numbers for each of Reducto’s
segments were computed by averaging the accuracy values for each
of the segments’ constituent frames; Reducto used segments of 1
second unless further specified.

Server components ran on an Ubuntu Amazon EC2
p3.2xlarge instance with 8 CPU cores and 1 NVIDIA Tesla V100
GPU. The camera was either a Raspberry Pi or a VM whose re-
sources were provisioned based on the RAM and CPU speeds ob-
served in our study of deployed cameras (§2); the recorded video
was fed into the camera sequentially and in real time. For brevity, in
the VM scenario, we present results for the resource configuration
of 256 MB of RAM and a 1 GHz CPU (single core). However, we
note that the reported trends persist in the other settings in Table 1.
The camera and server were connected over a variety of live (LTE
and WiFi) and emulated networks via Mahimahi [55].

Detection Counting Tagging
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

.o
fF

ra
m

es
(F

ilt
er

ed
)

Reducto (Car)
Offline (Car)

Reducto (People)
Offline (People)

(a) Fraction of filtered frames

Detection Counting Tagging
0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

(b) Achieved accuracy
Figure 10: Comparing Reducto and the offline optimal filtering strat-
egy for three query types and two objects of interest across our entire
dataset. Results are for the distribution across all Reducto segments.
Each bar reports the median with the error bar showing the 25th and
75th percentiles. The target query accuracy is 90%.

5.2 Overall Performance
To understand Reducto’s filtering efficacy, we first compared it to a
baseline video analytics pipeline in which cameras do not perform
any filtering, and servers compute query results for all frames. To
contextualize our results, we compared both systems with the offline
optimal (§2) that uses actual query results to perfectly filter out each
frame whose result sufficiently matches that of its predecessor. Note
that the offline optimal represents an upper bound of what Reducto
can hope to achieve without direct knowledge of query results.

Figure 10a shows that, across our entire video dataset, a target
accuracy of 90%, and a variety of query types, Reducto is able to
filter out a median of 51-97% of frames, which is within 2.8-36.7%
of the offline optimal. As expected, filtering benefits vary based on
query type, object of interest, and video. For instance, across the
dataset, Reducto filtered out a median of 97% and 51% for tagging
and detecting cars, respectively. This follows from the fact that
the bounding box position for a moving car changes very quickly
(e.g., across consecutive frames), while the presence of any car (i.e.,
what a tagging query searches for) often remains stable for long
durations. Indeed, almost all frames could be filtered for tagging
queries because query results changed very infrequently.

Despite this aggressive filtering, Figure 10b illustrates that Re-
ducto is able to always deliver per-segment accuracy values above
the target (90%). Reducto consistently delivers higher accuracy than
the offline optimal, which nearly perfectly matches the target (due
to knowing the ground truth). This is a result of Reducto’s cautious
selection of filtering thresholds (§4.4). In other words, whereas Re-
ducto conservatively selects the filtering threshold to overshoot the
accuracy target (filtering out fewer frames than possible), the of-
fline optimal perfectly hovers over the target, thereby optimizing the
fraction of frames that can be filtered within the accuracy constraint.

Varying accuracy targets. We also evaluated how Reducto’s filter-
ing benefits vary with different accuracy targets. In this experiment,
we primarily focused on bounding box detection queries which show
the largest variation across accuracy targets due to their fine-grained
nature. As expected, Reducto’s filtering benefits increase as the ac-
curacy target decreases (Figure 11). For instance, when the object of

0.9 0.8 0.7
Accuracy Target

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

.o
fF

ra
m

es
(F

ilt
er

ed
)

Reducto (Car)
Offline (Car)

Reducto (People)
Offline (People)

(a) Fraction of filtered frames

0.9 0.8 0.7
Accuracy Target

1.0

0.9

0.8

0.7

0.6

A
cc

ur
ac

y

(b) Achieved accuracy
Figure 11: Analyzing Reducto’s results for different accuracy targets.
Results are for bounding box detection queries of cars and people across
our entire video dataset.

Verizon LTE 24 Mbps
20 ms RTT

60 Mbps
5 ms RTT

0.0

0.5

1.0

1.5

2.0
La

te
nc

y
(s

)
Baseline Reducto Offline

Figure 12: Distribution of per-frame query response times on different
camera-server networks. Each bar reports the median, with error bars
showing 25th and 75th percentiles. Results are for detecting cars on our
entire video dataset, and the target accuracy is 90%.

System Accuracy (%) Fraction
Filtered (%)

Bandwidth
Saving (%)

Backend
Processing (fps)

Baseline 100.00 0.00 0.00 41.13
Reducto 90.49 53.42 22.30 86.21
Optimal 90.16 72.80 39.33 140.04

Table 4: Breaking down the impact of Reducto’s filtering on network
and backend computation overheads. Results are for detecting cars and
are averaged across our entire dataset. The target accuracy is 90%.

interest is people, filtering benefits rise from 36% to 79% as accuracy
drops from 90% to 70%. The reason is that Reducto can be more
aggressive with filtering and tolerate more substantial inter-frame dif-
ferences in feature values, without violating a lower accuracy target.
Importantly, Reducto always met the specified accuracy target.

Query response times. The promise of frame filtering is ultimately
to reduce resource overheads and deliver (highly accurate) query
results with low latency. Figure 12 illustrates that, across several
network conditions, Reducto is able to reduce median per-frame
response times by 22-26% (0.26-0.28s) compared to the baseline
pipeline; Reducto’s response times are within 12–13% the offline
optimal. Table 4 further breaks down these query response time
speedups into network and backend improvements. As shown, Re-
ducto’s filtering results in an average bandwidth saving of 22%
compared to the baseline pipeline; backend processing speeds, on
the other hand, more than doubled due to the decrease in frames to
be processed.

0.5 1.0 3 5 10
Segment Length (s)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

.o
fF

ra
m

e
(F

ilt
er

ed
)

Fraction
Bandwidth

0.5 1.0 3 5 10
Segment Length (s)

0

2

5

8

10

R
es

po
ns

e
Ti

m
e

(s
)

0

25

50

75

100

B
an

dw
id

th
S

av
in

g
(%

)
Figure 13: Impact of Reducto’s on-camera segment length on filtering
benefits for object detection of cars on two randomly selected videos
in our dataset; the target accuracy was 90%. Results are distributions
across segments, with bars representing medians and error bars span-
ning 25th to 75th percentile.

On-camera evaluation. Our experiments thus far have considered
a resource-constrained VM as the camera component of the video
analytics pipeline. In order to evaluate the feasibility of running
Reducto directly on a camera, we replaced the aforementioned VM
in our pipeline with a Raspberry Pi Zero [9] that embeds a 1.0 GHz
single-core CPU and 512 MB of RAM; this resource profile falls
into the range of on-camera resources that we observed in our study
of commodity cameras and surveillance deployments (Table 1 and
§2.1). We note that Raspberry Pi computing boards are intended to
run alongside sensor devices (e.g., cameras) to provide minimal and
affordable computation resources. We implemented Reducto on the
Raspberry Pi using OpenCV [12] for feature extraction and frame
differencing calculations, and a hash table lookup to make threshold
selections and filtering decisions. Unfiltered frames were encoded
using Raspberry Pi’s hardware-accelerated video encoder for the
H.264 standard. As we did with the VM, we fed in each recorded
video in Table 3 sequentially and in real-time to the Raspberry Pi.

Overall, we observed that Reducto’s filtering results for each
video identically matched those from our VM-based implementation
(i.e., results in Figure 11). More importantly, Reducto was able to
operate at 47.8 fps on the Raspberry Pi, highlighting the ability to
perform real-time filtering. Digging deeper, we found that the bulk
of the processing overheads were due to per-frame feature extraction
with OpenCV; this task could operate at 99.7 fps, as compared to
frame differencing calculations and hash table lookups that ran at
129.5 and 318.6 fps, respectively.

Sensitivity to segment size. We varied the segment size that Re-
ducto used for on-camera filtering between 0.5-10 seconds. Figure 13
illustrates three trends. First, as segment size decreases, Reducto’s
median filtering benefits are largely unchanged. We note that the
distribution of filtering benefits widens largely because there are
fewer opportunities to experience different video conditions within
a small segment. For instance, a segment of 4 frames may be mostly
unchanged and require only 1 frame to be sent; such a filtering
fraction is less likely as segment sizes grow. Second, as segment
size increases, bandwidth savings increase. This is because larger
segments enable more aggressive bandwidth savings from standard
video encodings: more frames can avoid redundant transmission due
to fewer key frames. Third, per-frame query response times grow as
segment sizes increase. Recall that Reducto cameras only filter out
and ship frames to servers after a segment is captured. Thus, frames
that are early in a given segment must experience query response
times that are at least as long as the segment size.

Sensitivity to different object detection models: We verified (Fig-
ure 23 in §A) that Reducto’s overall filtering benefits and accuracy

System Accuracy (%) Fraction
Filtered (%)

Bandwidth
Saving (%)

Backend
Processing (fps)

Reducto 90.49 53.42 22.30 86.21
Tiny YOLO 90.22 24.46 13.68 53.66

FilterForward 90.10 27.70 14.49 56.32

Table 5: Comparing Reducto with existing real-time filtering systems.
Results are for detecting cars in our entire dataset, and the target accu-
racy is 90%.

preservation persist across other models, i.e., SSD ResNet, Faster
R-CNN with Inception ResNet.

5.3 Comparison with Other Filtering Strategies
We also compared Reducto with two existing filtering approaches
that are both able to consistently meet a desired accuracy target;
recall from §2.2 that Glimpse [24] was unable to do so due to its
static threshold approach.
Tiny YOLO. We considered a filtering system that computes ap-
proximate query results using a compressed detection model (Tiny
YOLO). Frames whose result confidence is sufficiently high (80%
in this experiment; tuned to the target accuracy) can benefit from (1)
filtering, if the frame does not contain an object of interest, or (2) re-
sult reuse which avoids running the backend detector. This approach
is loosely inspired by Focus’s ingest-time processing [36] which tar-
gets retrospective queries; we omit Focus’ clustering strategy, which
is primarily useful for the tagging queries that Focus targets. We
trained a Tiny YOLO model on 90 minutes of video from each feed
in our dataset to detect cars; we then tested on separate 30-minute
clips from the same feed.
FilterForward. We also ran FilterForward [23], a binary classification-
based filtering system designed for edge servers. With FilterForward,
micro-classifers ingest feature maps computed by different layers of
a full-fledged object detector, and determine whether an object of
interest is present or not in each frame; if not, the frame is filtered
at the edge server. FilterForward reports comparable performance
to NoScope [43], which is intended for retrospective queries. In our
experiments, we directly ran FilterForward’s open-source code and
trained a micro-classifer in the same way as Tiny YOLO above.
Results. Table 5 shows that Reducto achieves significantly larger
filtering benefits compared to both systems. Average frame savings
with Reducto are 53.42%, while Tiny YOLO and FilterForward filter
only 24.46% and 27.7%, respectively. This translates to improve-
ments of 54-63% and 53-61% in network bandwidth expenditure
and backend processing costs, respectively. Key to this performance
discrepancy is the limitation in binary classification-based filter-
ing (§2.2). We note that, unlike Reducto, neither FilterForward nor
Tiny YOLO can run in real time on a camera; the filtering benefits
described here, however, are unaffected by resource constraints.

5.4 Comparison with Complementary Video Analytics
Systems

We also compared Reducto with two systems that improve the ef-
ficiency of real-time video analytics pipelines, CloudSeg [57] and
Chameleon [41]. Each system aims to improve a different aspect of
the analytics pipeline, and both approaches are conceptually com-
plementary to Reducto.
CloudSeg. CloudSeg uses super resolution techniques to signifi-
cantly compress live video prior to shipping it to servers for analyt-
ics tasks; super resolution models at the server are used to (mostly)
recover the original high resolution image, which is then fed into
the analytics pipeline. To implement CloudSeg, we used bilinear
interpolation in OpenCV [12] to compress all frames by 2-4× on

System Accuracy (%) Fraction
Filtered (%)

Bandwidth
Saving (%)

Backend
Processing (fps)

Reducto 90.49 53.42 22.30 86.21
Cloudseg 2x 85.78 0.00 56.82 32.33
Cloudseg 4x 60.86 0.00 82.46 31.13

Reducto 99.10 97.11 80.23 1360.71
Cloudseg 2x 99.67 0.00 56.82 32.19
Cloudseg 4x 99.55 0.00 82.46 31.57

Table 6: Comparing Reducto with CloudSeg [57]. Results are for detect-
ing cars (top) and tagging cars (bottom), both with an accuracy target
of 90%.

System Accuracy (%) Bandwidth
Saving (%)

Backend
Processing (fps)

Baseline 100.00 0.00 13.04
Reducto 90.08 32.16 103.40

Chameleon 92.00 0.00 93.75

Table 7: Comparing Reducto with Chameleon [41] on a car counting
query. The target accuracy was 90%.

our camera VM. We then used the same super resolution model as
CloudSeg, CARN [48], to recover the original video on the server.

As shown in Table 6, we initially tried a compression factor of
4× for CloudSeg. Despite heavy tuning, we were unable to hit our
accuracy target for detection. Thus, we focused our discussion on
the 2× compression which narrowly misses the 90% accuracy goal.
As expected, for detection, CloudSeg achieves superior bandwidth
savings compared to Reducto (57% compared to 22%). However,
CloudSeg does not filter out frames, and instead opts purely for com-
pression, i.e., all frames must go through costly backend processing.
As a result, Reducto’s filtering results in 2.7× improvements in
backend processing overheads. Results for tagging follow a similar
pattern, but we note that Reducto achieves superior bandwidth sav-
ings because most frames can be filtered out; for the same reason, the
discrepancy in backend processing overheads is more pronounced.
These approaches are complementary in that Reducto can also apply
super resolution encoding on cameras (in real time) after filtering.
Chameleon. Systems such as Chameleon [41] and VideoStorm [79]
reduce backend computation costs by profiling different configura-
tions of pipeline knobs (e.g., video resolution, frame sampling rate,
etc.) and selecting those that are predicted to minimize resource
utilization while meeting the user-specified accuracy requirement.
Chameleon improves upon VideoStorm in that it profiles periodically
rather than once, upfront. To implement Chameleon, we considered
configurations based on the following knobs: 5 levels of image
resolution (1080p, 960p, 720p, 600p, 480p), 2 pre-trained object de-
tection models (Faster R-CNN and YOLOv3), and 5 levels of frame
rate (30fps, 10fps, 5fps, 2fps, 1fps). For each video in our dataset,
we selected the best configuration for each 4-second segment (which
is Chameleon’s profiling rate); we used the same segment size for
Reducto. For ease of implementation, profiling for each segment was
done offline. For fair comparison, Reducto used the more expensive
Faster R-CNN model, which Chameleon treats as ground truth.

As shown in Table 7, both systems significantly outperform the
baseline pipeline, but Reducto achieves 37% better backend pro-
cessing speeds. Further, by filtering directly at the video source,
Reducto is also able to achieve network bandwidth improvements
that Chameleon cannot. While both systems reap filtering benefits
(e.g., decreased sample rates with Chameleon), they are largely com-
plementary in that Chameleon considers knobs which Reducto does
not, i.e., detection model, image resolution.

6 RELATED WORK

Edge-cloud split. One class of edge-based approaches, exemplified
by FilterForward [23], sends frames to the server based on the objects

present, approximated by a light-weight neural network running at
the edge. Wang et. al. [69] use MobileNet [35] on drones. Similarly,
Vigil [80] uses an edge node that can run object detection and sends
frames with a higher object count. Gammeter et al. [30] send a frame
only when object tracking on the mobile device has consistently low
confidence. Alternatively, a server could receive partial information
from the edge and decide whether it needs more based on inference
results [57]. While this model can save significant bandwidth, round
trips between server and edge impedes the system’s ability to respond
to queries in real time. Chinchali et al. [25] also use a server-driven
approach, but the edge device can adapt (for DNN input) both the
information it sends and the encoding method based on feedback
from the server. Finally, Emmons et al. [27] propose a DNN split
inference, where the edge runs as many layers as possible before
sending the intermediate values to the cloud. In contrast to all of
these solutions, Reducto, is aimed at cameras with resources that do
not even support small NNs.

Resource scheduling. VideoStorm [79] and Chameleon [41] profile
pipeline knobs to identify cheap and accuracy-preserving configu-
rations (§5), while VideoEdge [38] also considers placement plans
over a hierarchy of clusters. DeepDecision [58] and MCDNN [34]
treat resource scheduling as an optimization problem and maxi-
mize key metrics such as accuracy or latency, while LAVEA [77]
allocates computation among multiple edge nodes, optimizing for
latency. These systems are largely complementary to Reducto, as
the resource-accuracy tradeoff could be further tuned on the set of
Reducto-chosen frames. Another complementary class of systems
focuses on efficient GPU task scheduling [64].

Querying video. NoScope [43], BlazeIt [42], and Focus [36] lower
resource consumption for efficient retrospective video querying. In
contrast, Reducto uses the relationship between video features and
query result, rather than presence of objects, for an early determina-
tion of relevant frames.

Computer vision. The idea of filtering frames based on their fea-
tures is widely seen in the CV community [18, 29, 44, 60, 70, 73, 74].
Many of these methods are used for the task of retrospectively clas-
sifying or recognizing events in videos [26, 56, 74]. AdaFrame, for
example, trains a Long Short-Term Memory network to adaptively
select frames with important information. Others are used for key
frame extraction [60, 78]. The are two main barriers to directly using
these methods to filter frames in a setting like Reducto. One is that
the task of choosing which frames a DNN should process is different
from choosing frames for video classification or key frame extrac-
tion, because the importance of a frame in Reducto is determined
solely by whether the DNN output changes. Second, these methods
rely on neural networks that are too expensive to run on a camera.

7 CONCLUSION
This paper presents Reducto, a video analytics system that sup-
ports efficient real-time querying by leveraging previously unused
resources to perform on-camera frame filtering. This work does not
raise any ethical issues.

Acknowledgements. We thank Frank Cangialosi, Amy Ousterhout,
Anirudh Sivaraman, and Srinivas Narayana for their valuable feed-
back on earlier drafts of this paper. We also thank our shepherd,
Ganesh Ananthanarayanan, and the anonymous reviewers for their
constructive comments. This work is supported in part by NSF grants
CNS-1613023, CNS-1703598, CNS-1943621, and CNS-1763172,
and ONR grants N00014-16-1-2913 and N00014-18-1-2037.

REFERENCES
[1] Banff Live Cam, Alberta, Canada. https://www.youtube.com/

watch?v=9HwSNgcdQ7k.
[2] Can 30,000 Cameras Help Solve Chicago’s Crime

Problem? https : / / www. nytimes . com / 2018 / 05 / 26 / us /
chicago-police-surveillance.html.

[3] City of Auburn Toomer’s Corner Webcam.
https://www.youtube.com/watch?v=hMYIc5ZPJL4.

[4] Gebhardt Insurance Traffic Cam Round Trip Bike Shop.
https://www.youtube.com/watch?v=RNi4CKgZVMY.

[5] Jackson Hole Wyoming USA Town Square Live Cam.
https://www.youtube.com/watch?v=1EiC9bvVGnk.

[6] JeVois Smart Machine Vision Camera. http://jevois.org.
[7] La Grange, Kentucky USA - Virtual Railfan LIVE.

https://www.youtube.com/watch?v=pJ5cg83D5AE.
[8] Newark Police Citizen Virtual Patrol.

https://cvp.newarkpublicsafety.org.
[9] Raspberry Pi Zero. https://www.raspberrypi.org/products/raspberry-

pi-zero.
[10] TwinForksPestControl.com SOUTHAMPTON TRAFFIC

CAM. https://www.youtube.com/watch?v=y3NOhpkoR-w.
[11] DNNCamT M AI camera. https://groupgets.com/campaigns/429-

dnncam-ai-camera.
[12] Open Source Computer Vision Library.

https://https://opencv.org.
[13] Amazon. AWS DeepLens. https://aws.amazon.com/deeplens/.
[14] Ambarella. CV22 - Computer Vision SoC for Consumer Cam-

eras. https://www.ambarella.com/wp-content/uploads/CV22-
product-brief-consumer.pdf.

[15] James Areddy. One Legacy of Tiananmen:
China’s 100 Million Surveillance Cameras.
https : / / blogs . wsj . com / chinarealtime / 2014 / 06 / 05 /
\one-legacy-of-tiananmen-chinas-100-million-surveillance \
-cameras/.

[16] AXIS. Axis for a safety touch at the Grey Cup Festival.
https://www.axis.com/files/success_stories/ss_stad
_greycup_festival_58769_en_1407_lo.pdf.

[17] David Barrett. One surveillance camera for ev-
ery 11 people in Britain, says CCTV survey.
https : / / www . telegraph . co . uk / technology / 10172298 /
\One-surveillance-camera-for-every-11-people-in-Britain \
-says-CCTV-survey.html.

[18] Shweta Bhardwaj, Mukundhan Srinivasan, and Mitesh M.
Khapra. 2019. Efficient Video Classification Using Fewer
Frames. CoRR abs/1902.10640 (2019). arXiv:1902.10640 http:
//arxiv.org/abs/1902.10640

[19] D. Brezeale and D. J. Cook. 2008. Automatic Video Classifica-
tion: A Survey of the Literature. Trans. Sys. Man Cyber Part C
38, 3 (May 2008), 416–430. https://doi.org/10.1109/TSMCC.
2008.919173

[20] S. Brutzer, B. Hoferlin, and G. Heidemann. 2011. Evaluation
of Background Subtraction Techniques for Video Surveillance.
In Proceedings of the 2011 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR ’11). IEEE Computer
Society, Washington, DC, USA, 1937–1944. https://doi.org/10.
1109/CVPR.2011.5995508

[21] N. Buch, S. A. Velastin, and J. Orwell. 2011. A Review of
Computer Vision Techniques for the Analysis of Urban Traffic.
Trans. Intell. Transport. Sys. 12, 3 (Sept. 2011), 920–939.

[22] Zhaowei Cai, Mohammad Saberian, and Nuno Vasconcelos.
2015. Learning Complexity-Aware Cascades for Deep Pedes-
trian Detection. In Proceedings of the 2015 IEEE Interna-
tional Conference on Computer Vision (ICCV) (ICCV ’15).
IEEE Computer Society, Washington, DC, USA, 3361–3369.
https://doi.org/10.1109/ICCV.2015.384

[23] Christopher Canel, Thomas Kim, Giulio Zhou, Conglong Li,
Hyeontaek Lim, David G. Andersen, Michael Kaminsky, and
Subramanya R. Dulloor. 2019. Scaling Video Analytics on
Constrained Edge Nodes. In 2nd SysML Conference.

[24] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng,
Paramvir Bahl, and Hari Balakrishnan. 2015. Glimpse: Con-
tinuous, Real-Time Object Recognition on Mobile Devices.
In Proceedings of the 13th ACM Conference on Embedded
Networked Sensor Systems. 155–168.

[25] Sandeep P. Chinchali, Eyal Cidon, Evgenya Pergament, Tian-
shu Chu, and Sachin Katti. 2018. Neural Networks Meet Phys-
ical Networks: Distributed Inference Between Edge Devices
and the Cloud. In Proceedings of the 17th ACM Workshop
on Hot Topics in Networks (HotNets ’18). Association for
Computing Machinery, New York, NY, USA, 50–56. https:
//doi.org/10.1145/3286062.3286070

[26] Chong-Wah Ngo, Yu-Fei Ma, and Hong-Jiang Zhang. 2005.
Video summarization and scene detection by graph modeling.
IEEE Transactions on Circuits and Systems for Video Tech-
nology 15, 2 (Feb 2005), 296–305. https://doi.org/10.1109/
TCSVT.2004.841694

[27] John Emmons, Sadjad Fouladi, Ganesh Ananthanarayanan,
Shivaram Venkataraman, Silvio Savarese, and Keith Winstein.
2019. Cracking Open the DNN Black-Box: Video Analyt-
ics with DNNs across the Camera-Cloud Boundary. In Pro-
ceedings of the 2019 Workshop on Hot Topics in Video An-
alytics and Intelligent Edges (HotEdgeVideo’19). Associa-
tion for Computing Machinery, New York, NY, USA, 27–32.
https://doi.org/10.1145/3349614.3356023

[28] Mark Everingham, Luc Gool, Christopher K. Williams, John
Winn, and Andrew Zisserman. 2010. The Pascal Visual Object
Classes (VOC) Challenge. Int. J. Comput. Vision 88, 2 (June
2010), 303–338. https://doi.org/10.1007/s11263-009-0275-4

[29] Hehe Fan, Zhongwen Xu, Linchao Zhu, Chenggang Yan, Jian-
jun Ge, and Yi Yang. 2018. Watching a Small Portion could
be as Good as Watching All: Towards Efficient Video Classi-
fication. In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI-18. Interna-
tional Joint Conferences on Artificial Intelligence Organization,
705–711. https://doi.org/10.24963/ijcai.2018/98

[30] S. Gammeter, A. Gassmann, L. Bossard, T. Quack, and L.
Van Gool. 2010. Server-side object recognition and client-side
object tracking for mobile augmented reality. In 2010 IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition - Workshops. 1–8. https://doi.org/10.1109/CVPRW.
2010.5543248

[31] Anil K Ghosh. 2006. On optimum choice of k in nearest neigh-
bor classification. Computational Statistics & Data Analysis
50, 11 (2006), 3113–3123.

[32] Peter Hall, Byeong U Park, Richard J Samworth, et al. 2008.
Choice of neighbor order in nearest-neighbor classification.
The Annals of Statistics 36, 5 (2008), 2135–2152.

[33] Bo Han, Feng Qian, Lusheng Ji, and Vijay Gopalakrishnan.
2016. MP-DASH: Adaptive Video Streaming Over Preference-
Aware Multipath. In Proceedings of the 12th International on

https://www.youtube.com/watch?v=9HwSNgcdQ7k
https://www.youtube.com/watch?v=9HwSNgcdQ7k
https://www.nytimes.com/2018/05/26/us/chicago-police-surveillance.html
https://www.nytimes.com/2018/05/26/us/chicago-police-surveillance.html
https://blogs.wsj.com/chinarealtime/2014/06/05/\one-legacy-of-tiananmen-chinas-100-million-surveillance\-cameras/
https://blogs.wsj.com/chinarealtime/2014/06/05/\one-legacy-of-tiananmen-chinas-100-million-surveillance\-cameras/
https://blogs.wsj.com/chinarealtime/2014/06/05/\one-legacy-of-tiananmen-chinas-100-million-surveillance\-cameras/
https://www.telegraph.co.uk/technology/10172298/\One-surveillance-camera-for-every-11-people-in-Britain\-says-CCTV-survey.html
https://www.telegraph.co.uk/technology/10172298/\One-surveillance-camera-for-every-11-people-in-Britain\-says-CCTV-survey.html
https://www.telegraph.co.uk/technology/10172298/\One-surveillance-camera-for-every-11-people-in-Britain\-says-CCTV-survey.html
http://arxiv.org/abs/1902.10640
http://arxiv.org/abs/1902.10640
http://arxiv.org/abs/1902.10640
https://doi.org/10.1109/TSMCC.2008.919173
https://doi.org/10.1109/TSMCC.2008.919173
https://doi.org/10.1109/CVPR.2011.5995508
https://doi.org/10.1109/CVPR.2011.5995508
https://doi.org/10.1109/ICCV.2015.384
https://doi.org/10.1145/3286062.3286070
https://doi.org/10.1145/3286062.3286070
https://doi.org/10.1109/TCSVT.2004.841694
https://doi.org/10.1109/TCSVT.2004.841694
https://doi.org/10.1145/3349614.3356023
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.24963/ijcai.2018/98
https://doi.org/10.1109/CVPRW.2010.5543248
https://doi.org/10.1109/CVPRW.2010.5543248

Conference on Emerging Networking EXperiments and Tech-
nologies (CoNEXT ’16). ACM, New York, NY, USA, 129–143.
https://doi.org/10.1145/2999572.2999606

[34] Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad
Agarwal, Alec Wolman, and Arvind Krishnamurthy. 2016.
MCDNN: An Approximation-Based Execution Framework
for Deep Stream Processing Under Resource Constraints. In
Proceedings of the 14th Annual International Conference on
Mobile Systems, Applications, and Services (MobiSys ’16).
ACM, New York, NY, USA, 123–136. https://doi.org/10.1145/
2906388.2906396

[35] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. 2017. MobileNets: Efficient Con-
volutional Neural Networks for Mobile Vision Applications.
ArXiv abs/1704.04861 (2017).

[36] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik, Shiv-
aram Venkataraman, Paramvir Bahl, Matthai Philipose,
Phillip B. Gibbons, and Onur Mutlu. 2018. Focus: Query-
ing Large Video Datasets with Low Latency and Low Cost.
In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18). USENIX Association, Carls-
bad, CA, 269–286. https://www.usenix.org/conference/osdi18/
presentation/hsieh

[37] Weiming Hu, Nianhua Xie, Li, Xianglin Zeng, and Stephen
Maybank. 2011. A Survey on Visual Content-Based Video
Indexing and Retrieval. Trans. Sys. Man Cyber Part C 41, 6
(Nov. 2011), 797–819. https://doi.org/10.1109/TSMCC.2011.
2109710

[38] C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M.
Yu, P. Bahl, and M. Philipose. 2018. VideoEdge: Process-
ing Camera Streams using Hierarchical Clusters. In 2018
IEEE/ACM Symposium on Edge Computing (SEC). 115–131.
https://doi.org/10.1109/SEC.2018.00016

[39] LDV Capital Insights. 45 Billion Cameras by 2022 Fuel Busi-
ness Opportunities. https://www.ldv.co/insights/2017.

[40] Samvit Jain, Junchen Jiang, Yuanchao Shu, Ganesh Anantha-
narayanan, and Joseph Gonzalez. 2018. ReXCam: Resource-
Efficient, Cross-Camera Video Analytics at Enterprise Scale.
CoRR abs/1811.01268 (2018). arXiv:1811.01268 http://arxiv.
org/abs/1811.01268

[41] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Sid-
dhartha Sen, and Ion Stoica. 2018. Chameleon: Scalable Adap-
tation of Video Analytics. In Proceedings of the 2018 Confer-
ence of the ACM Special Interest Group on Data Communica-
tion (SIGCOMM ’18). ACM, New York, NY, USA, 253–266.
https://doi.org/10.1145/3230543.3230574

[42] Daniel Kang, Peter Bailis, and Matei Zaharia. 2018. BlazeIt:
Fast Exploratory Video Queries using Neural Networks. CoRR
abs/1805.01046 (2018). arXiv:1805.01046 http://arxiv.org/abs/
1805.01046

[43] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and
Matei Zaharia. 2017. NoScope: Optimizing Neural Network
Queries over Video at Scale. Proc. VLDB Endow. 10, 11 (Aug.
2017), 1586–1597. https://doi.org/10.14778/3137628.3137664

[44] Hanme Kim, Stefan Leutenegger, and Andrew J. Davison.
2016. Real-Time 3D Reconstruction and 6-DoF Tracking
with an Event Camera. In Computer Vision - ECCV 2016
- 14th European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part VI. 349–364. https:
//doi.org/10.1007/978-3-319-46466-4_21

[45] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
2017. ImageNet Classification with Deep Convolutional Neu-
ral Networks. Commun. ACM 60, 6 (May 2017), 84–90. https:
//doi.org/10.1145/3065386

[46] B. Kueng, E. Mueggler, G. Gallego, and D. Scaramuzza. 2016.
Low-latency visual odometry using event-based feature tracks.
In 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 16–23. https://doi.org/10.1109/
IROS.2016.7758089

[47] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua. 2015. A con-
volutional neural network cascade for face detection. In 2015
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 5325–5334.

[48] Yawei Li, Eirikur Agustsson, Shuhang Gu, Radu Timofte, and
Luc Van Gool. 2018. CARN: Convolutional Anchored Re-
gression Network for Fast and Accurate Single Image Super-
Resolution. In The European Conference on Computer Vision
(ECCV) Workshops.

[49] T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Be-
longie. 2017. Feature Pyramid Networks for Object Detection.
In 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 936–944. https://doi.org/10.1109/CVPR.
2017.106

[50] Yao Lu, Aakanksha Chowdhery, and Srikanth Kandula. 2016.
Optasia: A Relational Platform for Efficient Large-Scale Video
Analytics. In Proceedings of the Seventh ACM Symposium on
Cloud Computing (SoCC ’16). ACM, New York, NY, USA,
57–70. https://doi.org/10.1145/2987550.2987564

[51] M5STACK. K210 RISC-V 64 AI Camera.
https://m5stack.com/blogs/news/introducing-the-k210-
risc-v-ai-camera-m5stickv.

[52] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief. 2017.
A Survey on Mobile Edge Computing: The Communication
Perspective. IEEE Communications Surveys Tutorials 19, 4
(Fourthquarter 2017), 2322–2358. https://doi.org/10.1109/
COMST.2017.2745201

[53] IHS Markit. IHS Markit’s Top Video Surveillance Trends for
2018. https://cdn.ihs.com/www/pdf/Top-Video-Surveillance-
Trends-2018.pdf.

[54] Microsoft. Microsoft Azure Data Box.
https://azure.microsoft.com/en-us/services/databox/.

[55] R. Netravali, A. Sivaraman, K. Winstein, S. Das, A. Goyal,
J. Mickens, and H. Balakrishnan. 2015. Mahimahi: Accu-
rate Record-and-Replay for HTTP (Proceedings of ATC ’15).
USENIX.

[56] Mayu Otani, Yuta Nakashima, Esa Rahtu, and Janne Heikkilä.
2019. Rethinking the Evaluation of Video Summaries. CoRR
abs/1903.11328 (2019). arXiv:1903.11328 http://arxiv.org/abs/
1903.11328

[57] Chrisma Pakha, Aakanksha Chowdhery, and Junchen Jiang.
2018. Reinventing Video Streaming for Distributed Vision
Analytics. In 10th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 18). USENIX Association, Boston, MA.
https://www.usenix.org/conference/hotcloud18/presentation/
pakha

[58] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen. 2018. DeepDe-
cision: A Mobile Deep Learning Framework for Edge Video
Analytics. In IEEE INFOCOM 2018 - IEEE Conference on
Computer Communications. 1421–1429. https://doi.org/10.
1109/INFOCOM.2018.8485905

https://doi.org/10.1145/2999572.2999606
https://doi.org/10.1145/2906388.2906396
https://doi.org/10.1145/2906388.2906396
https://www.usenix.org/conference/osdi18/presentation/hsieh
https://www.usenix.org/conference/osdi18/presentation/hsieh
https://doi.org/10.1109/TSMCC.2011.2109710
https://doi.org/10.1109/TSMCC.2011.2109710
https://doi.org/10.1109/SEC.2018.00016
http://arxiv.org/abs/1811.01268
http://arxiv.org/abs/1811.01268
http://arxiv.org/abs/1811.01268
https://doi.org/10.1145/3230543.3230574
http://arxiv.org/abs/1805.01046
http://arxiv.org/abs/1805.01046
http://arxiv.org/abs/1805.01046
https://doi.org/10.14778/3137628.3137664
https://doi.org/10.1007/978-3-319-46466-4_21
https://doi.org/10.1007/978-3-319-46466-4_21
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1109/IROS.2016.7758089
https://doi.org/10.1109/IROS.2016.7758089
https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1145/2987550.2987564
https://doi.org/10.1109/COMST.2017.2745201
https://doi.org/10.1109/COMST.2017.2745201
http://arxiv.org/abs/1903.11328
http://arxiv.org/abs/1903.11328
http://arxiv.org/abs/1903.11328
https://www.usenix.org/conference/hotcloud18/presentation/pakha
https://www.usenix.org/conference/hotcloud18/presentation/pakha
https://doi.org/10.1109/INFOCOM.2018.8485905
https://doi.org/10.1109/INFOCOM.2018.8485905

[59] Henri Rebecq, Timo Horstschaefer, Guillermo Gallego, and
Davide Scaramuzza. 2017. EVO: A Geometric Approach to
Event-Based 6-DOF Parallel Tracking and Mapping in Real
Time. IEEE Robotics and Automation Letters 2, 2 (2017), 593–
600. https://doi.org/10.1109/LRA.2016.2645143

[60] Henri Rebecq, Timo Horstschaefer, and Davide Scaramuzza.
2017. Real-time Visual-Inertial Odometry for Event Cam-
eras using Keyframe-based Nonlinear Optimization. In British
Machine Vision Conference 2017, BMVC 2017, London,
UK, September 4-7, 2017. https : / /www.dropbox.com/s/
ijvhc2hsdh85kcb/0534.pdf?dl=1

[61] Joseph Redmon. Darknet: Open Source Neural Networks in C.
http://pjreddie.com/darknet/.

[62] Joseph Redmon and Ali Farhadi. 2016. YOLO9000: Better,
Faster, Stronger. CoRR abs/1612.08242 (2016).

[63] Y. Ren, F. Zeng, W. Li, and L. Meng. 2018. A Low-Cost
Edge Server Placement Strategy in Wireless Metropolitan
Area Networks. In 2018 27th International Conference on
Computer Communication and Networks (ICCCN). 1–6. https:
//doi.org/10.1109/ICCCN.2018.8487438

[64] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu
Kong, Matthai Philipose, Arvind Krishnamurthy, and Ravi Sun-
daram. 2019. Nexus: A GPU Cluster Engine for Accelerating
DNN-Based Video Analysis. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP ’19). As-
sociation for Computing Machinery, New York, NY, USA,
322–337. https://doi.org/10.1145/3341301.3359658

[65] Yi Sun, Xiaogang Wang, and Xiaoou Tang. 2013. Deep Con-
volutional Network Cascade for Facial Point Detection. In
Proceedings of the 2013 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR ’13). IEEE Computer Society,
Washington, DC, USA, 3476–3483. https://doi.org/10.1109/
CVPR.2013.446

[66] Z. Tang, G. Wang, H. Xiao, A. Zheng, and J. Hwang. 2018.
Single-Camera and Inter-Camera Vehicle Tracking and 3D
Speed Estimation Based on Fusion of Visual and Semantic
Features. In 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW). 108–115.

[67] Tencent. DeepGaze AI Camera.
https://open.youtu.qq.com/#/open/solution/hardware-ai.

[68] Antoni Rosinol Vidal, Henri Rebecq, Timo Horstschaefer,
and Davide Scaramuzza. 2018. Ultimate SLAM? Combining
Events, Images, and IMU for Robust Visual SLAM in HDR
and High-Speed Scenarios. IEEE Robotics and Automation
Letters 3, 2 (2018), 994–1001. https://doi.org/10.1109/LRA.
2018.2793357

[69] Junjue Wang, Ziqiang Feng, Zhuo Chen, Shilpa George, Mi-
hir Bala, Padmanabhan Pillai, Shao-Wen Yang, and Mahadev
Satyanarayanan. 2018. Bandwidth-Efficient Live Video An-
alytics for Drones Via Edge Computing. 159–173. https:
//doi.org/10.1109/SEC.2018.00019

[70] Shiyao Wang, Hongchao Lu, Pavel Dmitriev, and Zhidong
Deng. 2018. Fast Object Detection in Compressed Video.
CoRR abs/1811.11057 (2018). arXiv:1811.11057 http://arxiv.
org/abs/1811.11057

[71] Paul N. Whatmough, Chuteng Zhou, Patrick Hansen,
Shreyas K. Venkataramanaiah, Jae-sun Seo, and Matthew Mat-
tina. 2019. FixyNN: Efficient Hardware for Mobile Computer
Vision via Transfer Learning. CoRR abs/1902.11128 (2019).
arXiv:1902.11128 http://arxiv.org/abs/1902.11128

[72] Wi4Net. Axis is on the case in downtown Huntington Beach.
http://www.wi4net.com/Resources/Pdfs/huntington
%20beach%20case_study%5BUS%5Dprint.pdf.

[73] Chao-Yuan Wu, Christoph Feichtenhofer, Haoqi Fan, Kaiming
He, Philipp Krähenbühl, and Ross B. Girshick. 2018. Long-
Term Feature Banks for Detailed Video Understanding. CoRR
abs/1812.05038 (2018). arXiv:1812.05038 http://arxiv.org/abs/
1812.05038

[74] Zuxuan Wu, Caiming Xiong, Chih-Yao Ma, Richard Socher,
and Larry S. Davis. 2018. AdaFrame: Adaptive Frame Selec-
tion for Fast Video Recognition. CoRR abs/1811.12432 (2018).
arXiv:1811.12432 http://arxiv.org/abs/1811.12432

[75] Wyze. Wyze Camera. https://www.safehome.org/home-
security-cameras/wyze/.

[76] Tiantu Xu, Luis Materon Botelho, and Felix Xiaozhu Lin.
2019. VStore: A Data Store for Analytics on Large Videos.
In Proceedings of the Fourteenth EuroSys Conference 2019
(EuroSys ’19). ACM, New York, NY, USA, Article 16, 17 pages.
https://doi.org/10.1145/3302424.3303971

[77] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li. 2017.
LAVEA: Latency-Aware Video Analytics on Edge Comput-
ing Platform. In 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS). 2573–2574. https:
//doi.org/10.1109/ICDCS.2017.182

[78] Yueting Zhuang, Yong Rui, T. S. Huang, and S. Mehrotra. 1998.
Adaptive key frame extraction using unsupervised clustering.
In Proceedings 1998 International Conference on Image Pro-
cessing. ICIP98 (Cat. No.98CB36269), Vol. 1. 866–870 vol.1.
https://doi.org/10.1109/ICIP.1998.723655

[79] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik,
Matthai Philipose, Paramvir Bahl, and Michael J. Freedman.
2017. Live Video Analytics at Scale with Approximation and
Delay-tolerance. In Proceedings of the 14th USENIX Con-
ference on Networked Systems Design and Implementation
(NSDI’17). USENIX Association, Berkeley, CA, USA, 377–
392. http://dl.acm.org/citation.cfm?id=3154630.3154661

[80] Tan Zhang, Aakanksha Chowdhery, Paramvir Bahl, Kyle
Jamieson, and Suman Banerjee. 2015. The Design and Imple-
mentation of a Wireless Video Surveillance System. 426–438.
https://doi.org/10.1145/2789168.2790123

[81] Tan Zhang, Aakanksha Chowdhery, Paramvir (Victor) Bahl,
Kyle Jamieson, and Suman Banerjee. 2015. The Design and Im-
plementation of a Wireless Video Surveillance System. In Pro-
ceedings of the 21st Annual International Conference on Mo-
bile Computing and Networking (MobiCom ’15). ACM, New
York, NY, USA, 426–438. https://doi.org/10.1145/2789168.
2790123

[82] Alex Zihao Zhu, Nikolay Atanasov, and Kostas Daniilidis.
2017. Event-based feature tracking with probabilistic data as-
sociation. In 2017 IEEE International Conference on Robotics
and Automation, ICRA 2017, Singapore, Singapore, May 29 -
June 3, 2017. 4465–4470. https://doi.org/10.1109/ICRA.2017.
7989517

[83] A. Z. Zhu, N. Atanasov, and K. Daniilidis. 2017. Event-Based
Visual Inertial Odometry. In 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). 5816–5824.

[84] Zhengxia Zou, Zhenwei Shi, Yuhong Guo, and Jieping
Ye. 2019. Object Detection in 20 Years: A Survey. CoRR
abs/1905.05055 (2019). arXiv:1905.05055 http://arxiv.org/
abs/1905.05055

https://doi.org/10.1109/LRA.2016.2645143
https://www.dropbox.com/s/ijvhc2hsdh85kcb/0534.pdf?dl=1
https://www.dropbox.com/s/ijvhc2hsdh85kcb/0534.pdf?dl=1
http://pjreddie.com/darknet/
https://doi.org/10.1109/ICCCN.2018.8487438
https://doi.org/10.1109/ICCCN.2018.8487438
https://doi.org/10.1145/3341301.3359658
https://doi.org/10.1109/CVPR.2013.446
https://doi.org/10.1109/CVPR.2013.446
https://doi.org/10.1109/LRA.2018.2793357
https://doi.org/10.1109/LRA.2018.2793357
https://doi.org/10.1109/SEC.2018.00019
https://doi.org/10.1109/SEC.2018.00019
http://arxiv.org/abs/1811.11057
http://arxiv.org/abs/1811.11057
http://arxiv.org/abs/1811.11057
http://arxiv.org/abs/1902.11128
http://arxiv.org/abs/1902.11128
http://arxiv.org/abs/1812.05038
http://arxiv.org/abs/1812.05038
http://arxiv.org/abs/1812.05038
http://arxiv.org/abs/1811.12432
http://arxiv.org/abs/1811.12432
https://doi.org/10.1145/3302424.3303971
https://doi.org/10.1109/ICDCS.2017.182
https://doi.org/10.1109/ICDCS.2017.182
https://doi.org/10.1109/ICIP.1998.723655
http://dl.acm.org/citation.cfm?id=3154630.3154661
https://doi.org/10.1145/2789168.2790123
https://doi.org/10.1145/2789168.2790123
https://doi.org/10.1145/2789168.2790123
https://doi.org/10.1109/ICRA.2017.7989517
https://doi.org/10.1109/ICRA.2017.7989517
http://arxiv.org/abs/1905.05055
http://arxiv.org/abs/1905.05055
http://arxiv.org/abs/1905.05055

A APPENDIX
Appendices are supporting material that has not been peer-reviewed.

0.0 0.5 1.0

0
1
2
3
4

C
ha

ng
e

of
C

ou
nt

in
g

R
es

ul
t Pixel [0.932]

0.0 0.5 1.0

0
1
2
3
4

Edge [0.917]

0.0 0.5 1.0

0
1
2
3
4

Area [0.918]

Relative Differencing Value

0.0 0.2 0.4 0.6 0.8 1.0
Relative Differencing Value

0.0

0.2

0.4

0.6

0.8

1.0

C
ha

ng
e

of
B

ou
nd

in
g

B
ox

R
es

ul
t Pixel [0.801] Edge [0.666] Area [0.768]

Figure 14: Correlations between differencing values and changes in
query results for a 10 seconds clip in Jacksonhole [5].

0.0 0.5 1.0

0
1
2
3
4

C
ha

ng
e

of
C

ou
nt

in
g

R
es

ul
t Pixel [0.884]

0.0 0.5 1.0

0
1
2
3
4

Edge [0.684]

0.0 0.5 1.0

0
1
2
3
4

Area [0.814]

Relative Differencing Value

0.0 0.2 0.4 0.6 0.8 1.0
Relative Differencing Value

0.0

0.2

0.4

0.6

0.8

1.0

C
ha

ng
e

of
B

ou
nd

in
g

B
ox

R
es

ul
t Pixel [0.808] Edge [0.808] Area [0.634]

Figure 15: Correlations between differencing values and changes in
query results for a 10 seconds clip in Southampton [10].

0.0 0.5 1.0

0
1
2
3
4

C
ha

ng
e

of
C

ou
nt

in
g

R
es

ul
t Pixel [0.912]

0.0 0.5 1.0

0
1
2
3
4

Edge [0.866]

0.0 0.5 1.0

0
1
2
3
4

Area [0.853]

Relative Differencing Value

0.0 0.2 0.4 0.6 0.8 1.0
Relative Differencing Value

0.0

0.2

0.4

0.6

0.8

1.0

C
ha

ng
e

of
B

ou
nd

in
g

B
ox

R
es

ul
t Pixel [0.781] Edge [0.789] Area [0.655]

Figure 16: Correlations between differencing values and changes in
query results for a 10 seconds clip in Lagrange [7].

0.0 0.5 1.0

0
1
2
3
4

C
ha

ng
e

of
C

ou
nt

in
g

R
es

ul
t Pixel [0.832]

0.0 0.5 1.0

0
1
2
3
4

Edge [0.833]

0.0 0.5 1.0

0
1
2
3
4

Area [0.857]

Relative Differencing Value

0.0 0.2 0.4 0.6 0.8 1.0
Relative Differencing Value

0.0

0.2

0.4

0.6

0.8

1.0

C
ha

ng
e

of
B

ou
nd

in
g

B
ox

R
es

ul
t Pixel [0.906] Edge [0.906] Area [0.696]

Figure 17: Correlations between differencing values and changes in
query results for a 10 seconds clip in Newark [8].

0.0 0.5 1.0

0
1
2
3
4

C
ha

ng
e

of
C

ou
nt

in
g

R
es

ul
t Pixel [0.952]

0.0 0.5 1.0

0
1
2
3
4

Edge [0.926]

0.0 0.5 1.0

0
1
2
3
4

Area [0.957]

Relative Differencing Value

0.0 0.2 0.4 0.6 0.8 1.0
Relative Differencing Value

0.0

0.2

0.4

0.6

0.8

1.0

C
ha

ng
e

of
B

ou
nd

in
g

B
ox

R
es

ul
t Pixel [0.617] Edge [0.619] Area [0.619]

Figure 18: Correlations between differencing values and changes in
query results for a 10 seconds clip in Banff [1].

0.0 0.5 1.0

0
1
2
3
4

C
ha

ng
e

of
C

ou
nt

in
g

R
es

ul
t Pixel [0.898]

0.0 0.5 1.0

0
1
2
3
4

Edge [0.882]

0.0 0.5 1.0

0
1
2
3
4

Area [0.910]

Relative Differencing Value

0.0 0.2 0.4 0.6 0.8 1.0
Relative Differencing Value

0.0

0.2

0.4

0.6

0.8

1.0

C
ha

ng
e

of
B

ou
nd

in
g

B
ox

R
es

ul
t Pixel [0.702] Edge [0.705] Area [0.632]

Figure 19: Correlations between differencing values and changes in
query results for a 10 seconds clip in Casa Grande [4].

Figure 20: Screenshots from several of the videos in our dataset. Left
is Jackson Hole, WY, and right is Newark, NJ.

Lagrange Southampton Newark
0.80

0.85

0.90

0.95

1.00

Fr
ac

.o
fF

ra
m

e
(F

ilt
er

ed
)

Pixel Edge Area Offline

(a) Query: People bounding box detection

Lagrange Southampton Newark
0.80

0.85

0.90

0.95

1.00

Fr
ac

.o
fF

ra
m

e
(F

ilt
er

ed
)

Pixel Edge Area Offline

(b) Query: People counting
Figure 21: Filtering efficacy of the 3 low-level features across 3 videos
and 2 queries. This figure shows Best feature holds across other objects
of interest.

Lagrange Southampton Newark
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

.o
fF

ra
m

e
(F

ilt
er

ed
)

Pixel Edge Area Offline

(a) Car bounding box detection with 80% accuracy target

Lagrange Southampton Newark
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

.o
fF

ra
m

e
(F

ilt
er

ed
)

Pixel Edge Area Offline

(b) Car bounding box detection with 70% accuracy target
Figure 22: Filtering efficacy of the 3 low-level features across 3 videos
and 2 queries. This figure shows Best feature holds across other accu-
racy targets.

Detection Counting Tagging
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

.o
fF

ra
m

es
(F

ilt
er

ed
)

YOLO
SSD Resnet

Faster RCNN Resnet
Faster RCNN Inception

(a) Fraction of filtered

Detection Counting Tagging
0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

(b) Achieved accuracy
Figure 23: Comparing Reducto with different detection models for
three query types and two objects of interest across our entire dataset.

Feature Description

Area Calculates the areas of motion in the frame and sends frame if the largest area (as a fraction of total pixels)
is above the given threshold.

Pixel Finds pixels that changed value from the last frame, rounds very small changes to 0, and sends frame if the
resulting fraction of changed pixels is above the given threshold.

Edge Separates the pixels that belong to edges and sends frame if the pixel differences among edge pixels is
above the given threshold.

Corner Detects the pixels that belong to corners and sends frame if the pixel differences among corner pixels is
above the given threshold.

SIFT Detects key points based on contrast, assigns them orientations based on the “neighborhood” of surrounding
pixels, and matches them between frames.

SURF Detects key points using a blob detector, assigns them orientations such that the key points remain if the
object is either scaled or rotated, and matches key points between frames.

HOG Divides frame into small cells, collects a distribution of gradient directions across cells, and compares the
distribution across frames.

Table 8: Description of differencing features considered in our survey (§3).

	Abstract
	1 Introduction
	2 Motivation
	2.1 Smart Camera Resource Overview
	2.2 Limitations of Existing Filtering Techniques

	3 Filtering using Cheap Vision Features
	4 Reducto Design and Implementation
	4.1 Overview
	4.2 Feature Selection via Server-side (Offline) Profiling
	4.3 Model Training for Threshold Tuning
	4.4 On-Camera Filtering
	4.5 Online Model Retraining

	5 Evaluation
	5.1 Methodology
	5.2 Overall Performance
	5.3 Comparison with Other Filtering Strategies
	5.4 Comparison with Complementary Video Analytics Systems

	6 Related Work
	7 Conclusion
	A Appendix

