
This paper is included in the
Proceedings of the 20th USENIX Symposium on

Networked Systems Design and Implementation.
April 17–19, 2023 • Boston, MA, USA

978-1-939133-33-5

Open access to the Proceedings of the
20th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

RECL: Responsive Resource-Efficient
Continuous Learning for Video Analytics

Mehrdad Khani, MIT CSAIL and Microsoft; Ganesh Ananthanarayanan and
Kevin Hsieh, Microsoft; Junchen Jiang, University of Chicago; Ravi Netravali,

Princeton University; Yuanchao Shu, Zhejiang University; Mohammad Alizadeh,
MIT CSAIL; Victor Bahl, Microsoft

https://www.usenix.org/conference/nsdi23/presentation/khani

RECL: Responsive Resource-Efficient Continuous Learning for Video Analytics
Mehrdad Khani1,2, Ganesh Ananthanarayanan2, Kevin Hsieh2, Junchen Jiang3, Ravi Netravali4,

Yuanchao Shu5, Mohammad Alizadeh1, Victor Bahl2
1MIT CSAIL, 2Microsoft, 3University of Chicago, 4Princeton University, 5Zhejiang University

Abstract
Continuous learning has recently shown promising results
for video analytics by adapting a lightweight “expert” DNN
model for each specific video scene to cope with the data drift
in real time. However, current adaptation approaches either
rely on periodic retraining and suffer its delay and significant
compute costs or rely on selecting historical models and
incur accuracy loss by not fully leveraging the potential of
persistent retraining. Without dynamically optimizing the
resource sharing among model selection and retraining, both
approaches have a diminishing return at scale. RECL is
a new video-analytics framework that carefully integrates
model reusing and online model retraining, allowing it
to quickly adapt the expert model given any video frame
samples. To do this, RECL (i) shares across edge devices
a (potentially growing) “model zoo” that comprises expert
models previously trained for all edge devices, enabling history
model reuse across video sessions, (ii) uses a fast procedure to
online select a highly accurate expert model from this shared
model zoo, and (iii) dynamically optimizes GPU allocation
among model retraining, model selection, and timely updates
of the model zoo. Our evaluation of RECL over 70 hours of
real-world videos across two vision tasks (object detection and
classification) shows substantial performance gains compared
to prior work, further amplifying over the system lifetime.

1 Introduction
Video analytics with deep neural networks (DNNs) is a
promising technology adopted in a wide range of applications
such as enterprise security, retail, traffic management, and
transportation [1, 2]. Across these applications, it is often
imperative to run analytics tasks directly on edge devices
(e.g., using on-premises edge servers [3, 4]) to ensure that the
system can deliver real-time results with low latency and in
compliance with data privacy constraints [5–8]. However, the
edge has limited compute resources, which cannot match the
unrelenting growth of video analytics workloads, DNN mod-
els, and video streams [9,10]. Even for applications that can be
deployed in resourceful environments such as public clouds,
the cost of running video analytics remains exorbitant despite
recent advancements in DNN resource efficiency [11–13]. For
example, a high-end NVIDIA V100 GPU can only support
two video streams running the state-of-the-art YOLOv5-L
model [13] at 30 FPS, which translates to a steep cost of
$1,100/month/stream on public clouds [14].

One common approach to reducing the resource require-
ments for video analytics is to use specialized and compressed

DNNs [15–18]. However, owing to their inherent limits on the
number of object appearances and scenes they can learn in their
condensed structures, such specialized DNNs require contin-
uous retraining to cope with dynamic scenes (data drifts) in
order to maintain high inference accuracy. Recent work in the
computer vision and systems communities [19–21] has shown
the effectiveness of this approach for edge video analytics, de-
livering both high resource efficiency and accuracy in results.

Though promising, continuous retraining and deploying
specialized DNNs has two fundamental limitations. First,
continuous retraining consumes the vast majority of compute
resources in these video analytics systems (70%–90% in our
study) [20, 21], making model retraining the key bottleneck
in scaling video analytics to more video streams with limited
compute resources. Our study (Fig. 2) shows that accuracy
drops sharply (by 40% in object detection) as 4× more
cameras share the GPU cycles to retrain their models (§2.2).
Second, it takes time to retrain specialized DNNs, and abrupt
video scene changes inevitably lead to drastic accuracy drops
until the retraining is completed (see Fig. 3 for an example).
Hence, it is fundamentally challenging to uphold the accuracy
lower tail during the retraining.

Our goal in this work is to address the above two fundamen-
tal limitations so that video analytics are scalable with more
consistent accuracy. As retraining specialized DNNs requires
resources and takes time, we aim to minimize the necessity
of retraining by judiciously reusing historical specialized
DNNs that are trained with past video segments. The intuition
behind our approach is that video streams typically exhibit
spatio-temporal correlations (e.g., a car drives back on
the same street or another car has been on the same street
before) [22]. Thus, it is likely that the current video segment
bears some resemblance to historical video segments, and
the corresponding historical specialized DNNs can be reused
for the current scene. Indeed, our study in §2 shows that an
idealized model reusing scheme can consistently deliver high
accuracy (35% mAP) with limited compute resources. In
comparison, existing continuous retraining systems (e.g., [20])
cannot keep up with the compute demand of more cameras,
with their accuracy dropping to a low 24% mAP.

Technical challenges: Harnessing the potential of model
reuse for video analytics faces two challenges. First, we need
to quickly and accurately find the specialized DNN that works
well for the current video segment so that we can reuse the
DNN in real-time. This is difficult because it is unclear how to
compare the similarity of high-dimensional and unstructured
data such as video segments [23], and comparing the current

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 917

video segment with all the historical video segments is not
practically feasible. Second, we need to keep the cost of
enabling model reuse much lower than the cost of model
retraining. This is challenging as the cost of seeking through
historical models grows with the size of history, while model
retraining only requires fixed expenditure for each video
segment. Recent video analytics solutions that reuse historical
models (e.g., ODIN [23]) cannot address these challenges
because they are not designed for resource efficiency.

Solution: We present RECL, a new video analytics solution
that leverages historical specialized DNNs to improve scala-
bility, responsiveness, and accuracy consistency in a resource-
constrained environment. RECL is the first end-to-end
system that integrates model reusing with model retraining for
resource-efficient video analytics, entailing three main ideas:

• We design a fast and robust model selection procedure
to quickly select a suitable model from the model zoo, a
large collection of historical specialized models (§3.1). Our
model selector is inspired by sparse gating networks in the
mixture of experts (MoEs) approach [24–26], and we make
it resource-efficient by decoupling the training of the gating
network from the training of underlying experts. This allows
RECL to select a model based on the characteristic of video
analytic tasks and video scenes (e.g., detecting cars on a sunny
day), which is superior to existing solutions that only consider
the similarity of video frames (e.g., rainy or sunny days) [23].

• RECL shares the model zoo across different edge devices
to enable more model reusing and dynamically adds new
experts to the model zoo with a lightweight process to update
the model selector (§3.3).

• RECL shares GPU resources across the retraining
jobs using an iterative training scheduler that dynamically
prioritizes retraining jobs that progress faster (§3.2). As a
result, it spends little retraining resources on expert models
that are already a good match with the current video segments.

We implement and evaluate RECL on two computer vision
tasks: object detection and object classification. We compare
RECL against three state-of-the-art video analytics systems
(Ekya [21], AMS [20], and ODIN [23]) over a total of 71 hours
of driving videos. Given the same compute resource, our evalu-
ation shows that RECL improves the object detection mAP and
image classification accuracy over the state-of-the-art solutions
by up to 9.0% and 7.4%, respectively. To put these accuracy
gains in perspective, the state-of-the-art mAP score for the ob-
ject detection task on the PASCAL dataset has only improved
by less than 8 percent in the past 6 years [27]. Moreover, the
baseline systems need at least 3.2×more compute resources
to match RECL’s accuracy. Our ablation study shows that
RECL’s superior performance mostly comes from effective
integration of model reuse in our design. Compared to Ekya as
a prior continuous training approach, RECL achieves the same
accuracy up to 91 seconds faster on average. We also show that
the compute overhead of RECL declines gracefully over time
as more expert models are learned and added to the model zoo.

Adaptation

Camera Inference

Sampled
Frames

Model
Updates

Frames

Figure 1: Overview of a video analytics system utilizing continuous learn-
ing. A typical adaptation module continuously retrains expert models
or selects them from an existing collection of models trained in the past.

2 Background and Motivation
We first introduce the background of continuous retraining and
deploying specialized DNNs for video analytics (§2.1). We
then discuss the fundamental limitations of this approach and
how reusing historical specialized DNNs can address these
limitations effectively (§2.2).

2.1 Continuous Retraining for Video Analytics

State-of-the-art generic DNNs are often too expensive to
run for video analytics all the time in resource-constrained
environments such as a mobile edge computing (MEC) net-
work [28]. A common approach is to deploy specialized and
compressed DNNs (or “expert” models) that are trained using
the knowledge of the generic and expensive DNNs (or the
“teacher” model). The idea is to use knowledge distillation [29]
to transfer the knowledge from a large teacher model to a small
expert model for a specific video segment or video stream. On
a matching video segment, an expert model can save compute
resources by orders of magnitude while achieving similar
model accuracy as the large teacher model [15, 16, 30]. This
approach has been widely adopted in modern systems such as
Microsoft’s Rocket [17] and Google’s Learn2Compress [18].

As an expert model only recognizes a limited set of object
appearances and video scenes, a static expert model cannot
achieve high accuracy on dynamic live videos where objects
and scenes inevitably change over time (e.g., different loca-
tions, lighting conditions, object classes, etc.) [21]. A promis-
ing approach to employing expert models on dynamic live
videos is to continuously retrain the expert model with the most
recent video frames. Recent work [19–21, 31] has established
that continuous retraining and deploying small expert models
can simultaneously achieve high accuracy and resource effi-
ciency on dynamic video content. Furthermore, continuous re-
training has shown superior performance compared to running
the large teacher model on a subset of frames and interpolating
the labels (e.g., using optical flow tracking methods) [20].

Fig. 1 can be used to illustrate the high-level components of
a video analytics system that continuously retrains and deploys
expert models. They include: (i) camera service: periodically
sends new sample video frames to the adaptation service; (ii)
adaptation service: uses the recently sampled frames to fine-
tune (a copy of) the camera’s expert model to mimic a larger
teacher model for the current scene, and sends (or “streams”)
the updated expert model to the inference service; and (iii) in-

918 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2 4 6 8
20

25

30

35

40

45

Num. of Cameras

m
ea

n
Av

er
ag

eP
re

ci
si

on
(m

A
P)

No Adaptation
Continuous Retraining
Ideal Model Reuse
Ideal Reuse + Retraining

Figure 2: Object detection accuracy (mAP) of different designs under
different numbers of cameras. Model reuse has the potential to
significantly improve the accuracy in resource-constrained regimes (4, 6,
and 8 cameras), and when combining model reuse and model retraining,
performance could be greatly improved.

ference service: uses the received lightweight expert model for
real-time inference on video frames from the camera service.

This paper focuses on the adaptation service. As retraining
an expert model takes significant compute resources and
time (§1), the adaptation service becomes a key bottleneck
in resource efficiency and accuracy consistency. We observe
that these systems [20, 21] need to spend 70%–90% of the
overall compute resource on retraining their expert models.
This is because model training is much more expensive than
model inference. Besides, knowledge distillation needs to run
the large teacher model to generate data labels on the sampled
frames. In order to address this fundamental challenge, we
need an effective approach to minimize the necessity of
invoking expert retraining.

2.2 The Case of Reusing Historical Expert Models

It is well known that a video deployment usually exhibits
temporally and spatially recurrent patterns [22,23,32]. Similar
video scenes reoccur on the same camera at a similar time of
day (e.g., morning or night), weather (e.g., sunny or raining),
and location (e.g., a drone revisits the same street). More
importantly, a video scene from one camera can also appear
on other cameras, especially those in the same geographical
vicinity, such as a self-driving car visiting a place that other
cars in the same fleet have seen. These temporal and spatial
correlations imply that some expert models trained on video
scenes in the past could perform reasonably well on the current
video scene, and we can potentially leverage these historical
expert models to minimize the necessity of retraining.

To empirically show the potential of reusing historical
expert models, we use a total of 71 hours of driving videos col-
lected from YouTube (more details in §5.1). The large teacher
model is a state-of-the-art object detector DNN, YOLOX-X
(282 GFLOPs), and the expert model is a much smaller
variant YOLOX-Nano (1 GFLOPs) [13]. Similar to existing
continuous retraining solutions, we train one expert model for
each 30-second video segment. We create a model zoo using
all the expert models trained on the first 30 hours of the videos
("training data"), and we use the remaining 41 hours of the

videos ("test data") to report the object detection accuracy.
We evaluate four designs:

1. No Adaptation: trains a single expert model based on all
training data and deploys this expert on the test data.

2. Continuous Retraining: periodically retrains an
expert model for each camera using the most recent
video segments. This serves as a reference point of recent
model-retraining systems, such as AMS [20] and Ekya [21].

3. Ideal Model Reuse: deploys the best expert model from
a given model zoo created based on video segments in
the first 30 hours (ignoring the model-selection overhead).
This can be seen as a strictly better version of ODIN [23],
recent model reusing baseline.

4. Ideal Reuse with Retraining: combines 2 & 3 (retraining
the reused model selected by 3.) This shows how much an
ideal model reusing scheme can improve in a continuous
retraining framework.

All designs are given the same amount of GPU resources
to continuously retrain expert models, while No Adaptation
(Design 1) and Ideal Model Reuse (Design 3) do not use this
resource for retraining.
Benefits in resource efficiency: Fig. 2 shows the mean
Average Precision (mAP) score on the test data while varying
the number of cameras. The observations are two-fold.

First, model reuse is a promising direction in minimizing
retraining. The benefits of model reuse become more evident
when the compute resource is not enough to retrain the expert
models for more cameras (4, 6, and 8 cameras). Even when
the compute resource is enough for model retraining (2
cameras), Ideal Model Reuse can still achieve a similar mAP
as Continuous Retraining. This observation is encouraging
because reusing history models does not require the resources
(not shown here) to retrain any new expert models, and at the
same time, the best expert model in the past already achieves
comparable accuracy with the expert models trained on the
most recent video data.

Second, model reuse has a promising synergy with
continuous retraining—Ideal Reuse with Retraining achieves
the highest mAP across the board. This is because the reused
model provides a strong starting point for retraining, which
reduces the compute resource needed by retraining (i.e., faster
convergence) and improves the inference accuracy of the
resultant expert models.
Benefits in accuracy consistency: Another key benefit of
model reuse is that we do not need to wait for an expert model to
finish retraining. This is particularly important when a camera
has experienced a sudden scene change and is in urgent need
of a new model. For example, when a car drives into a tunnel,
we can select and change the expert model quickly without
the latency of training a new expert (Fig. 3 shows a concrete
example). We demonstrate this benefit with the CDF of mAP
across all video segments for the 8 camera setting (Fig. 4).
As the figure shows, Ideal Model Reuse has a much better

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 919

(a) t=10s (b) t=30s (c) t=40s

20 40 60 80 100 120 140 160

0.6

0.8

1

Response Time Gap

Time (sec)

A
cc

ur
ac

y
(n

or
m

al
iz

ed
)

Continuous Retraining Ideal Model Reuse

(d) Accuracy

Figure 3: Example of a scene change when a car camera enters a tunnel
and how fast Ideal Model Reuse and Continuous Retraining respond:
Model updates arrive every 30 seconds. At t=60 sec, both schemes can
access sample frames from the tunnel scene. Ideal Model Reuse switches
to a good model for the new scene immediately at t = 60 sec, whereas
Continuous Retraining takes about 80 sec to retrain the model till the
accuracy bounces back.

tail mAP than Continuous Retraining. For instance, at the 1st
percentile, Ideal Model Reuse retains 24% mAP while Con-
tinuous Retraining drops to an unacceptable 7% mAP. Fig. 3
illustrates a concrete example. As the car drives into the tunnel
(t = 40s), Ideal Model Reuse switches to a matching expert
much faster (t =60s) than Continuous Retraining (t =120s),
which leads to a much more moderate drop in model accuracy.
Challenges of model reuse: Several technical challenges
need to be addressed to fully realize the benefits of model
reuse. Ideal Model Reuse assumes that it always selects the
best expert model with no compute cost or delay in searching
through all experts in the model zoo, which is not practical.
Recent model reuse solutions in the database community (e.g.,
ODIN [23]) cannot address these challenges either, because
they are not designed for resource efficiency, when sharing
the compute resource among the functions of model selection
and model retraining for many edge devices. To unleash the
potential of model reuse in practice, we need a mechanism to
find the best expert model quickly and accurately. We also need
to rein in the cost and latency of model selection, so that it does
not grow indefinitely with the number of videos or cameras.

In summary, reusing historical expert models is a promising
complement to model retraining, and when used jointly, it
leads to better resource efficiency and more stable and accurate
model adaptation. That said, to make model reuse practical,
several technical challenges remain, which we will tackle in
the next section.

3 Design of RECL
This paper presents RECL, a new end-to-end design of model
adaptation for continuous learning on edge devices. At a high
level, RECL is given an accurate-yet-expensive model (the
“teacher”) and a set of edge devices, and it automatically adapts

10 20 30 40 50

0

0.5

1

Video Segment mAP

C
D

F

Continuous Retraining
Ideal Reuse

Figure 4: Ideal Reuse improves both average and tail accuracy (mAP)
across video segments.

the deployed lightweight (“expert”) models, each dynamically
tailored to an edge device’s particular distribution of video
frames at any point in time, allowing each edge device to
obtain results similar to running the teacher model.

Overall architecture (Fig. 5): RECL launches a model-
adaptation controller on a server machine (e.g., in the cloud,
edge compute cluster, etc.), which manages a set of daemons
running on edge devices. The controller selects and deploys
lightweight models on edge devices, which run local fast
inference using the lightweight model. This work focuses
on the adaptation controller, and the optimizations inside the
edge devices or on the communication between the controller
and the edge device are orthogonal to RECL. Furthermore,
we assume the interactions between the server and edge do not
interfere with any other processes running on the edge device
(including the local inference).

In each model-update window (by default, every 30
seconds),1 each edge device sends sampled frames to the
controller to query if a new model should be used. (Note that
the RECL controller only updates models for edge devices,
which then use models to run inference on video streams.) The
frame sampling rate is set dynamically based on the extent
of scene change (similar to the technique used in AMS [20]).
AMS takes the drift rate of the labels measured at the server
as a signal for setting the frame sampling rate. As labels are
usually in a lower dimension than input images, their variation
rate is a less noisy proxy for detecting the scene change pace.

Based on the sampled frames, the controller performs
two basic functions—model selection (§3.1), which selects
a suitable expert model from a collection of history expert
models to quickly respond to the edge device’s query, and
model retraining (§3.2), which fine-tunes the selected model
based on the sampled frames and manages GPU resources
to many edge devices to retrain their models. Furthermore,
retrained models are periodically added to the model zoo
shared with other edge devices (§3.3). The rest of the section
will present their designs and rationales.

1We use fixed update windows, similar to Ekya [21]. Dynamic window
size is orthogonal to RECL. In general, an update window can be triggered
by an edge device when it detects substantial changes in its video stream, and
there are several prior efforts on scene change detection.

920 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Adaptation Process M (§3.1)

Model Adaptation Controller

Edge1

Update Model Zoo & Update Model Selector
(§3.3)

Heavyweight Teacher NN
Lightweight Expert NN

Sampled
Frames

Deployed
Expert

Sampled
Frames

Model Selector
(Gating Network) Safety Checker

Model Retraining &
Training Scheduler (§3.2)

(Frames,
Labels)

New
Expert

,…

Adaptation
Process M

Adaptation
Process 1

New
Expert

…

…

Teacher Labeler

,…

Backup
Backup

Model Selector (Gating Net) NN

Takes less than few seconds
Takes several seconds
Takes several minutes

Deep Neural Network ModelsMicroservices

Deployed
Expert

EdgeM

Model
Zoo

Model Zoo

Top-k

Figure 5: RECL system architecture. Edge devices (cameras) run real-time inference using lightweight models, and the model-adaptation controller
manages a model zoo of expert models trained on history frames from edge devices (cameras) and, on receiving a model-update query, quickly selects
a suitable model from the model zoo and recently trained models (the light-blue box). New models are also continuously retrained (optimized by a
custom training scheduler) and then incrementally added to the model zoo over time. (The figure does not show optimizations to speedup inference
on edge devices or the controller-device communication, as they are orthogonal to RECL.)

3.1 Model Selection

RECL’s model selection module, on receiving a query from
an edge device, should quickly select a high-quality (accuracy)
expert model from a collection of models. RECL achieves this
goal by: (i) maintaining a large (potentially growing) model
zoo of history expert models that are previously trained for
any edge device; and (ii) using a fast and robust selection
procedure to navigate the large model zoo.

Sharing model zoo across video sessions: RECL’s model zoo
consists of a set of lightweight expert models, each trained for
a specific scene distribution previously seen by some edge de-
vice managed by the controller. For example, if the controller
manages several driving video sensors in an area, the model
zoo might contain experts for different streets/neighborhoods,
different weather conditions, etc. It is crucial to note that RECL
does not directly rely on any priors about the features (e.g.,
weather conditions) of video content as a signal for creating
new models; rather, an expert model is created based on
frames of an edge device in an update time window, and then
added to the model zoo if it improves performance (see §3.3).

An important design choice of RECL is that rather than
caching the history models of different devices separately,
RECL shares the model zoo and its gating network across
devices, enabling model reuse across similar video sessions
of different devices that might share similar temporal-spatial
correlations (e.g., in the same geographical vicinity) [33]. This
reduces the need for online model retraining and improves
system responsiveness when an edge device experiences
a sudden scene change for which a previously trained
model (probably of another device) with good accuracy is
available. For example, cars in the same city would observe
the same scenery over time, even though the frames observed

throughout one driving session may vary significantly. In such
an application, the model zoo would eventually include an
expert for most scene distributions encountered, significantly
reducing the need for per-session model training.
Fast, robust online model selection: Figure 5 (right-hand
side) describes RECL’s online procedure to select a model
from the model zoo. One strawman solution to the model
selection problem is running an exhaustive search over all
experts in the zoo. However, the number of models in the zoo
can grow large over time, and it would become prohibitively
expensive to select models by testing all of them on the sam-
pled frames in each update window. To scale model selection
to a large model zoo, RECL uses a gating network [26] to
directly infer which models in the zoo better fit a given video
content. The gating network is a lightweight DNN that given
an image, assigns a score to each model in the model zoo.
Logically, the gating network is similar to an image classifier,
except that the labels are not object classes but models in
the model zoo. A higher score indicates the model likely
has higher accuracy on the image. (§3.3 will explain how to
update the gating network to handle the changing model zoo.)

An alternative approach [23,34] to model selection is to map
video content to an embedding space (via an autoencoder),
partition the embedding space, and map each partition
to a specific expert model. We found that this approach
works poorly in practice (§5.2). The intuitive reason is that
auto-encoders are trained to learn the distributions of only
input data (e.g., which video frames look similar), rather than
simply learning which frames can share a good expert model.
The former task is too generic, and therefore, it is significantly
hard to learn an efficient embedder to deploy in practice. We
refer readers to [35] for further details. In contrast, RECL’s
gating network directly predicts the quality (accuracy) of each

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 921

expert model and avoids the need to have a good auto-encoder.
That said, it is hard to train a gating network that always

picks the best model from the model zoo. Instead, RECL runs
the gating network on the edge device’s latest sampled frames
and selects the top-K models (e.g., K = 10) with the highest
average scores. The intuition is that the performance of the best
of the top-K models improves quickly with larger K (see §5.3).
In short, the top-K filtering approach strikes a decent balance
between leveraging a large model zoo and fast model selection.

The safety checker then tests the accuracy of these top K
models, along with the current model of the edge device and
the last model retrained on video frames from the same edge
device (explained in §3.2). The testing is based on the sampled
frames and their “ground truth” labeled by the more accurate
and more expensive “teacher” model. Finally, among these
models (top-K from the model zoo, current model, and the
last retrained model), RECL selects the one with the highest
empirical accuracy on the labeled images and sends it to the
device. This online model selection process is fully automatic
and has a low compute cost. For the object detection task, for
example, we use YOLOX-nano for the lightweight experts
and ResNet18 as the gating network. These two models
have a close inference cost per sample (1.1 vs. 1.8 GFLOPs).
However, the gating network only runs on a significantly
smaller subset of frames (e.g., 1/30th of frames).

3.2 Model Retraining

So far, we discussed how to reuse the previously trained models.
Like other continuous learning frameworks [20,21,23], RECL
also retrains models online for each edge device. The edge de-
vice periodically queries the controller in every model-update
window. For each query, RECL will initiate a retraining job
using the sampled frames sent by the device (similar to [21]),
after the model selection process described above is finished.

However, to scale to more edge devices, many of which
need new models, RECL must carefully allocate its GPU
resource to model retraining jobs. The basic idea of RECL
is to closely monitor how accuracy improves on each training
job and dynamically share more GPU resources to the jobs
that benefit more from additional GPU cycles.

RECL time-shares the GPU among multiple retraining
jobs by micro-windows—in a micro-window, we let one of
the retraining jobs use all GPU cycles and may switch to a
different job at the boundary of micro-windows based on the
logic described next. Each micro-window is long enough for
one retraining job to complete one epoch (i.e., going through
all sampled frames once). A typical micro-window size is
about one second. (We will explain the reason for timesharing
GPU shortly.)
Retraining scheduling algorithm: Targeting a fixed maxi-
mum accuracy gap with the teacher model for each video scene
can become quickly intractable as it can be pretty challenging
for the student model to track the same target performance for
all real-world scenes. However, as our results show later, we

Algorithm 1 RECL GPU Sharing Algorithm

1: Input: training requests R , micro-window number of
seconds µ, window size of T sec

2: budget←T ▷ Total time budget
3: procedure PROCESSREQUEST(r)
4: acci← r.EVAL()
5: Train the model for request r for µ seconds
6: acc f ← r.EVAL()
7: budget←budget−µ
8: return (acc f - acci)/µ ▷ Returns the accuracy gain
9: end procedure

10: for r in R do ▷ Initialize the gain estimates
11: gain[r]←PROCESSREQUEST(r)
12: end for
13: while budget>µ do ▷ Schedule the most promising
14: r←argmaxgain ▷ Find the request with max gain
15: gain[r]←PROCESSREQUEST(r)
16: end while

can still target a fixed maximum gap on the average accuracy.
Hence, having a system that uses the resources efficiently,
we can always add more resources as the number of cameras
grows till we are happy with the overall accuracy.

Consider C concurrent training jobs (one for each edge
device). We define Ic(τ) as the improvement achieved from
training the model corresponding to camera c for τ seconds.
Our objective is:

max
τ1,τ2,...,τC

C

∑
c=1

Ic(τc)

s.t.
C

∑
c=1

τc=T

(1)

That is, given a time budget T (e.g., the update window
duration), we want to time-share GPU resources to maximize
the total improvement of accuracy across all models.

To solve this optimization problem, RECL uses the
following iterative scheduler (Algorithm 1). At the beginning
of each update window of size T , the scheduler receives a set
of training requests, R . Each training request corresponds to
a set of labeled frames (already labeled by the teacher model
as part of safety checking), and an expert model checkpoint
(selected by the safety checker at the beginning of the window).
In each micro-window of µ seconds, the PROCESSREQUEST
procedure (Lines 3-9) takes one of the requests r as input and
evaluates how much its accuracy improves between before and
after a micro-window. Notes that the cost of these accuracy
evaluations is ignored as they only require a lightweight
forward pass on the test subset of the data.

The main loop of the algorithm first spends one micro-
window to process each request and initialize its accuracy
improvement (Lines 10-12). Then it iteratively picks the

922 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

training request with the largest accuracy improvement as our
next model to train till we run out of time (Lines 13-16).

Since DNN training curves Ic(τ) are usually concave (i.e.,
accuracy improves quickly and then slows down), then this
iterative algorithm effectively minimizes the maximum speed
of these models’ training curves (∂Ii

∂τi
). It can be shown that

this iterative process converges to a near-optimal partition
of the total time budget that maximizes the total accuracy
improvement across the training jobs [36].
Design choices: We highlight two design choices behind the
retraining scheduler.

To find the best GPU allocation, both Ekya and RECL
predict each retraining job’s training speed (accuracy
improvement vs. epochs) but with different approaches. Ekya
periodically runs extra (“out-of-band”) micro-profiling on each
camera: running a few epochs of training on a subset of history
images to build a profile of the training curve of each camera.
Such upfront micro-profiling has extra compute overhead and
fails when the training curve changes over time. In other words,
they inherently trade off between the profile accuracy and their
overhead. In contrast, RECL uses an “in-band” profiler—it
measures the actual learning progress (accuracy improvement)
of each job on the fly and dynamically determines which one
progresses faster. This scheme avoids the micro-profiling over-
head of Ekya without losing accuracy. Note that RECL requires
fast switching between models, which will be discussed next.
Our scheduler’s iterative algorithm is similar to [37] which is
designed to achieve fairness among the cluster-level training
jobs which compete at a significantly longer time scale.

Instead of splitting GPU cycles spatially across concurrent
training jobs, RECL time-shares the GPU cycles by switching
among concurrent retraining jobs every micro-window. While
it is logically equivalent to spatially sharing, RECL’s GPU
timesharing is based on three practical considerations. (1)
The delay to context switch between GPU-loaded models
(usually less than tens of milliseconds) is negligible compared
to a micro-window. Since a lightweight model in RECL has
a small memory footprint, we can load it to GPU memory
and not swap it out (even when switching between retraining
jobs) until the model retraining completes. (2) Unlike Ekya,
RECL does not have to finish model training very quickly (it
responds to each edge device by first selecting a good model
from the model zoo or the most recently trained model has
been good enough). (3) It does not rely on any GPU library
to dynamically reallocate GPU across different jobs.

3.3 Updating the Model Zoo & Selector

Admission of new models to model zoo: RECL does not add
every retrained model to the model zoo. A recently trained
model is considered promising if the safety checker finds
this retrained model’s accuracy is α higher than the rest of
the candidate models (the top-K experts selected by gating
network and edge device’s current model). These promising
models are put in a queue. When the promising model’s queue

grows larger than a fixed threshold, γ, we empty the queue by
adding them to the model zoo and update the gating network
(explained next) to consider the recently added models. Hence,
α and γ control the frequency of model selector updates. We
later study the impact of the zoo admission rate on the system
performance (§5.3).
Incrementally update of gating network: Recall that the gat-
ing network predicts the accuracy of each expert in the model
zoo on the input frame. Hence, when updating the gating
network to handle new expert models, we need to first label
the accuracy of all experts on both the new frames that were
used to train the new expert models as well as a sub-sampled
set of history frames (those used to update gating network
before). To this end, we label the new samples with existing
experts in the zoo and label the existing samples with the new
experts added to the zoo. This way, we track the performance
of all experts on a sampled set of frames so far. Note that when
we create the training frame set of the gating network, we
sub-sample frames used before and mix them with the new
frames in order to keep the same training size over time.

As the zoo size increases, the output size of our gating
network must change as well. Since the accuracy prediction
logic does not change for most of the models in the zoo, we
only need to add corresponding neurons for the new models
to the final layer without changing the connectivity weights
for existing expert models. This way, we transfer as much
knowledge as possible from one gating network to the next.
To further speed up the training of the gating network, we use
the mean and variance of the most recent model selector in
order to initialize the connectivity weights corresponding to
the new experts in the final layer.
Pruning the model zoo: Though updating the gating network
is usually fast, the overhead of retraining for updating the
gating network grows proportionally with the size of the
model zoo. To prevent the model zoo to grow indefinitely, we
deem an expert in the zoo ineffective if other experts always
have a preferred accuracy. In particular, we remove the experts
that are chosen less than η times in the last q model selection
calls. We set q = 3000, which is about one day’s worth of
video streaming in our system and study the impact of the η

parameter later in §5.2.

4 Implementation
We have implemented RECL in Python and used Pytorch [38]
for inference and training of ML tasks. For communication
between the services, we use the gRPC [39] framework for
remote procedure calls.
Microservices: We implement several microservices to
prototype RECL. These microservices are designed to
generalize to different continuous adaptation design choices
in prior work. RECL runs a camera streaming service on each
camera device to send the subsampled video frames to the
teacher labeler service running on the adaptation server. We
use TensorRT [40] and half-precision computation to further

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 923

speed up the inference processes. One runner microservice
manages the coordination of different components across all
video streams that share resources in the server.
Hooks: Each microservice can register a hook in other
microservices. These hooks are specific functions to run at
predefined time events in the system. Our time events are a com-
bination of before/after, window/microwindow, and first/last
time. For example, if a model zoo update strategy requires
to have information about the training gain of each model at
the microwindow level, it registers accuracy evaluation hooks
in the training scheduler before and after each window.
Adaptation state: There is an adaptation state shared
across all microservices that register to the same runner. All
microservices have read and write access to the adaptation
state to optimize their decisions, possibly share the hooks
results, and keep track of possible global events like the
beginning of a new window.
Training strategy: Our training scheduler service relies on
a sharing strategy abstraction. Each strategy has access to
the adaptation state, can register or subscribe to a hook, and
has a run method to decide which camera model should train
next in each microwindow. If an adaptation scheme is not
microwindow-based, it only has to register hooks for the first
and last microwindow.
Performance monitoring: For tracking the system per-
formance metrics, we implement logging hooks to track
system-level metrics like compute times and resource
utilization in addition to RECL-specific performance metrics
like zoo admission rate and model reuse rates.

5 Evaluations
Finally, we evaluate RECL on two video-analytics tasks using
real-world driving videos. Our key findings include:
• Given the same compute resource, RECL improves the

object detection mAP and image classification accuracy
over state-of-the-art baselines by up to 9.0% and 7.4%,
respectively. The baselines need to use at least 3.2×more
compute resources to match RECL’s accuracy.

• The superior performance of RECL comes primarily from
our distinctive design of model reuse. RECL ’s fast gating
network and safety checker outperform the state-of-the-art
model selection mechanism in terms of accuracy and
efficiency by a large margin.

• RECL is highly responsive to a model-update request. On
average, the time RECL needs to adapt models to the same
accuracy is 11–91 seconds faster than that of the baselines,
with the gap growing both at the tail of the distribution (by
almost 2×) and with the total number of cameras.

• RECL’s retaining scheduler also makes better use of GPU.
In contrast to round-robin and out-of-band profiling used in
several recent continuous learning systems, RECL’s in-band
profiling provides a 2.0% higher mAP at up to 6.1× lower
overhead.

• Compute overhead of RECL decreases gracefully over time

Model Params FLOPs Throughput (FPS)
MobileNetV2 3.5M 0.32G 1.5K

ResNet50 25.6M 4.12G 153
YOLOX-Nano 0.91M 1.1G 312

YOLO-X 99.1M 282G 58
ShuffleNetV2 2.28M 0.15G 3.7K

ResNet18 11.7M 1.8G 490

Table 1: Specifications of the models used for the evaluation. Throughputs
are reported for NVIDIA V100 GPU with a batch size of 1.

as more models are trained and added to the zoo.

5.1 Methodology & Setup

Dataset: We evaluate RECL on two computer-vision tasks—
image classification and object detection—using 151 driving
videos collected from YouTube. Since we would like our video
sessions to include meaningful data drifts, we adopt videos that
have a length of at least a few minutes (up to a couple of hours)2

with a total length of 71 hours. Furthermore, our dataset covers
a wide range of cities and driving situations in North America,
including weather conditions, time of day, and driving speed.
Note that in each experiment, we do not play the exact same
video segment twice on any edge devices, since it might artifi-
cially amplify the gain from model reusing. Driving video is a
remarkably challenging workload for evaluating our system as
the scenes change more widely and frequently. This workload
brings a variety of situations where exact matching is impos-
sible and requires more than a few models to cover the wide
range of possible scenarios. Responsiveness is also more chal-
lenging for driving cameras compared to fixed cameras. For
example, traffic light cameras mostly need only to update ev-
ery few hours when the lighting/weather change, significantly
stressing the compute power at the adaptation server.
Models: For object detection, we use YOLOX-Nano and
YOLOX-X [13] for the student and teacher models, respec-
tively. For image classification, we use MobileNetV2 [42] and
ResNet50 [43] for the student and teacher models. Details of
these models are shown in Table 1. Our models are pre-trained
on ImageNet [44] and COCO [45] datasets for classification
and detection, respectively. For fast model selection, we use
ResNet18 as the gating network architecture by default, unless
otherwise stated.
Metrics: To evaluate the accuracy of different schemes,
we compare the inference results on the edge device with
labels extracted for the same video frames using the teacher
model (similar to prior work [20, 21]). We use mean Average
Precision (mAP) for the detection task, while for classification,
we report accuracy by the proportion of correct predictions
(both true positives and true negatives) among the total number
of cases examined. We calculate these metrics across all 80
and 1000 classes of MS COCO and ImageNet datasets for

2Video sessions in other similar video datasets like Berkeley Driving
Dataset (BDD) [41] were not long enough for our purpose. For example, each
driving episode in BDD is only 40 seconds.

924 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2 4 6 8
20

25

30

35

40

45

Num. of Cameras

C
O

C
O

m
A

P

No Adaptation One-Time Adaptation AMS Ekya ODIN RECL (Ours)

1 2 4 8
20

25

30

35

40

45

Num. of GPUs

(a) Object Detection

2 4 6 8
60

65

70

75

80

Num. of Cameras

A
cc

ur
ac

y

1 2 4 8
60

65

70

75

80

85

Num. of GPUs

(b) Image Classification

Figure 6: End-to-end scaling of the average accuracy across different schemes for two typical vision tasks.

detection and classification, respectively.
Setup: In our setting, model selection and training of the adap-
tation controller happen in the cloud, and each edge device only
runs inference by the lightweight expert model on the local
video stream. All experts can run at a real-time inference speed
(30 frames-per-second) even on lower compute power edge
devices such as NVIDIA Jetson Nano [46] and Coral Edge
TPU [47], and we do not evaluate any optimization on the edge
device, as it is orthogonal to RECL. We use NVIDIA V100
GPUs for the adaptation server. The adaptation processes of
different edge devices share the same pool of GPU resources.
Baselines. We compare RECL against the following
continuous learning methods:
• No Adaptation: We run the pre-trained model on the edge

device without any adaptation.
• One-Time Adaptation: We fine-tune the entire model

on the first half of the videos and test on the rest. This
adaptation happens only once. Comparing RECL with
this scheme will show the benefit of having a continuous
adaptation system in place.

• AMS: We implement Adaptive Model Streaming (AMS)
as in [20], which uses a remote server to continually adapt
lightweight expert models running on edge devices. As
the update intervals are longer and our lightweight models
are smaller than AMS, network bandwidth consumption
is less of a concern in our setup. As such, we relax the
bandwidth constraint of AMS and allow for full model
parameter updates in this scheme. AMS uses a simple
round-robin mechanism for GPU sharing. Comparison
with AMS mainly highlights the gains of model reuse and
optimized GPU sharing. As AMS reasonably outperforms
Just-In-Time [19] and remote server inference in prior
work [20], we no longer compare with these schemes.

• Ekya: Ekya enables both retraining and inference to
co-exist on the edge node without any model reuse. Since
RECL shares the server GPU resource only among model
retraining and selection jobs (inference is on edge devices),
for a fair comparison, we compare RECL with applying
Ekya’s microprofiler and thief scheduler (released in
Ekya [21]) to model retraining jobs. Despite the more

sophisticated resource-sharing mechanisms compared to
AMS, Ekya, however, incurs the out-of-band profiling
overhead and cannot reuse models compared to RECL.
Moreover, since Ekya shows how continuous retraining
significantly outperforms naive model reuse methods (e.g.,
reuse models from the same time of the day) [21, §6.4], we
do not compare RECL with these naive reuse heuristics.

• ODIN: ODIN [23] is a video analytics system that can
detect and recover from data drift by building expert
models based on the similarity of video scenes. We use the
autoencoder-based method proposed in ODIN for model
selection. Specifically, the average of embedding vectors
of the sampled frames in a window is used as the embedding
vector of that window. Also, each trained expert is assigned
an embedding vector the same as its training data. We use
the L2 distance between the embedding vector of a window
and the models in the zoo as a measure of similarity, and
the model selector returns the model with the least distance
from the samples in each window as in the ODIN paper [23].

5.2 Results

End-to-end performance: We first compare the end-to-end
accuracy of RECL with the baselines over a range of provi-
sioned GPUs and a varying number of concurrent cameras
replaying videos from our dataset. Whenever a video ends,
we continue with another video from our dataset. Note that
we never repeat the same video twice as it favorably impacts
the accuracy gain of model reuse. We use NVIDIA V100
GPU as the adaptation server. In measuring the impact of
the number of cameras on the accuracy, we fix the number of
GPUs to 1. For the varying number of GPUs experiment, we
run a workload consisting of 8 cameras. As shown in Fig. 6:
1. Continuous adaptation significantly improves mAP and

accuracy. Gains from continuous learning grow with more
resources provisioned per camera.

2. Overall, RECL outperforms all baselines by a large margin.
In object detection, for instance, RECL improves mAP by
up to 9.0% (8 cameras, 1 GPU) compared to the second
best approach. In terms of resource consumption, RECL
supports 2.6× more cameras on one GPU, and requires

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 925

0 2 4 6 8
20

25

30

35

40

Wall-clock Time (hours)

C
O

C
O

m
A

P

ODIN Oracle RECL

(a) Selection Accuracy

0 2 4 6 8

10

20

Wall-clock Time (hours)
R

at
e(

%
)

ODIN RECL

(b) Switch Rate

Figure 7: An example of RECL model selection performance over time.
As the model zoo grows, (a) accuracy of the RECL-selected models
gradually improves, and (b) the model selected by RECL’s gating
network has higher accuracy than models selected by ODIN (as evidenced
by the fact that the safety checker would more frequently pick the model
by the gating network than it would pick the model selected by ODIN).

2 4 6 8
0

50

100

150

200

Num. of Cameras

Ti
m

e-
to

-R
E

C
L

-A
cc

.(
se

c)

Average 90th-Percentile

Figure 8: Model reuse impact on improving the response time.

3.2× fewer GPU cycles to maintain an mAP of 35%.
3. mAP/accuracy improvements from model reuse are

significant. Compared with Ekya and AMS which do
not reuse historical models, RECL brings up to 9.8%
and 10.7% improvement in mAP and accuracy for object
detection and image classification, respectively.

4. Without model reuse, RECL’s scheduler provides about
1.5% mAP improvement compared to Ekya.

5. In image classification, ODIN performs the best among the
baselines due to its model reuse and specialization design.
Nonetheless, ODIN’s auto-encoder-based model selector
(and the lack of optimized resource sharing) performs
poorly on relatively complicated tasks like object detection.
In contrast, we see better performance of RECL across all
settings in both tasks due to our unique model selector and
retraining scheduler design.

Model selection performance: To directly examine the
model selector performance, in Fig. 7a, we plot the accuracy
of the selected models vs. the system’s wall-clock for 8 GPUs,
i.e., within each hour on the wall-clock, the system ingests 8
hours of video. In the figure, we also include the performance
of ODIN (a recent model selector) over the same zoo created
by RECL, as well as the accuracy of an oracle model that
exhaustively searches over all models in the zoo at each point
in time (while ignoring the oracle’s compute overhead). It

2 4 8

25

30

35

40

Num. of Cameras

C
O

C
O

m
A

P

In-band (RECL–Without Reuse) Out-of-band (Ekya–1 Epoch Prof.)

Out-of-band (Ekya–5 Epoch Prof.) Out-of-band (Ekya–10 Epoch Prof.)

Round-robin (AMS)

(a) Scheduling Perf.

2 4 8
0

0.2

0.4

0.6

Num. of Cameras

Pr
ofi

lin
g

O
ve

rh
ea

d

(b) Profiling Overhead

Figure 9: Impact of profiling on retraining performance: RECL’s
retraining scheduler (which uses a low-overhead in-band profiling)
outperforms Ekya (which relies on out-of-band profiling on each job)
and AMS (whic uses a round-robin scheduler).

is not surprising that the accuracy of the model selected by
RECL improves over time as more models are being added to
the zoo. Furthermore, we observe that RECL performs closely
to the oracle selector, while ODIN struggles to select a good
model from the same zoo. Notice that the cost of running the
oracle model is prohibitively expensive as, after a couple of
hours, it requires testing the accuracy of thousands of experts
in the zoo for each sample frame. On the contrary, RECL uses
ResNet18 as the underlying gating architecture that runs at
490 frames per second (see Table 1).

We further notice that, in Fig. 7a, the model zoo roughly
converges to a desirable accuracy after four hours, totaling
32 hours of video stream ingestion. This observation shows
an opportunity to reduce model zoo update frequency (and
thus its cost) after enough representative experts are collected
in the system. With the growing model zoo, model reuse
becomes more favorable over time as well. Fig. 7b depicts
the percentage of the time that the safety checker prefers the
selected model over the rest (e.g., a recently trained model).
For a fair comparison of the effectiveness of model reuse, we
run RECL and ODIN end-to-end independently (i.e., they are
not sharing the same model zoo). As can be seen in Fig. 7b,
RECL’s model hit ratio increases with a larger zoo, making our
system both more accurate and efficient than ODIN. Moreover,
notice that the safety checker picks the offered historical
model 25% of the time in the case that the most recent trained
model is also coming from RECL. To better understand the
model reuse impact here, we design the following experiment.
Impact of model reuse on responsiveness: Model reuse
improves the response time of the adaptation server by not need-
ing to retrain a new expert model first. To directly evaluate this
effect, we first profile the accuracy of 102 models generated in
Ekya (in a video of 51 minutes long) against 2 minutes of offline
training on a single V100 GPU. Using these profiles, we then
measure the time it would take Ekya, as a continuous retraining
approach, to adapt each model to the same accuracy level of the
RECL’s selected model for reuse on the same window. We refer
to this metric as Time-to-RECL-Accuracy. Figure 8 shows the

926 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 2 4 6

100

101

102

Wall-clock Time (hours)

C
om

pu
te

C
os

t(
Te

ra
flo

ps
)

Selector Update Teacher Labeler Experts Retraining
Model Selector Safety Checker Total

0 2 4 6

0

0.1

0.2

0.3

0.4

0.5

Wall-clock Time (hours)

C
om

pu
te

C
os

tR
at

io

Figure 10: Breakdown of compute cost by the components of RECL
controller. The total cost drops over time as the extra-cost of maintaining
the model zoo significantly reduces, allowing RECL to enjoy the benefit
of model reuse without much additional overhead.

2 4 6 8 10
0

200

400

600

800

Pruning threshold η

Z
oo

Si
ze

With Pruning Without Pruning

2 4 6 8 10
0

10

20

Pruning threshold η

Av
g.

R
eu

se
R

at
e(

%
)

2 4 6 8 10

25

30

35

Pruning threshold η

C
O

C
O

m
A

P

Figure 11: Pruning policy impact on RECL accuracy.

mean and 90th percentile of the Time-to-RECL-Accuracy for
the object detection task across a varying number of cameras
sharing one GPU. We observe that Ekya takes up to 90 seconds
longer than RECL, on average, to achieve the same level of
accuracy. More importantly, this gap grows significantly large
with increasing the number of cameras and at the tail scenarios.
Scheduler performance: We now evaluate RECL’s retraining
scheduler with its “in-band” profiling (§3.2) and compare
its performance with Ekya’s out-of-band micro-profiler and
AMS’s round-robin scheduling method. For a fair comparison
between Ekya and RECL, we turn off RECL’s model reuse
and let Ekya adapt its early stop parameter, which has a similar
effect to the micro-window-based scheduling in RECL. To run
Ekya’s profiler, we set its early stop parameter to 1, 5, and 10
epochs. Fig. 9 compares the accuracy and profiling overhead
(ratio of the time spent on profiling in each window) of these
schedulers vs. the number of cameras. We observe that Ekya’s
out-of-band profilings are either too costly to run (e.g., Ekya
with an early stop of 10 epochs), or too noisy to identify a
good early stop parameter, which results in low accuracy. For
example, an early stop at 1 epoch has the same cost as RECL’s
in-band method but performs worse than round-robin when
resource allocation becomes more challenging with 8 cameras.
Breakdown of compute cost: Fig. 10 shows the cost of differ-
ent components in RECL over the course of 7 hours. Initially,
model selector update has the dominant cost in the system.
However, as the zoo grows over time, the need for updating the
model zoo (and consequently the selector) reduces to the extent
that after a while, the teacher labeler and training scheduler

0 2 4 6 8

0

20

40
60

80

Wall-clock Time (hours)

A
dm

is
si

on
R

at
e(

%
) α=0% α=2% α=4%

(a) Zoo Admission

0 2 4 6 8

25

30

35

40

Wall. Time (hours)

C
O

C
O

m
A

P

(b) Oracle Perf.

0 2 4 6 8

25

30

35

40

Wall. Time (hours)

C
O

C
O

m
A

P

(c) RECL Perf.

Figure 12: Impact of changing the admission rate through the α-promise
threshold on RECL model selection performance.

0 10 20 30 40
0.4

0.6

0.8

K

Se
le

ct
io

n
A

cc
ur

ac
y

ResNet18 (fast, default) ShuffleNetV2 (very fast)

(a) Gating Network Accuracy

0 10 20 30 40

28

30

32

34

K

C
O

C
O

m
A

P

(b) Selected Model Performance

Figure 13: Impact of using top-k models suggested by the gating network
for the default gating network and a faster gating network model.

become the dominant cost of the system, but these “base cost”
is the same as a typical continuous retraining system (such
as Ekya and AMS). In short, the extra overhead for RECL
to enable model reusing (model selector and maintaining a
growing model zoo) significantly reduces over time.

5.3 Ablation Studies

Model zoo pruning: In Fig. 11, we compare RECL accuracy
across various levels of pruning intensity over the course of
nearly 60 hours. Naturally, reducing the value of η leads to
a significant drop in model zoo size without much accuracy
sacrifice. For instance, a balanced choice of the pruning
threshold, η=4 provides the same accuracy despite efficiently
shrinking the size of the model zoo by a factor of 5.6×, from
830 down to about 150 experts.
Zoo admission rate impact (α-promise margin): In order
to evaluate the impact of the admission rate, we turn off the
zoo pruning mechanism and measure the selected model
accuracy. Fig. 12 shows this accuracy for three levels of α

for both the ideal oracle selector and RECL’s selector. As
decreasing α allows for admitting more models to the zoo,
the oracle-based scheme can choose among more models.
However, it gets harder for the gating network model to select
from an arbitrarily large model zoo. Hence, we observe a
diminishing return in increasing the admission rate beyond
α= 2%, which seems to be a good balance between the zoo
size and the model selection complexity.

It should be noticed that the exact values of these parameters
(η,α) largely depend on the dynamics of video content. The

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 927

message from Fig. 12 and 11 is that there are sweet spots for
them that, on a large set of videos, strike a desirable tradeoff
between the cost of maintaining a reasonably sized model
zoo and the quality (accuracy) of the selected models. The
parameter γ controls the gating network update frequency (i.e.,
cost). As the Selector Update cost in Fig. 10 shows, this cost
diminishes over time as the system collects a comprehensive
set of experts. Therefore, RECL ’s performance in steady state
is not as sensitive to γ as it is to α and η.
Model selector top-k: As discussed in §3.1, we pass the top-k
selected model to the safety checker (instead of 1) in order to
find a better model for reuse. In Fig. 13, we show the accuracy
of model selection and the performance of the selected model
for our default and a faster gating network model (see Table 1
for speed comparison). Given this observation, we find K=10
is a good default operating point for RECL. Notice that while
a higher K increases the cost of the safety checker, as shown
in Fig. 10, our safety checker still has a negligible overhead
compared to the other components in the system.

6 Discussion
Safety-critical applications: Predicting the feasibility of
minimum accuracy thresholds is not a trivial problem in non-
convex ML training tasks. Therefore, as we cannot guarantee a
minimum accuracy level using continuous adaptation for safety
critical problems, the solution might come at the cost of provi-
sioning enough resources to run the large state-of-the-art model
for inference. However, if the problem is not safety-critical,
one solution might be to set minimum accuracy thresholds
with timeouts to achieve them, which we leave to future work.
Data residency: RECL requires sharing training samples
with the adaptation server. While there are recent solutions in
computation over encrypted data for secure AI [48], our current
evaluation has been based on having access to the actual video
frames. Depending on the data residency policies, such data
sharing may constrain how far the adaptation server can be
taken from the cameras.

7 Related work
Optimization of video-analytics systems: To maintain high
inference accuracy with low resource usage and fast response,
video-analytics systems have explored many approaches,
including model distillation [16, 20, 21], model architecture
pruning [49, 50], configuration adaptation [32, 51], frame
selection [52, 53], and DNN feature reusing [54, 55]. The
closest to RECL is model distillation—creating lightweight
models (i.e., experts in RECL) that are small and fast yet
accurate on a specific video scene [16, 56]. The challenge is
that as the video scene evolves, the system must create new
expert models on the fly to fit new video content. Existing
solutions rely on either of two approaches—model retraining
techniques train the lightweight models on the latest video
frames [19–21] or on the most relevant images from the
training set [31], and model selection techniques maintain, and

then select a model from, a collection of history models [23]
or a cascade of models with increasing capacities [31, 57].

In contrast, RECL uses both techniques—model retraining
and model selection—as building blocks in an end-to-end
framework. In particular, when an edge device queries for a
model update, RECL can respond faster than Ekya [21] and
AMS [20] by selecting a model from a large collection of
history models used by all edge devices which might have
seen a similar scene and object distribution. RECL also shares
GPU cycles to enable more concurrent model retraining jobs,
refreshing new models for more edge devices.
Model selection under data drifts: In the ML literature,
model selection in a collection of expert models, or Mixture-of-
Experts (MoE), has attracted much attention, especially after
Shazeer et al. [26] demonstrated that using a sparsely gating
network with an MoE of many expert models can drastically
reduce the compute cost of DNNs. Recent work has obtained
accuracy comparable to state-of-the-art expensive models with
a fraction of compute cost [58]. One key distinction between
RECL and MoE applications is that in MoE, all or a subset of
the experts work together on each input. However, in RECL,
there only works one expert on each input. For example, the
recent MoE approach [58] operating on tokenized images
requires access to 768 experts for inference on each input
image. To implement such an approach, one must either load
all experts in the accelerator’s memory or quickly swap the
experts on the accelerator per patch per image, introducing
significant challenges for even more resourceful settings such
as entirely cloud-based applications [59]. That said, many tech-
niques in MoE also assume that the MoE consists of a static
set of models. To handle MoEs that gradually incorporate new
models (as in RECL), the gating network or the model selector
must be retrained over time [60,61]. To avoid retraining model
selectors or saving training data, recent works leverage an
autoencoder that projects input data to a latent space and map
new models to a region in the latent space [23, 34].

RECL’s model selection strategy (§3.1) builds on the
literature on gating networks [26], but reduces the delay and
compute overhead when adding new expert models. Instead
of jointly training the new experts and the gating network [26],
RECL freezes the new expert models already trained to fit the
edge devices’ recent videos and only reshapes and fine-tunes
the last layer of the gating network. Compared to recent
autoencoder-based model selectors [23], RECL’s gating
network enjoys better algorithmic intuition (see §3.1) and
better empirical performance (§5.2).
Resource allocation for DNNs: Resource sharing for
DNN-related jobs has been extensively studied in the systems
literature, including sharing of GPU and network resources
among multiple concurrent DNN training jobs (e.g., [37, 62]),
inference tasks of video analytics (e.g., [51, 63]), and between
inference and training jobs [21]. The common challenge facing
these settings is to predict how much each job’s accuracy can
improve with the same amount of compute/network resources.

928 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

This is usually profiled offline [51], periodically [21], or by
reusing compute data [37].

RECL is a custom design of GPU sharing for continuous
learning across many edge devices. Compared to Ekya [21],
the most recent related work on edge continuous learning,
RECL avoids profiling the training curve of each model;
instead, it tracks the actual training progress of each retraining
job on the fly, similar to SLAQ’s quality-driven scheduler [37]
proposed for large-scale DL clusters.

8 Conclusion
Resource efficiency is one of the most important problems
in modern video analytics applications, and continuous
retraining and deploying expert models is a promising
direction. We show that reusing historical expert models has
a large potential to improve resource efficiency and response
time for continuous retraining, but this approach comes with
its own challenges. We present RECL, the first end-to-end
system that integrates model reusing with model retraining
for resource-efficient video analytics. We show that RECL
achieves significantly better resource efficiency and higher
accuracy simultaneously than state-of-the-art baselines with
(i) a fast and robust model selection procedure, (ii) a model zoo
that shares across multiple edge devices, and (iii) an iterative
training scheduler. We hope that our findings and designs can
stimulate further research in unleashing the full potential of
the synergy between model reusing and model retraining.

9 Acknowledgements
We thank the NSDI reviewers and our shepherd, Dongsu
Han, for their invaluable feedback. This work was supported
in part by NSF grants CNS-1751009, CNS-1955370,
CNS-2152313, CNS-2153449, CNS-2147909, and CNS-
2140552, as well as gifts from Cisco and the sponsors of
MachineLearningApplications@CSAIL program.

References
[1] Iyiola E Olatunji and Chun-Hung Cheng. Video

analytics for visual surveillance and applications: An
overview and survey. Machine Learning Paradigms,
pages 475–515, 2019.

[2] MarketsAndMarkets. Video analytics market
with covid-19 impact, by component, application
(intrusion management, incident detection, peo-
ple/crowd counting, traffic monitoring), deployment
model (on-premises and cloud), type, vertical,
and region - global forecast to 2026. https:
//www.marketsandmarkets.com/Market-Reports/
intelligent-video-analytics-market-778.
html, 2021.

[3] Azure outposts. https://aws.amazon.com/
outposts/.

[4] Azure stack edge. https://azure.microsoft.com/
en-us/services/databox/edge/.

[5] Ganesh Ananthanarayanan, Paramvir Bahl, Peter
Bodík, Krishna Chintalapudi, Matthai Philipose, Lenin
Ravindranath, and Sudipta Sinha. Real-time video
analytics: The killer app for edge computing. Computer,
50(10), 2017.

[6] Si Young Jang, Yoonhyung Lee, Byoungheon Shin,
and Dongman Lee. Application-aware iot camera
virtualization for video analytics edge computing. In
Symposium on Edge Computing (SEC), 2018.

[7] European Parliament. Regulation (EU) 2016/679 of the
European Parliament and of the Council of 27 April 2016
on the protection of natural persons with regard to the
processing of personal data and on the free movement
of such data, and repealing directive 95/46 (general data
protection regulation). Official Journal of the European
Union (OJ), 59, 2016.

[8] Behrouz Jedari, Gopika Premsankar, Gazi Karam
Illahi, Mario Di Francesco, Abbas Mehrabi, and Antti
Ylä-Jääski. Video caching, analytics, and delivery at
the wireless edge: A survey and future directions. IEEE
Commun. Surv. Tutorials, 23(1), 2021.

[9] Ion Stoica. The future of computing is dis-
tributed. https://www.datanami.com/2020/02/
26/the-future-of-computing-is-distributed/,
2020.

[10] Shadi A. Noghabi, Landon P. Cox, Sharad Agarwal, and
Ganesh Ananthanarayanan. The emerging landscape of
edge computing. GetMobile Mob. Comput. Commun.,
23(4), 2019.

[11] Andrew Howard, Ruoming Pang, Hartwig Adam,
Quoc V. Le, Mark Sandler, Bo Chen, Weijun Wang,
Liang-Chieh Chen, Mingxing Tan, Grace Chu, Vijay
Vasudevan, and Yukun Zhu. Searching for mobilenetv3.
In International Conference on Computer Vision (ICCV),
2019.

[12] Mingxing Tan, Ruoming Pang, and Quoc V. Le.
Efficientdet: Scalable and efficient object detection. In
Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

[13] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and
Jian Sun. YOLOX: exceeding YOLO series in 2021.
CoRR, abs/2107.08430, 2021.

[14] Azure linux virtual machine pricing. https:
//azure.microsoft.com/en-us/pricing/
details/virtual-machines/linux/.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 929

https://www.marketsandmarkets.com/Market-Reports/intelligent-video-analytics-market-778.html
https://www.marketsandmarkets.com/Market-Reports/intelligent-video-analytics-market-778.html
https://www.marketsandmarkets.com/Market-Reports/intelligent-video-analytics-market-778.html
https://www.marketsandmarkets.com/Market-Reports/intelligent-video-analytics-market-778.html
https://aws.amazon.com/outposts/
https://aws.amazon.com/outposts/
https://azure.microsoft.com/en-us/services/databox/edge/
https://azure.microsoft.com/en-us/services/databox/edge/
https://www.datanami.com/2020/02/26/the-future-of-computing-is-distributed/
https://www.datanami.com/2020/02/26/the-future-of-computing-is-distributed/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/

[15] Seungyeop Han, Haichen Shen, Matthai Philipose,
Sharad Agarwal, Alec Wolman, and Arvind Krishna-
murthy. MCDNN: an approximation-based execution
framework for deep stream processing under resource
constraints. In Proceedings of Annual International
Conference on Mobile Systems, Applications, and
Services (MobiSys), 2016.

[16] Daniel Kang, John Emmons, Firas Abuzaid, Peter
Bailis, and Matei Zaharia. Noscope: Optimizing neural
network queries over video at scale. Proc. VLDB
Endow., 10(11):1586–1597, aug 2017.

[17] Microsoft Rocket for live video analytics.
https://www.microsoft.com/en-us/research/
project/live-video-analytics/, 2021.

[18] Sujith Ravi. Custom on-device ML models with
Learn2Compress. https://ai.googleblog.com/
2018/05/custom-on-device-ml-models.html,
2018.

[19] Ravi Teja Mullapudi, Steven Chen, Keyi Zhang, Deva
Ramanan, and Kayvon Fatahalian. Online model
distillation for efficient video inference. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision (ICCV), 2019.

[20] Mehrdad Khani, Pouya Hamadanian, Arash Nasr-
Esfahany, and Mohammad Alizadeh. Real-time video
inference on edge devices via adaptive model stream-
ing. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2021.

[21] Romil Bhardwaj, Zhengxu Xia, Ganesh Anantha-
narayanan, Yuanchao Shu, Nikolaos Karianakis, Kevin
Hsieh, Paramvir Bahl, and Ion Stoica. Ekya: Continuous
learning of video analytics models on edge compute
servers. In USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2022.

[22] Samvit Jain, Ganesh Ananthanarayanan, Junchen Jiang,
Yuanchao Shu, and Joseph Gonzalez. Scaling video
analytics systems to large camera deployments. In
Proceedings of the International Workshop on Mobile
Computing Systems and Applications (HotMobile), 2019.

[23] Abhijit Suprem, Joy Arulraj, Calton Pu, and Joao
Ferreira. Odin: Automated drift detection and
recovery in video analytics. Proc. VLDB Endow.,
13(12):2453–2465, jul 2020.

[24] Michael I. Jordan and Robert A. Jacobs. Hierarchical
mixtures of experts and the EM algorithm. Neural
Comput., 6(2), 1994.

[25] Carlos Riquelme, Joan Puigcerver, Basil Mustafa,
Maxim Neumann, Rodolphe Jenatton, André Susano
Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision
with sparse mixture of experts. CoRR, abs/2106.05974,
2021.

[26] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer. arXiv preprint
arXiv:1701.06538, 2017.

[27] Paperswithcode leaderboard of object de-
tection on PASCAL VOC 2007 dataset.
https://paperswithcode.com/sota/
object-detection-on-pascal-voc-2007. Ac-
cessed: September 2022.

[28] Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang,
and Khaled Ben Letaief. A survey on mobile edge
computing: The communication perspective. IEEE
Commun. Surv. Tutorials, 19(4), 2017.

[29] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2(7), 2015.

[30] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodík,
Shivaram Venkataraman, Paramvir Bahl, Matthai
Philipose, Phillip B. Gibbons, and Onur Mutlu. Focus:
Querying large video datasets with low latency and low
cost. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2018.

[31] Haichen Shen, Seungyeop Han, Matthai Philipose, and
Arvind Krishnamurthy. Fast video classification via
adaptive cascading of deep models. In Proceedings of
the IEEE conference on computer vision and pattern
recognition (CVPR), pages 3646–3654, 2017.

[32] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik,
Siddhartha Sen, and Ion Stoica. Chameleon: scalable
adaptation of video analytics. In Proceedings of the
2018 Conference of the ACM Special Interest Group on
Data Communication (SIGCOMM), 2018.

[33] Samvit Jain, Xun Zhang, Yuhao Zhou, Ganesh Anantha-
narayanan, Junchen Jiang, Yuanchao Shu, Paramvir Bahl,
and Joseph Gonzalez. Spatula: Efficient cross-camera
video analytics on large camera networks. In IEEE/ACM
Symposium on Edge Computing (SEC), 2020.

[34] Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuyte-
laars. Expert gate: Lifelong learning with a network
of experts. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 3366–3375, 2017.

930 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.microsoft.com/en-us/research/project/live-video-analytics/
https://www.microsoft.com/en-us/research/project/live-video-analytics/
https://ai.googleblog.com/2018/05/custom-on-device-ml-models.html
https://ai.googleblog.com/2018/05/custom-on-device-ml-models.html
https://paperswithcode.com/sota/object-detection-on-pascal-voc-2007
https://paperswithcode.com/sota/object-detection-on-pascal-voc-2007

[35] Geoffrey Hinton. Introduction to neural networks and
machine learning, lecture 15.

[36] Stephen Boyd, Stephen P Boyd, and Lieven Vanden-
berghe. Convex optimization. Cambridge university
press, 2004.

[37] Haoyu Zhang, Logan Stafman, Andrew Or, and
Michael J Freedman. Slaq: quality-driven scheduling
for distributed machine learning. In Proceedings of the
2017 Symposium on Cloud Computing (SoCC), 2017.

[38] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information
Processing Systems 32, pages 8024–8035, 2019.

[39] gRPC. https://grpc.io/about/.

[40] NVIDIA. TensorRT. https://developer.nvidia.
com/tensorrt.

[41] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingy-
ing Chen, Fangchen Liu, Vashisht Madhavan, and Trevor
Darrell. BDD100K: A diverse driving dataset for hetero-
geneous multitask learning. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2020.

[42] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018.

[43] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016.

[44] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pages 248–255, 2009.

[45] Tsung-Yi Lin, Michael Maire, Serge J. Belongie,
Lubomir D. Bourdev, Ross B. Girshick, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft COCO: common
objects in context. CoRR, abs/1405.0312, 2014.

[46] NVIDIA Jetson Nano. https://developer.nvidia.
com/embedded/jetson-nano-developer-kit.

[47] Coral Edge TPU. https://coral.ai/docs/
edgetpu/benchmarks/.

[48] CIPHERMODE Labs. https://www.ciphermode.
tech/solutions-secureai. Accessed: September
2022.

[49] Ran Xu, Rakesh Kumar, Pengcheng Wang, Peter
Bai, Ganga Meghanath, Somali Chaterji, Subrata
Mitra, and Saurabh Bagchi. Approxnet: Content and
contention-aware video object classification system
for embedded clients. ACM Transactions on Sensor
Networks (TOSN), 18(1):1–27, 2021.

[50] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan
Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda,
Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware
efficient convnet design via differentiable neural
architecture search. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

[51] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik,
Matthai Philipose, Paramvir Bahl, and Michael J Freed-
man. Live video analytics at scale with approximation
and {Delay-Tolerance}. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
17), 2017.

[52] Yuanqi Li, Arthi Padmanabhan, Pengzhan Zhao, Yufei
Wang, Guoqing Harry Xu, and Ravi Netravali. Reducto:
On-camera filtering for resource-efficient real-time video
analytics. In Proceedings of the Annual conference of the
ACM Special Interest Group on Data Communication
on the applications, technologies, architectures, and pro-
tocols for computer communication (SIGCOMM), 2020.

[53] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng,
Paramvir Bahl, and Hari Balakrishnan. Glimpse:
Continuous, real-time object recognition on mobile
devices. In Proceedings of the 13th ACM Conference on
Embedded Networked Sensor Systems (SenSys), 2015.

[54] Mengwei Xu, Mengze Zhu, Yunxin Liu, Felix Xiaozhu
Lin, and Xuanzhe Liu. Deepcache: Principled cache for
mobile deep vision. In Proceedings of the 24th Annual
International Conference on Mobile Computing and
Networking (MobiCom), 2018.

[55] Angela H Jiang, Daniel L-K Wong, Christopher Canel,
Lilia Tang, Ishan Misra, Michael Kaminsky, Michael A
Kozuch, Padmanabhan Pillai, David G Andersen, and
Gregory R Ganger. Mainstream: Dynamic Stem-Sharing
for Multi-Tenant video processing. In USENIX Annual
Technical Conference (USENIX ATC), 2018.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 931

https://grpc.io/about/
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://coral.ai/docs/edgetpu/benchmarks/
https://coral.ai/docs/edgetpu/benchmarks/
https://www.ciphermode.tech/solutions-secureai
https://www.ciphermode.tech/solutions-secureai

[56] Daniel Kang, Peter Bailis, and Matei Zaharia. Blazeit:
Optimizing declarative aggregation and limit queries
for neural network-based video analytics. Proc. VLDB
Endow., 13(4):533–546, dec 2019.

[57] Jiashen Cao, Ramyad Hadidi, Joy Arulraj, and Hyesoon
Kim. Thia: Accelerating video analytics using early
inference and fine-grained query planning. arXiv
preprint arXiv:2102.08481, 2021.

[58] Carlos Riquelme, Joan Puigcerver, Basil Mustafa,
Maxim Neumann, Rodolphe Jenatton, André Su-
sano Pinto, Daniel Keysers, and Neil Houlsby. Scaling
vision with sparse mixture of experts. Advances in Neu-
ral Information Processing Systems (NeurIPS), 34, 2021.

[59] Tutel: An efficient
mixture-of-experts im-
plementation for large
DNN model training.
https://www.microsoft.
com/en-us/research/
blog/tutel-an-efficient-mixture-of-experts-implementation-for-large-dnn-model-training/.
Accessed: September 2022.

[60] Jeremy Z Kolter and Marcus A Maloof. Using additive
expert ensembles to cope with concept drift. In
Proceedings of the 22nd international conference on
Machine learning (ICML), pages 449–456, 2005.

[61] J Zico Kolter and Marcus A Maloof. Dynamic
weighted majority: An ensemble method for drifting
concepts. The Journal of Machine Learning Research,
8:2755–2790, 2007.

[62] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu,
and Chuanxiong Guo. Optimus: an efficient dynamic
resource scheduler for deep learning clusters. In
Proceedings of the Thirteenth EuroSys Conference
(EuroSys), 2018.

[63] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao,
Bingyu Kong, Matthai Philipose, Arvind Krishnamurthy,
and Ravi Sundaram. Nexus: A GPU cluster engine for
accelerating DNN-based video analysis. In Proceedings
of the 27th ACM Symposium on Operating Systems
Principles (SOSP), 2019.

932 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.microsoft.com/en-us/research/blog/tutel-an-efficient-mixture-of-experts-implementation-for-large-dnn-model-training/
https://www.microsoft.com/en-us/research/blog/tutel-an-efficient-mixture-of-experts-implementation-for-large-dnn-model-training/
https://www.microsoft.com/en-us/research/blog/tutel-an-efficient-mixture-of-experts-implementation-for-large-dnn-model-training/

	Introduction
	Background and Motivation
	Continuous Retraining for Video Analytics
	The Case of Reusing Historical Expert Models

	Design of RECL
	Model Selection
	Model Retraining
	Updating the Model Zoo & Selector

	Implementation
	Evaluations
	Methodology & Setup
	Results
	Ablation Studies

	Discussion
	Related work
	Conclusion
	Acknowledgements

