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ABSTRACT
Owing to a need for low latency data accesses, emerging IoT
and mobile applications commonly require distributed data
stores (e.g., key-value or KV stores) to operate entirely at the
network’s edge. Unfortunately, existing KV stores employ
randomized data placement policies (e.g., consistent hash-
ing) that ignore the client mobility and resulting variance in
client-server latencies that are inherent to edge applications—
the effect is largely suboptimal and inefficient data placement.
We present Portkey, a distributed KV store that dynamically
adapts data placement according to time-varying client mo-
bility and data access patterns. The key insight with Portkey
is to lean into the inherent mobility and prioritize rapid but
approximate placement decisions over delayed optimal ones.
Doing so enables the efficient tracking of client-server laten-
cies despite edge resource constraints, and the use of greedy
placement heuristics that are self-correcting over short time-
scales. Results with a realistic autonomous vehicle dataset
and two small-scale deployments reveal that Portkey reduces
average and tail request latency by 21-82% and 26-77% com-
pared to existing placement strategies.
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1 INTRODUCTION
The expansion of IoT and mobile systems has resulted in
deployments of high-volume data producers and consumers
residing at the network edge. Example applications include
autonomous vehicular networks [4, 54, 59, 71, 73, 85], fed-
erated learning [10, 36, 89], drone-assisted disaster manage-
ment [19, 24, 25], and AR/VR [12, 15, 23]. Key to these appli-
cations are the inherent mobility and resource constraints
of clients and (potentially) servers, as well as the require-
ment of low-latency data accesses [62, 81, 89]. Consequently,
these applications typically employ lightweight datastores
(e.g., key-value (KV) stores such as Redis [65] and Apache
Cassandra [39]) entirely at the edge [16, 45, 50, 63], in order
to avoid high edge-to-cloud communication latencies [52].

Unfortunately, existing distributed KV stores are ill-suited
for edge settings, and instead were designed for datacenter
environments with relatively uniform client-server latencies,
e.g., when servers reside on the same rack. Accordingly, KV
stores typically opt for randomized KV assignment strate-
gies [20] such as consistent hashing and hash slot sharding
that prioritize load balancing and fault tolerance, but ignore
client mobility and the resulting client-server latencies (§3.1).
The result is that retargeting KV stores to the edge com-
puting context can yield largely inefficient data placements.
For example, using our dataset for an autonomous vehicular
application (§2.2), we find that existing placement strate-
gies yield 1.7-11.9× higher access latencies than an optimal
strategy that explicitly incorporates client mobility (§3.2);
Figure 1 illustrates the intuition behind this suboptimality.
To fill this void, we present Portkey, a new distributed

KV store that explicitly incorporates the time-varying mo-
bility and latency patterns experienced by edge applications.
Portkey formulates data placement as an online optimiza-
tion problem, whereby data access patterns and client loca-
tions/latencies are continuously tracked and used to tune KV
placements in a manner that globally minimizes access laten-
cies. To realize this, Portkey must overcome two challenges
with regards to efficient data collection and fast placement
decisions. The underlying insight to both of our solutions
(described below) is that, due to the very nature of dynamic
systems, an optimal placement now is likely to become stale
in the near-future. Thus, Portkey prioritizes rapid but poten-
tially suboptimal decisions over delayed optimal ones.
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Figure 1: Example smart city that coordinates autonomous
vehicles using datastore servers attached to distributed ac-
cess points. The primary replica for a KV pair shared by
clients A, B, and C should intuitively be placed at their near-
est host, which may vary over time as the clients move. The
randomized placement used in existing systems ignores this
locality, resulting in potentially high access latencies.

Challenge 1: efficient data collection. At its core, the
ideal placement for a given KV pair (or simply KV) at any
time is impacted by two factors: which clients access that KV,
and what is their latency to each available datastore server.
The former can be logged by transparent request proxying,
while the latter involves generating a logical network dis-
tance matrix across distributed clients. Though conceptually
straightforward, collecting latency information is difficult un-
der the tight resource constraints imposed by edge networks
(i.e., bandwidth [86]), as well as edge devices such as IoT
gateways and sensor nodes (i.e., energy and memory [74]).

To solve this, Portkey generates succinct latency sketches
[28, 44] using a series of lightweight techniques inspired
by Network Tomography [84]. First, to generate a holistic
view, Portkey profiles the end-to-end latency of the datastore
from the perspective of each client by (1) passively profiling
application-generated requests, and (2) judiciously insert-
ing active probes to servers that are not accessed by client
workloads. Then, in subsequent time windows, Portkey em-
ploys locality-aware reprofiling such that latency information
is recollected only if there exists sufficient evidence that a
client’s motion might affect KV placements. Importantly,
due to the short time windows that Portkey operates over,
reprofiling decisions consider only proximal servers whose
client-server latencies would be most affected by short-term
mobility. The same servers should already house the KVs
that a client accesses, resulting in low reprofiling overheads
(i.e., few active probes).
Challenge 2: fast placement decisions. Even with the
necessary information, making placement decisions involves
solving a computationally hard optimization problem (reduc-
ing to the NP-hard Partition problem [8, 35]) that incorpo-
rates all of the influencing factors including client location,

server capacity, network state, and workload patterns (§4.2).
Worse, the ideal placements can change as any of the afore-
mentioned properties change, which can occur at very short
time-scales in settings with high client mobility. For exam-
ple, in our mobility trace of taxis moving through Rome [11],
there is a 72% probability that at least one client will switch
access points every 10 seconds.

To generate real-time placement decisions in response to
changing system dynamics, Portkey’s adaptive solver oper-
ates on keys independently, and handles host storage con-
straints by using a greedy assignment that prioritizes KVs
with the largest marginal impact on overall datastore per-
formance, i.e., balancing storage requirements with access
frequency. Overheads are further reduced by having non-
contentious keys, e.g., those that are accessed frequently but
only by a single client, skip the formal solver. This greedy
heuristic foregoes optimal placement in exchange for rapid
placement of the most important KVs at any time. However,
suboptimalities (e.g., from ignoring the impact of colocat-
ing KVs) only persist for short time scales, and subsequent
profiling and solver iterations will reveal the missed latent
effects, allowing for timely readjustment.

We implement Portkey as an immediately deployable mod-
ular extension to the Redis KV store that can transparently
adapt data placements to arbitrary workloads and network
characteristics [53]. Unfortunately, to our knowledge, there
does not exist a public dataset for our target edge applica-
tions that includes the associated client mobility. Thus, to
evaluate Portkey, we first developed representative datasets
for an autonomous vehicular application that incorporate
real taxi mobility traces over public distributed KV bench-
mark workloads (§2.2); our datasets and testbed cover a wide
range of values for parameters that affect datastore perfor-
mance including data locality, network topology, and client-
server latencies. We also deployed Portkey in two (small-
scale) smart building and crowd sourcing applications that
use Raspberry Pis and livemobile networks. In comparison to
the predominant randomized placement policy and a variety
of locality-aware heuristic strategies, Portkey reduced aver-
age and tail (95th percentile) request latencies by 21-82% and
26-77%, while delivering low network (1-3%) and memory
(< 1MB for thousands of servers and KVs) overheads.

2 TARGET APPLICATIONS
In this section, we first describe our target edge applications
and their intrinsic properties (§2.1), and then describe the
representative workloads used throughout the paper (§2.2).

2.1 Edge Applications and Goals

Autonomous Vehicular Networks. Applications over ve-
hicular networks commonly require rapid access (10s-100s
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of ms) to a distributed data management platform. Use cases
include the creation and dissemination of 3D feature maps,
enhanced line-of-sight augmentation, real-time traffic pre-
diction, route planning, customer-vehicle matching (e.g., for
ride-hailing services), and model sharing [4, 34, 54, 59, 71,
85, 88]. Data locality and mobility characteristics range from
location-specific (e.g., marking hazards) to highly-mobile
(e.g., current line-of-sight feature map). Similarly, the sets of
accessing clients vary over time depending on current client
locations or the set of neighboring vehicles. Regardless, given
the inherent need for rapid decision making, reliable low-
latency access to shared data is required on the order of tens
of milliseconds [9, 33, 41].
Disaster Management. Embedded technologies have dra-
matically impacted our ability to predict and respond to natu-
ral disasters at the edge. These data processing pipelines are
fundamentally latency-sensitive; faster detection provides a
better response opportunity. For example, early earthquake
and wildfire detection sensor systems leverage crowdsourced
data across mobile clients (e.g., IMU or inertial measurement
unit values, locations) to determine disaster areas (e.g., earth-
quake hotspots) and offer advanced notification enabling
vital preparation [37, 48, 57]. Incorporating UAV and drone
deployments further enhances situational awareness and
augments disaster response, ranging from firefighting to
search & rescue [19, 24, 25]. Available infrastructure support-
ing distributed data storage in these scenarios varies from
purely peer-to-peer coordination over highly mobile servers
(e.g., drones acting as both clients and servers) to static edge
deployments, e.g., at shared access points.
Federated Learning. Federated learning is a novel approach
to distributed machine learning over multiple edge devices
that does not need to exchange or centralize local data sam-
ples [10]. Typical model sizes range from 10-100 MBs, with
latency requirements to parameter servers on the order of
~10ms [38, 40, 81]. As it involves continual data updates
between edge devices and shared model parameters, early
implementations have been shown to suffer from inefficient
network communication [36]. These delays are further exac-
erbated by the mobile and disparate nature of clients in edge
settings. Accordingly, solutions have noted the importance
of low-latency datastore accesses for federated learning [89].
Augmented and Virtual Reality. Avoiding “VR sickness”
is a difficult challenge in AR/VR applications. Although a
number of sources contribute to this effect, reducing round-
trip latency is a primary factor impacting application in-
tegrity and user discomfort [12, 15]. To this end, researchers
have noted the need for a low-latency data management
platform for AR/VR applications for maintaining a consis-
tent user experience [14] and synchronizing shared world
state [87], with a gold standard of 15–20ms [23].

2.1.1 Key Workload Properties. Although emerging edge
applications are diverse in nature, they share key workload
characteristics that distinguish their datastore requirements
from traditional cloud applications.

(1) High Latency Sensitivity. Low-latency data access
(i.e., no more than tens of milliseconds) is critical for
all of the aforementioned applications. As application
data is commonly produced and consumed at the edge,
this motivates data storage to also occur entirely at
the edge (to avoid costly cloud-edge network laten-
cies [52]). Note that this is true even for data stream-
ing systems that use a data management broker for
pub/sub messaging with data persistence (e.g., for fault
tolerance and recovery) [64].

(2) Large Client-Server Latency Discrepancies. The
networks ontowhich these applications are overlaid do
not offer the relatively uniform client-server latencies
of a cloud cluster. Instead, geo-distribution results in
certain edge datastore servers residing “closer” to a
client than others (with respect to latency).

(3) Device Mobility. A unique aspect of these applica-
tions is the inherent mobility of the client devices.
From smartphones to autonomous vehicles, locations
change over time. The movements of a given client
can also directly affect its client-server latencies. Ac-
counting for and adjusting to this volatility is essential
in optimizing for access latency.

2.2 Representative Dataset and Testbed
To the best of our knowledge, there are no openly avail-
able datasets representative of the workloads in the afore-
mentioned edge applications. Thus, to provide a baseline
for testing and evaluating improvements to data placement
policies, we developed an in-house edge-KV dataset. Our
dataset is inspired by the autonomous vehicular network ap-
plication, and incorporates realistic client mobility patterns
and distributed data access characteristics. More specifically,
our dataset leverages real mobility traces of taxis moving
through Rome [11], and its data accesses are derived from
the YCSB benchmark (augmented with its distributed exten-
sions [17, 56]). Of course, precise data access/locality patterns
and network latencies play a large role in edge datastore per-
formance; we next describe how our setup and datasets cover
wide ranges of values for these different properties.

Network Setup. Although Portkey’s benefits are most pro-
nounced when there exists a large latency discrepancy be-
tween datastore nodes (§6.2), it is designed to operate seam-
lessly across many of the conditions that the aforementioned
edge applications could encounter. Thus, we opted for the
general-purpose network setup depicted in Figure 2. As
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Figure 2: Overview of our experimental testbed.

shown, 25 Wi-Fi access points (APs), each housing a data-
store server, are overlaid onto a 5x5 grid with an inter-AP
distance of 400m (approximately 2× the outdoor range of
802.11n [2]). Vehicles act as datastore clients as they move
throughout the region based on their corresponding taxi mo-
bility trace. For portability, flexibility, and ease of replication,
we emulated this network using Mininet [27, 47], with datas-
tore clients and servers running on a shared server. Note that
our setup is focused on scenarios where datastore servers are
hosted on static edge infrastructure. We discuss how Portkey
can be extended to support scenarios with mobile datastore
servers (e.g., drones that act as datastores in disaster relief
scenarios) in §7.
To cover the wide range of realistic topologies – ranging

from zero-infrastructure peer-to-peer routing to wireless
access points and/or cellular base stations connected via a
wired backhaul [26, 32] – we assign latencies in a tiered
manner. In particular, clients access their local AP with a
random latency ranging from 5-10ms [43, 78], regional APs
with a random latency between 20-30ms, and all other APs
with a random latency between 40-50ms. Importantly, this
subsumes the two extreme deployments noted above, as
well as those in between. For example, in peer-to-peer de-
ployments, latencies scale with the number of hops, and
routinely grow to values on the order of ~100ms [18, 51]. In
contrast, wireless-to-wired-backhaul settings have reported
latencies of 5-10ms to the local AP [43, 78], and upwards of
~50ms contacting neighboring endpoints over the wired net-
work [58, 75]. In §6.2, we breakdown Portkey’s performance
in specific deployment scenarios, and also consider different
latency values for each tier, including those that minimize
the benefits that Portkey delivers. Additionally, §6.4 presents
results from two small-scale applications running over real
(not emulated) networks and edge devices.

Application Workloads. Edge applications vary in terms
of the relationship between data locality and data access
patterns. To incorporate these properties, we decomposed

the YCSB benchmark suite into 6 workload traces that holis-
tically cover both regional locality and the local vs. global
nature of KV ownership:

• per-client: comprises KVs that are owned and modi-
fied by singular clients.

• regional: KVs are assigned to individual regions, and
clients only access (read or write) KVs for the region
they are currently located in.

• group: splits KVs and clients into random groups (irre-
spective of region). Clients only access the KVs within
their group.

• global: contains global KVs accessed and updated by
all clients, e.g., full dataset scans.

• all-RW: combines all previous workloads, with re-
quest type evenly split across KV reads and writes.

• all-R: contains the same KV access patterns as “all-
RW,” but all accesses are reads.

Each workload has a data access trace per client, and each
trace consists of 20,000 read or write (i.e., get or set) re-
quests to a subset of 1,000 keys. All KVs are sized at 1KB.
We note that these workloads are intended to cover a broad
range of application data access patterns; indeed, different
manifestations of each application type in §2.2 can exhibit
varying workload characteristics and deployment scenarios.
Consequently, there does not necessarily exist a one-to-one
mapping between the applications in §2.2 and the benchmark
variants described above.

3 BACKGROUND AND MOTIVATION
We provide a brief overview of existing KV datastore place-
ment strategies (§3.1), and present measurements that show
why these placement strategies are suboptimal for deploy-
ments spanning edge networks (§3.2). Note that KV stores
such as Redis can be used as front-end caches for other back-
ing datastores. However, the focus of this paper is on dis-
tributed implementations of KV stores (e.g., Redis Cluster)
that serve as persistent (i.e., durable) stores by using replica-
tion and fault tolerance mechanisms to tolerate failures.

3.1 Existing Placement Strategies
RandomKVAssignment. The vast majority of distributed
KV stores employ hash-based sharding when partitioning
keys across a cluster [20]. Figure 3 depicts two popular im-
plementations: consistent hashing (used by Cassandra [39]
and memcached [21]) and hash slot sharding (used by Redis
Cluster [65] and MongoDB [49]). Both approaches result in a
random assignment of KVs; the difference is in the granular-
ity of assignment. In consistent hashing, each key is hosted
and replicated at its nearest servers in a hash ring. Hash
slot sharding groups keys into slots, with each slot having
an individual assignment to replica servers. Although such
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Figure 3: In consistent hashing, servers and keys are hashed
onto a ring. Replicas are selected by traversing the ring. In
hash slot sharding, the ring space is divided into equal slots,
with each slot assigned to datastore servers.

randomized placements ignore the effects of non-uniform
client-server latencies (§3.2), they do offer desirable load
balancing properties.
Data Replication. Consistency and fault tolerance across
a replica set are accomplished through either quorum consen-
sus or primary-secondary replication [20]. Primary-secondary
replication allows consistent data accesses to be optimized by
only focusing on the primary replica placement. In a quorum,
request latency is based on the slowest reply, thus requiring
the colocation of a quorum near the accessing clients. In this
paper, we target primary-secondary approaches and focus on
optimizing placements of a key’s primary replica. However,
we note that Portkey’s placement strategy can be directly
applied to secondary or quorum replicas as well. Further, as
discussed in §5, Portkey adopts the same fault tolerance and
consistency guarantees as the datastore it runs atop.

3.2 The Case for Adaptive KV Placement
To illustrate the performance benefits of adaptive placement,
we compared the Random placement strategy used by exist-
ing KV stores to an Optimal placement strategy that lever-
ages future (perfect) knowledge of client locations and data
accesses. Using this information, the Optimal strategy pre-
determines the ideal placement for each KV over a short
(near-instantaneous) time window. More specifically, each
KV is hosted at the datastore server that minimizes aver-
age or tail (95th percentile) request latency across all client
accesses in the current window. §4.2 formalizes the optimiza-
tion problem that underlies the Optimal strategy.

Figure 4 shows the results for both strategies across all of
our workloads (§2.2). As shown, the Random strategy results
in average request latencies that are 1.7-5.4× worse than the
Optimal across the workloads; suboptimalities are 1.4-11.9×
for tail latencies. The main issue with Random placement is
that it ignores the (time-varying) locality of datastore clients
and their KV accesses, and thus potentially places KVs far
away from their accessing clients. Of course, the impact of

Figure 4: Performance impact (for average and 95th per-
centile tail latency) of an optimal KV placement policy that
explicitly considers client mobility, versus the standard ran-
domized placement policy. Results are normalized to perfor-
mance with the randomized policy.

this omission is more pronounced in certain workloads than
others. For example, when considering average request la-
tency, the inefficiency is most pronounced (4.8-6.4×) for the
per-client and regional workloads where client KV accesses
are inherently localized (to the client’s location or its en-
capsulating region). In contrast, the discrepancies between
Random and Optimal placements are lower (1.5-1.8×) for
the group and global workloads where KV accesses are not
explicitly centered around spatial locality. However, even
in these cases, the Optimal strategy outperforms the Ran-
dom one, primarily by hosting KVs at the servers nearest the
majority of (potentially dispersed) accessing clients.
Takeaway. These results suggest that incorporating knowl-
edge of client mobility and data access patterns into KV
placement decisions can substantially improve overall data-
store performance (i.e., client-perceived request latencies).
Of course, the Optimal placement strategy presents a loose
upper bound and is unrealistic in practice given its oracle
knowledge of future data accesses and client locations. In
§4, we describe how Portkey realizes many of these benefits
in a practical manner, by using continuous (but efficient)
workload and network profiling, and an online migration
strategy to achieve real-time, dynamic KV placement.

4 DESIGN
This section details the system design that Portkey uses to
practically realize adaptive KV placement with near-optimal
performance. Doing so requires addressing two key ques-
tions. First, how can the essential information needed to
determine an optimal placement (i.e., data accesses, time-
varying client-server latencies) be efficiently collected across
resource-constrained edge devices and networks? Second,
despite the associated computational complexity, how can
the collected information be used to make rapid but effec-
tive placement decisions that keep pace with time-varying
networks and client mobility?
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Figure 5: Overview of Portkey. Data accesses and latency
information are collected by clients and periodically up-
loaded to theAdaptive Placement Engine, which determines
near-optimal placements and issues migration instructions
to datastore servers.

The intuition underlying Portkey’s design is to lean into
the client mobility and dynamism intrinsic to edge settings.
More specifically, without an oracle, Portkey must rely on re-
cent client access patterns and locations/latencies to predict
future accesses and latencies. Of course, accurate predictions
become more challenging to obtain over long time horizons.
Further, in our target settings, recent accesses and current
predictions are likely to become outdated quickly as clients
move around and client-server latencies adjust accordingly.
Thus, Portkey prioritizes fast (and frequent) approximate de-
cisions over slow optimal placements. Accordingly, Portkey
opts for an iterative, fast-correcting approach to KV place-
ment for real-time adaptation to edge system dynamics.

Figure 5 illustrates Portkey’s workflow. Portkey is incorpo-
rated as a modular extension atop existing datastore systems.
The client datastore library is augmented to track each KV ac-
cess and judiciously monitor end-to-end client-server laten-
cies (§4.1); §5 discusses why we opt for client-side profiling.
This data is uploaded to the Adaptive Placement Engine at
an application-defined window size.1 Upon reception from all
clients, the engine first computes a global network distance
matrix. Along with the aggregate sets of client-key accesses,
the Placement Solver performs fast global approximation of
optimal KV placements and issues migration instructions to
the appropriate datastore servers (§4.2).

4.1 Efficient Data Collection
Efficient profiling of information that influences optimal KV
placements can be broadly decomposed into two categories:
minimizing network (and accordingly, device energy) over-
heads with judicious client-server latency probing (§4.1.1),
and succinctly storing latency information and KV access
statistics to minimize device memory overheads (§4.1.2).
1The frequency of upload affects both the agility with which Portkey adapts
to system dynamics, and the network overheads imposed by shipping pro-
filing information. We use a default window of 10 seconds.

window0 window1

Figure 6: Portkey’s locality-aware reprofiling. In subse-
quent profiling windows, clients only contact their nearest
datastore servers, and use the observed latency values to
determine if placement-altering motion has occurred; if so,
clients then collect latencies to the remaining servers.

4.1.1 Judicious Network Probing. Identifying the optimal
KV hosts requires an understanding of the latency delays
that each client would incur in contacting each potential
datastore server. This latency should encapsulate both the
network delays in contacting a server, and the processing
delays that the server imposes in serving a requested key. A
naive collection strategy would be for each client to simply,
in each time window, issue a probe request to each server to
log the necessary information. However, this additional (per
client-server pair) traffic would add undue stress to servers
and edge networks, as well as client devices that must expend
energy to support network transfers.

Instead, Portkey employs a lightweight, end-to-end prob-
ing technique that is inspired by Network Tomography [83];
importantly, we eschew approaches that rely on support
from intermediary network nodes as we target general edge
applications with varying administrative policies. At a high
level, tomography seeks to infer network internals using
only end-to-end measurements that take one of two forms:
passive tomography leverages data from traffic generated nat-
urally by users, while active tomography inserts probes into
the network to glean measurements. The goal of Portkey’s
approach is to leverage its operation over short time-scales
(i.e., short windows) to minimize the number of active probes
required to obtain accurate and holistic client-server latency
information, despite client mobility.
Approach. To develop a comprehensive latency profile to all
servers in a given time window, Portkey’s client datastore li-
brary passively profiles every application-generated request
to log the accessed server, as well as the incurred round-
trip latency (including server processing delay). Of course,
a client’s natural data accesses may result in incomplete
latency information by failing to contact certain datastore
servers; this is especially true with adaptive placement, as
distant servers should be minimally contacted. To fill in the
missing information, Portkey actively injects requests target-
ing only the excluded servers, thereby limiting overheads.

Given the short windows over which Portkey makes place-
ment decisions, regenerating an entirely new set of latency
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values in each window is impractical. This is true even with
Portkey’s judicious injection of active probes, as clients are
unlikely to contact many servers in a short period of time. To
handle this, Portkey uses locality-aware reprofiling, depicted
in Figure 6, to recollect client-server network information
only if there is sufficient evidence that latency values have
changed enough to potentially alter KV decisions. In each
timewindow, a client collects latency information (preferably
passively, but if not, actively) only to the k-nearest datastore
servers; 𝑘 is a configurable parameter that is set to 5 by de-
fault in our experiments. If the relative ordering of latency
values amongst those servers changes, or if any latency val-
ues change by more than a configurable threshold (20% by
default), then a client is deemed to have moved enough to
warrant full reprofiling, and active probes are injected to any
remaining datastore servers that are not passively contacted.
The guiding intuition is that a client’s mobility is inher-

ently localized over short durations, and latencies to the
nearest servers are the best indicators of how much motion
has occurred. Importantly, with adaptive placement, the near-
est servers to a client are the most likely ones to host the
KVs that the client accesses. Thus, latency information to the
k-nearest datastore servers will often be passively profiled,
resulting in low overheads.

4.1.2 Efficient Storage. During normal operation in a win-
dow, a client may passively collect multiple latency values
per server. Given the potential memory constraints on edge
clients, this information must be stored efficiently. To do this,
Portkey provides a succinct latency sketching framework
that enables applications to specify which part of the latency
distribution they would like to consider. When tracking aver-
age request latency, each client stores the number of accesses
and total aggregate latency for a server, which can be used
to derive average request latency while requiring only an
8-byte memory footprint per server. If the application in-
stead wishes to optimize for a metric that requires the full
latency distribution (e.g., tail latency), Portkey employs DDS-
ketch [44] to track approximate quantiles with a minimal
memory footprint.
Tracking Data Accesses. In addition to latency informa-
tion, Portkey clients must also track KV accesses. In particu-
lar, for each data request, Portkey must record which KV was
accessed, as well as the corresponding payload size. Payload
sizes must be collected because they dictate which KVs can
fit on a given server, and they provide a mechanism with
which to compare the relative importance of different key
placements; indeed, Portkey’s Placement Solver (§4.2.2) relies
on payload sizes to scale each KV placement to a marginal
per-byte cost benefit.

The process of logging client data accesses is fairly straight-
forward: Portkey transparently proxies each request/response
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Figure 7: Portkey’s sketches for efficiently tracking client
data accesses. Access counts and aggregate payload size cap-
ture individual client workload patterns.

in the client datastore library. Instead, the primary consider-
ation here is efficient storage, particularly since each client
can access a given KV multiple times in a given window.
Portkey relies on a key sketch (Figure 7) to bound the mem-
ory overhead at each client. Key access counts and aggregate
payload size are stored to infer an average payload size for a
KV. Given the sparse nature of client-key accesses, Portkey
only stores non-zero key counts, consuming 8 bytes each.

4.2 Fast Placement Decisions
Given the information collected in §4.1, the Portkey Place-
ment Solver is responsible for making adaptive placement
decisions. Solving for optimal data placement is known to be
NP-hard, as it reduces to the Partition problem [8, 35]. Worse,
an optimal solution is likely to change with client mobility,
which can occur at very short time-scales in edge networks.
We begin by formalizing the placement optimization prob-
lem (§4.2.1) and then describe Portkey’s greedy approxima-
tion to enable fast placements that closely resemble optimal
decisions (§4.2.2). We center the discussion on optimizing
average request latency, and conclude with a description of
modifications to support tail latency optimization (§4.2.3).

4.2.1 Problem Formalization. Given a datastore spanning
N nodes, the solver’s objective is to identify the best host
servers for the K keys contained in the system. The best host
for a particular key k is chosen by minimizing the overall
cost 𝐶 (𝑘) across all candidates. The specific cost metric de-
pends on the desired performance objective, e.g., minimizing
average or tail request latency; we focus on average latency
for now. Accordingly, the host is chosen by minimizing

𝐶 (𝑘) = min
𝑛

𝐶𝑛 (𝑘) ∀ 𝑛 ∈ 𝑁

where 𝐶𝑛 (𝑘) is the cost (i.e., latency) of hosting a key k at
node n. This latency cost can be computed as an average over
every client’s distance from the candidate node weighted by
the frequency of client access to the given key,

𝐶𝑛 (𝑘) =
𝑁∑
𝑖=1

𝑓𝑖 (𝑘) · 𝑑𝑖𝑛
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where 𝑑𝑖𝑛 refers to the distance between nodes i and n (e.g.,
the average request latency in serving a client i from host
n), and 𝑓𝑖 (𝑘) represents the relative frequency that client i
accesses key k. Client access patterns for each key can be
modeled as a frequency access vector

−−−→
𝑓 (𝑘) =

[
𝑓1 (𝑘) 𝑓2 (𝑘) . . . 𝑓𝑁 (𝑘)

]
which is dictated by each client’s access count for the speci-
fied key in its data access sketch. Network distances can be
represented via the following distance matrix:

D =


𝑑11 𝑑12 𝑑13 . . . 𝑑1𝑁
𝑑21 𝑑22 𝑑23 . . . 𝑑2𝑁
...

...
...

. . .
...

𝑑𝑁 1 𝑑𝑁 2 𝑑𝑁 3 . . . 𝑑𝑁𝑁


Such a distance matrix can be extracted from the statistics
collected across each client’s network sketch. Given this
formulation, the key’s cost vector can be computed as a
vector-matrix multiplication:

−−−→
𝐶 (𝑘) =

−−−→
𝑓 (𝑘) · D

This process can then be independently repeated for each
key. If each key’s frequency access vector were to be instead
represented as a row in a key access matrix, multiplying the
key access matrix with the distance matrix derives a cost
matrix containing cost vectors across all keys with a single
matrix-matrix operation. The computational complexity in
computing this cost matrix scales linearly with the number
of keys, and in polynomial time with the number of nodes;
that is, O(𝑘𝑛2). The 𝑘 × 𝑛 cost matrix must then be scanned
to identify the best candidates for placement. An optimal
assignment of KVs over this cost matrix is NP-hard when
considering the limited storage capacity at each server [8].

4.2.2 Portkey’s Adaptive Placement. Portkey’s solver is pred-
icated on the notion that an optimal assignment in any given
moment is likely to become stale over time, especially with
moving clients. As such, Portkey employs an approximate
solver that can quickly and iteratively respond to system
dynamics using the latest client-provided information. This
is accomplished via a three-fold approach. First, KV costs
are treated as independent. While this ignores the impact
of colocating KVs onto the same server, subsequent request
profiling and solver iterations will account for this effect,
readjusting if needed. Second, to address host storage lim-
itations, a greedy assignment prioritizes the KVs with the
largest marginal impact on performance. This sacrifices opti-
mal placement in exchange for a rapid adjustment of themost
important KVs accessed at any moment. Finally, to ensure
efficiency with data-intensive systems, a fallback heuristic is
selectively applied to the least contentious KVs, e.g., a KV

accessed by a single client can forego the solver and quickly
be placed at its nearest host.
While this approach deviates from the optimization for-

mulation in §4.2.1, it allows for fast and self-correcting place-
ment decisions that closely mimic optimal decisions (§6). We
next detail the three principles of Portkey’s solver in turn.
Independent KV Cost Analysis. An optimal placement
assignment should consider the impact of colocating KVs on
the same server. This results in an exponential decision space;
reassigning a KV affects server load and latency, thereby
requiring a cost matrix update for all remaining KVs. The
Portkey placement engine opts to treat costs as independent,
ignoring the impact of KV assignment. The guiding intuition
is two-fold. First, we predict that in many cases the larger
contributor to round-trip request latency is network delays
as opposed to server processing time. More importantly,
given the iterative nature of Portkey’s placement decisions,
subsequent profiling (which incorporates both network and
server delays, as per §4.1) will quickly reveal this latent effect,
allowing for prompt self-correction.
Greedy Assignment. To greedily place KVs, Portkey first
computes a utility score per KV, indicating the marginal ben-
efit of prioritizing its reassignment. Specifically, the utility
score is calculated as the difference in cost (i.e., latency) be-
tween the current assignment and the optimal assignment,
scaled by the KV payload size. This provides a per-byte mar-
ginal cost benefit. These utility scores are then sorted from
largest to smallest impact, and KVs are greedily assigned in
order of importance. Once a server reaches its storage capac-
ity, keys are assigned to the next best host. When including
the cost matrix computation, this assignment process results
in overall solver complexity of O(𝑘𝑛2 + 𝑘 log𝑘).
Skipping the Formal Solver. For very large systems (with
many KVs) and small window sizes, even a polynomial-time
solution may be insufficient. To this end, Portkey selectively
employs a locality-aware heuristic that attempts to skip the
formal solver. To do so, the placement engine maintains a
notion of the max number of keys that can have the full cost
matrix computed and analyzed in sufficient time, based on
the (1) number of datastore servers, (2) window size, and (3)
reusability of computational profiling from prior iterations. If
the number of keys accessed in a given window exceeds this
max value, a first pass over the key access matrix sorts the
keys by the number of accessing clients. Keys accessed by the
largest number of clients are solved with cost vector analysis,
and the remaining ones use a dominant-node heuristic where
keys are assigned to the server nearest the most frequently-
accessing client. The idea is that the formal solver is most
helpful in balancing placement across a large number of
(potentially dispersed) accessing clients; keys accessed by a
single client are optimally placed nearest that client.

204



Portkey: Adaptive Key-Value Placement over Dynamic Edge Networks SoCC ’21, November 1–4, 2021, Seattle, WA, USA

4.2.3 Optimizing for Tail Latency. Portkey’s solver is not in-
herently tied to optimizing for average latency across clients
and accesses. Supporting other optimization metrics simply
involves altering the generation of the cost matrix used by
the adaptive placement solver. For example, to optimize for
tail latency, each client uploads its tail latency (instead of
average latency) to every datastore server. Then, to compute
the cost for hosting a given key on a given candidate server,
we generate a distribution of accesses to that key where a
client’s latency to that server appears a number of times
equal to the number of times that client accessed the key.
The latency component of the cost is then set to be the tail
(e.g., 95th or 99th percentile) of that distribution, rather than
a weighted average across all clients’ accesses to that key.
The remainder of the Portkey solver then operates in the
same way as above.

5 IMPLEMENTATION
We implemented Portkey as a modular extension to the Redis
Cluster distributed KV store. Aside from being one of the
most popular data management systems [76], Redis natively
supports deployment over lightweight embedded devices,
such as Raspberry Pis andAndroid smartphones [67], thereby
offering compatibility with our target edge applications. As
Redis Cluster uses hash slot sharding (§3.1), we implement
adaptive placement by dynamically adjusting the slot assign-
ment map and migrating the associated keys. This coarsens
the granularity of adaptive placement from individual KVs
to hash slots; however, we discuss placements in terms of
keys for ease of disposition.
Our implementation of Portkey includes (1) altering the

Redis client library to support the collection of datastore us-
age statistics (we consider the redis-clustr npm package [29]),
and (2) developing a standalone program encompassing the
placement solver engine. In total, our implementation re-
quired ≈1,000 new LOC. A key benefit of client-side modifi-
cation is that it allows for adaptive placement on unmodified
servers, thereby supporting future versions without forking
the code base. Further, clients can optionally prioritize which
requests are latency-sensitive with selective logging, and in
doing so forego modification to the request protocol.
Datastore requirements. We note that Portkey’s design
is compatible with any datastore that supports the ability
to reassign and/or migrate KVs across servers; for instance,
our implementation leveraged Redis Cluster’s hash-slot mi-
gration API. Porting Portkey to another system requires (1)
adapting the datastore client library to collect client access
statistics, and (2) retargeting the migration mechanism.
Consistency. The consistency of Portkey matches that of
Redis Cluster. Redis Cluster cannot guarantee strong consis-
tency, as the primary replica will acknowledge writes before

ensuring propagation to a quorum of secondary replicas [65].
As a result, client-perceived write latency is solely governed
by primary replica placement; it is this primary replica place-
ment that our current implementation of Portkey aims to op-
timize. Applications that instead require strong consistency
(e.g., via quorum consensus or primary-backup replication)
would experience access latencies based on the slowest quo-
rum replica contacted during each KV request. To optimize
such scenarios, Portkey’s placement strategy must be altered
to adapt the placement of multiple replicas per key, i.e., all
replicas that are accessed in a blocking manner for the key.
Fault tolerance and recovery. Portkey does not affect the
Redis Cluster mechanisms for replication, fault tolerance, or
recovery. In the case of a primary node failure, a failover
mechanism promotes a secondary replica to replace the pri-
mary, adjusting the cluster as needed [65]. This failover is
maintained even if a node fails during key migration. While
our implementation does not currently incorporate policies
for handling correlated and/or clustered failures, Portkey’s
solver could be easily modified to place KV replicas in dif-
ferent failure zones, e.g., in accordance with with the fault
tolerance model of enterprise Redis Cluster versions [68].
Ensuring consistency during migration. Portkey migra-
tion follows the recommended Redis Cluster protocol typi-
cally used to redistribute keys for nodes entering or exiting
the system during deployment [66]. The main benefits of
this approach are that (1) no data loss can occur in the case
of migration or node failure, and (2) concurrent updates are
allowed during migration. This ensures that client workloads
remain uninterrupted during migration, enabling transpar-
ent adaptive placement with the only noticeable effect being
access latency improvement. However, a notable drawback
in this reassignment protocol is a restriction that limits bulk
migration due to the Redis Cluster epoch mechanism used to
propagate assignment map updates. In order to maximize the
immediate benefit of adaptive placement, Portkey’s Place-
ment Solver sorts key assignments based on marginal cost
reduction before issuing migration commands.

6 EVALUATION
To evaluate Portkey, we primarily use the autonomous ve-
hicular workloads and experimental setup described in §2.2.
§6.4 additionally describes results from two real, small-scale
application deployments. Throughout the evaluation, we
consider two versions of Portkey that optimize for either
average request latency or 95th percentile tail latency.

6.1 Request Latency Speedups
We compared Portkey with four alternative placement strate-
gies. Random refers to the randomized placement strategy
used by default Redis and most other existing KV stores
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(§3.1).Accessing Node is a heuristic that selects the nearest
server to a random client that accesses a given KV. Domi-
nant Node is an alternative heuristic that places KVs closest
to their most frequently accessing client. Both heuristics pro-
vide simple yet realistic locality-aware placements based on
past accesses. Finally, Optimal presents the unachievable
lower bound described in §3.2 that uses perfect knowledge
of future client-server latencies and data accesses.
As shown in Figure 8, Portkey delivers 21-82% and 16-

45% lower average request latencies than the Random and
locality-aware heuristics; Portkey’s tail latency improve-
ments are 26-77% and 4-75%. Perhaps more importantly,
despite lacking oracle-like knowledge of future latencies
and KV accesses, the resulting performance with Portkey’s
placements are always within 15% for average latency, and
almost always within 4% for tail latencies. The one excep-
tion for the latter is the per-client workload. The reason is
that suboptimalities with Portkey stem from delays in learn-
ing workload/latency information and shifting KVs to their
ideal servers (the optimal strategy knows ideal placements
a priori). This is more pronounced in the per-client work-
load since the latency discrepancy between the ideal (i.e.,
local) server and all other servers is large, crossing a tier in
our testbed. In contrast, for the regional workload, although
there is still a single optimal server, the latency discrepancy
with several other servers (in the same region) is low.

Of course, performance with each approach varies based
on workload characteristics. For example, when consider-
ing average request latency, in the per-client workload, all
locality-aware placements perform substantially (70-81%)
better than the random assignment strategy. On the other
hand, the performance discrepancies between the locality-
aware heuristics and Portkey was most noticeable in the
group and global workloads. In those cases, the Portkey
solver was able to more intelligently balance placements
across the large number of accessing clients, resulting in a
2.1-2.6x relative performance improvement.

6.2 Varying Edge Settings
In addition to the workload characteristics considered in §6.1,
Portkey’s performance is affected by datastore server density
and client-server network latencies. Here, we present results
showing Portkey’s performance as these properties vary.

Impact of Datastore Server Density. Figure 9 presents
the performance impact of increasing the fraction of edge
APs that serve as candidate datastore hosts. For instance,
20% corresponds to 5 of the 25 APs supporting a Redis in-
stance. As shown, Portkey’s speedups grow as the density
of datastore servers increases. For instance, peak speedups
grow from 2.3× to 5.2× when the server density jumped
from 40% to 100%. The reason is that a higher server density

Figure 8: Portkey’s average and tail (95th percentile) la-
tency speedups over existing random placement strategies
and locality-aware heuristics. Results are normalized to the
randomapproach. Themedian and entire range for five runs
of each workload and placement strategy are plotted.

Figure 9: Performance impact of varying the percentage of
our testbed’s 25 edge APs that can serve as datastore servers.
Results use the per-client workload, and points represent
medians with error bars covering the spread across five
runs. APswere randomly selected before each run. Portkey’s
speedups grow as datastore server density grows.

enables regional locality to be exploited: KVs can more often
be placed such that requests are commonly served within
the local region. Accordingly, in a deployment where limited
resources are available, spreading out the datastore instances
will maximize the regional coverage and available locality.
VaryingNetworkLatency.As described in §2.2, our testbed
follows a three-tier approach to client-server latencies. More
specifically, local, regional, and other servers are randomly
assigned between 5-10ms, 20-30ms, and 40-50ms, respec-
tively. To understand how Portkey performs under different
network settings, and to analyze Portkey’s performance in
specific deployment scenarios, we considered four variants
for latency assignment: base follows the strategy from §2.2,
slow increases the minimum latency in each tier by 5×while
keeping the width the same, p2p increases the maximum
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Figure 10: Impact of edge network latencies on Portkey’s
performance; §6.2 defines the four scenarios. Results use the
per-client workload and are normalized to random place-
ment. Portkey’s performance is largely unaffected by la-
tency values, other than when all client-server latencies are
equivalent (eliminating the importance of placements).

Figure 11: Tail latency improvement over time for Portkey.
Results are a snapshot of windowed performance over the
first five minutes and are normalized to randomized place-
ment. Placements converge after approximately two min-
utes, when client workload patterns and network perspec-
tive have been sufficiently inferred. Further adjustments are
mostly in response to client mobility.

value in each range by 5×, in line with the expected wire-
less latencies in peer-to-peer routing [1], and fast wired
reduces all client-server latencies across all tiers to the same
value, as might be observed in a well-provisioned cellular
network connected to a fast wired backhaul. As shown in Fig-
ure 10, altered latency values do not significantly affect the
speedups that Portkey delivers. Instead, the key determinant
to Portkey’s wins is the existence of latency discrepancies
between servers, which in turn lead to speedups when KVs
migrate close to their accessors. Consequently, Portkey of-
fers little advantage in the fast wired scenario; placement
becomes unimportant as client-server latencies are uniform.

6.3 Profiling Portkey
Convergence. Figure 11 presents Portkey’s performance
over time when optimizing for tail latency. Results are win-
dowed and averaged over thirty second intervals. These tem-
poral results indicate the pattern in Portkey’s approach to

Figure 12: Scalability of Portkey’s placement solver when
varying (a) cluster size and (b) key set size.

extracting client workload information. As shown, the first it-
erations of the adaptive placement engine result in the largest
number of migrations. Over time, the datastore is able to con-
verge to an asymptotic performance baseline once sufficient
data about client workload patterns and network state has
been inferred. In other words, after an initial warm up period
of approximately 1-2 minutes, performance remained rela-
tively stable and varied primarily in response to continual
client mobility.

Placement Solver Scalability. An important aspect of the
Portkey placement solver is its ability to scale up to large
workloads and deliver fast decisions. Figure 12 presents the
scalability of a solver instance computing placement of (a)
1024 keys over a varying number of servers, and for (b) a
varying number of keys over a 1024-server cluster. Profil-
ing was done on a 2019 Macbook Pro. The full placement
solver as described in Section 4.2.2 scales linearly with the
number of keys, and quadratic to the number of nodes. The
heuristic-based approaches scale linearly across both dimen-
sions. Portkey’s adaptive solver leverages this notion to se-
lectively fallback to heuristic placement for large cluster and
key sizes. For example, with a window size of 10 secs, a single
solver operating on a 1,024 node cluster will perform full
cost matrix analysis for up to 65,536 keys (consuming 1 sec)
and use heuristic placement for additional keys.

Memory Overhead. The memory overhead for the data
access log at each client is determined by the number of KV
accesses and servers within the system. The key sketch and
network sketch each grow linearly with the cardinality of
client-key accesses and servers in the system, respectively.
Each key access requires 8 bytes to store the client access
count and aggregate payload, while each server consumes 8
bytes to store its access count and aggregate latency. Thus, a
datastore spanning thousands of nodes and tens of thousands
of keys consume less than 1MB at each client.

Network Overheads. We profiled the aggregate requests
and associated payloads issued by the cluster with and with-
out Portkey for our workloads. Bandwidth overheads ranged
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Figure 13: Impact of restricting edge bandwidth for the all-
RW workload. Portkey’s relative advantages persist across
the considered bandwidths. Bars list medians (normalized
to the 1000 Mbps random placement values) with error bars
spanning the range of values across 5 runs.

from 0.75% to 3.11%, depending on the magnitude of KV mi-
gration. To ensure that the added bandwidth requirements
do not result in a cost of migration that outweighs the ben-
efits, we ran an experiment that increasingly restricted the
amount of AP bandwidth. As shown in Figure 13, the most
notable impact of restricting bandwidth is the drop from 10
to 1 Mbps, where both Portkey and the default Redis Cluster
experience significant slowdown. However, Portkey retains
its relative speedup, which consistently falls within 2.1-2.5×
across all considered bandwidths.

6.4 Small-Scale Deployments
We deployed two small-scale applications to validate Portkey
over real networks and edge devices. The primary objective
in these experiments is to highlight how Portkey’s benefits in
these conditions are similar to those observed in our testbed.
Smart Building Interface. The first application consisted
of a Redis Cluster deployment over ten Raspberry Pis (RPi)
spread throughout a building and connected over a wireless
network, with a single RPi running the Portkey placement
engine. Each RPi updates the datastore with (1) frequent
updates to the latest reading from attached sensors (e.g.,
camera image, ambient noise level, wireless network signal
strength), and (2) infrequent updates to a key corresponding
to device status. An accompanying smartphone application
provided user access to view device status and the latest
published values. The difference in read-write dominance of
each key resulted in varying placements; in particular, the
frequently updated sensor value keys migrate to each RPi’s
local Redis instance, enabling faster system writes and a 5x
average latency improvement over randomized placement.
Crowd-Sourced Data Collection. A wide-area Redis Clus-
ter was deployed over nine RPis spread across three cam-
puses, with one RPi designated to host the Portkey engine.
User smartphones ran an app that passively updated each
user’s current GPS coordinates within the datastore to pro-
vide crowd-sourced live traffic information. This live activity

Figure 14: Portkey’s speedups in two real deployments.
Portkey was enabled after 120 secs of random placements.

map could be optionally accessed and viewed on each smart-
phone. User mobility, including changing physical location
or network connectivity (Wi-Fi vs cellular), resulted in the
continual migration of user data to their nearest host. With
Portkey, a user’s location data migrated to their nearest RPi
within their currently occupied campus, yielding a 2.5x im-
provement in request latency over randomized placement.
Takeaway. Portkey’s request latency speedups for both ap-
plications are summarized in Figure 14, and closely match
those from our emulated testbed. Importantly, without any
developer-specific input providing insight into the partic-
ular network deployment or workload, Portkey was able
to optimize for the most frequent datastore accesses. The
designated RPis executing these extensions consumed addi-
tional memory footprints of less than 20MB, with less than
2% increase in overall CPU utilization.

7 DISCUSSION
Caching and secondary replicas for eventually consis-
tent reads. In support of reads that do not require strong
consistency, secondary replicas or content caches can im-
prove access latency and/or reduce the load on the primary
replica. Such approaches are orthogonal to this work, which
focuses on primary replica placement to optimize consistent
data accesses to the underlying datastore.
Security risks with client-side logging. Trusting statis-
tics reported by client libraries inherently poses security
risks. A compromised client may negatively influence place-
ment by misreporting or falsely injecting unnecessary re-
quests. To this end, Portkey supports an optional configura-
tion that limits the overall impact of a compromised client:
key access vectors (§4.1.2) can be scaled to a unit vector,
resulting in each client equally contributing to placement de-
cisions (§4.2.1). This mitigates the effect of nefarious clients
at the expense of a potentially superior placement decision
if clients honestly report genuine data accesses.
Scalability limitations of bulk migration. Data migra-
tion costs depend on a variety of factors, including the vol-
ume of KVs, payload sizes, network latencies, and network
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bandwidth constraints. In certain scenarios, particularly with
large datasets that are configured with short window sizes,
Portkey’s KV migrations could trail client mobility, thereby
forgoing Portkey’s benefits, i.e., migrations may be made
after a client has moved enough to warrant a superior (differ-
ent) placement. To address such scalability limitations, we
note thatmigrationwithin awindowneed not be viewed (and
carried out) as all-or-nothing. Instead, Portkey can provide
benefits by carrying out only a subset of the KV migrations
suggested by its solver that can be completed within the
current window, i.e., before new placement decisions are
made. To do this, Portkey can estimate the cost of migration
of the solver’s output based on the required server-to-server
coordination latency and data transmission costs, and use
that information to enforce a cutoff on the sorted list of
KV migrations output by the solver (§4.2.2). Further, while
our implementation opted for a design that does not modify
the client API, Portkey could expose a client-facing prior-
ity mechanism through which developers can specify the
latency sensitivity of different keys; this information could
then be used to assign utility values to each (potential) KV
migration and determine the aforementioned cutoff.

Spanning geographic regions. Deployments spanning ge-
ographic regions pose unique constraints when considering
an idealized datastore architecture. Quorum architectures
enable load balancing across an individual key at the expense
of an increased number of client-side system requests. Al-
ternatively, a primary-secondary architecture reduces the
required number of requests for consistent access at the risk
of overburdening the primary. This work aims to mitigate
the downsides of a primary-secondary architecture by mi-
grating the primary replica such that consistent requests
can be made fast. Meanwhile, load balancing is achieved by
spreading key placements across alternative datastore hosts.

Supporting mobile servers. Recall that Portkey’s design
and evaluation testbed target scenarios with static datastore
servers. However, as discussed in §2.1, certain application
deployments may be faced with both mobile clients and
datastore servers. The primary component of Portkey that
must be altered to account for such scenarios is its locality-
aware reprofiling mechanism (§4.1.1). More specifically, in
its current form, there is a potential for missed reprofiling
triggers if clients and nearby servers all move in tandem
(i.e., a mobile “neighborhood” of nodes). Potential remedies
include (1) reducing false negatives by including additional
random server probes during locality-aware reprofiling, or
(2) forcefully triggering full reprofiling at certain intervals.

Tuning thewindow size.Thewindow size provides amech-
anism enabling the datastore administrator or application
developer to tune the tradeoff between latency speedups and

network overheads based on preferences and perceived no-
tions of dynamism. In particular, larger window sizes imply
less responsiveness to changing dynamics, but also lower
network overheads from shipping client profiling informa-
tion. Thus, relatively static deployments require less agility,
thereby maintaining high performance with minimal over-
head by using large windows. In contrast, rapidly changing
networks should configure Portkey for increased agility (i.e.,
small windows) to more quickly respond to changes.

8 RELATEDWORK

Improving Data Locality. Historical work in peer-to-peer
distributed hash tables not only laid the foundation for mod-
ern distributed datastore design [69, 77], but introduced prin-
cipalmechanisms for data locality optimization, most notably
geographic hash tables that explicitly incorporate location
into data placement [60, 61]. In the context of cellular net-
works, call handoff techniques take an analogous approach of
maximizing QoS by dynamically adjusting allocated cellular
tower bandwidth based on user locality and range [22, 80],
while control plane optimization can use a relaxed session
consistency to improve cellular access latency [5].

In the cloud computing domain, previous work seeking to
improve the locality of clients accessing a distributed datas-
tore can be broadly categorized into approaches that either (1)
intelligently select across a set of existing replicas, or (2) ex-
plicitly migrate data across datacenters. Determining the best
subset of static replicas for a client to issue datastore requests
to (e.g., [79]) can be further enhanced by splitting object data
to increase the effective spread, and therefore locality, across
datacenters [82]. Volley [3] initially proposed an approach
of migrating data between datacenters by cross-referencing
a reverse-IP look-up of user location; their solver triggers
application-specific migration mechanisms at a course gran-
ularity across weeks and months. Future approaches built
upon this notion by increasing the frequency of reconfigu-
ration to intra-day [7], grouping small KV shards based on
developer insight [6], improving cost efficiency with storage
tiers [55], and maximizing availability [13]. More generally,
custom hashing methods including locality-sensitive hash-
ing [42] and Social Hash [72] leverage application-specific
information to collocate jointly accessed data with clients.
In focusing on the cloud computing setting, placements

across individual hosts within a cluster have been left rela-
tively ignored. In contrast, while inspired by previous work
in locality-aware placement, much of Portkey’s design is
centered on accurately collecting and storing latency profil-
ing information despite tight edge constraints. Additionally,
unlike work that enforce an association of data with location,
Portkey infers locality via observed access latency, thereby
supporting KVs not inherently tied to a static location.

209



SoCC ’21, November 1–4, 2021, Seattle, WA, USA Joseph Noor, Mani Srivastava, and Ravi Netravali

Edge Datastores. Recent works have explored datastore
platforms that are customized to the inherent variability and
distribution of edge networks. Systems that enforce an as-
sociation of location with data and devices provide a means
for locality-aware geographic placement strategies [30, 31].
HDFS-like storage systems have been proposedwith large im-
mutable files spread across participating storage devices [70].
For applications that can tolerate eventual or session-based
consistency, write-back caches and convergent data struc-
tures can be used to scale out a KV datastore at the edge
for low-latency writes, high-throughput reads, and efficient
inter-replica communication [46, 50]. Finally, application-
specific KV systems, such as those for computer vision, have
also been proposed [63].
Portkey serves to complement this body of work with

latency-aware data placement decisions. Without enforcing
an association of location with data, or prior knowledge of
application or network characteristics, Portkey seeks a gen-
eralized solution to improve the locality of clients accessing a
datastore. The objective is to customize a given deployment
to specific and variable client accesses while offering the
equivalent consistency guarantees of the underlying system,
all without necessitating developer input. To the best of our
knowledge, none of the previously proposed systems are
openly available for use; our Redis Cluster extensions serve
to provide a tangible implementation.

9 CONCLUSION
This paper presents Portkey, a new distributed KV store that
explicitly targets the intrinsic mobility and time-varying
client-server latency profiles experienced in edge applica-
tions. Unlike prior datastores that opt for randomized data
placement policies, Portkey dynamically adapts data place-
ments according to periodically-profiled latencies and data
access patterns. Key to Portkey is its treatment of mobility
as a first-class primitive, and its prioritization of rapid (but
approximate) placement decisions over slow optimal ones.
These insights enable efficient profiling strategies that adhere
to edge device and network constraints, as well as greedy
placement heuristics that are self-correcting over short time-
scales. Results with an autonomous vehicle dataset, as well as
two small-scale application deployments, show that Portkey
reduces average and tail request latencies by 21-82% and
26-77% compared to existing placement strategies.
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fano Mazzocchi, H Brendan McMahan, et al. 2019. Towards federated
learning at scale: System design. arXiv preprint arXiv:1902.01046 (2019).

[11] Lorenzo Bracciale, Marco Bonola, Pierpaolo Loreti, Giuseppe
Bianchi, Raul Amici, and Antonello Rabuffi. 2014. CRAW-
DAD dataset roma/taxi (v. 2014-07-17). Downloaded from
https://crawdad.org/roma/taxi/20140717. https://doi.org/10.15783/
C7QC7M

210

http://dl.acm.org/citation.cfm?id=1855711.1855713
https://doi.org/10.15783/C7QC7M
https://doi.org/10.15783/C7QC7M


Portkey: Adaptive Key-Value Placement over Dynamic Edge Networks SoCC ’21, November 1–4, 2021, Seattle, WA, USA

[12] Tristan Braud, Farshid Hassani Bijarbooneh, Dimitris Chatzopoulos,
and Pan Hui. 2017. Future networking challenges: The case of mo-
bile augmented reality. In 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS). IEEE, 1796–1807.

[13] Marc Brooker, Tao Chen, and Fan Ping. 2020. Millions of Tiny
Databases. In 17th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 20). 463–478.

[14] John Carmack. [n.d.]. Latency mitigation strategies. https://danluu.
com/latency-mitigation/. Twenty Milliseconds ([n. d.]). Accessed:
2021-09-12.

[15] Eunhee Chang, Hyun Taek Kim, and Byounghyun Yoo. 2020. Virtual
reality sickness: a review of causes and measurements. International
Journal of Human–Computer Interaction 36, 17 (2020), 1658–1682.

[16] Aakanksha Chowdhery, Marco Levorato, Igor Burago, and Sabur
Baidya. 2018. Urban iot edge analytics. In Fog computing in the internet
of things. Springer, 101–120.

[17] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking cloud serving systems with
YCSB. In Proceedings of the 1st ACM symposium on Cloud computing.
ACM, 143–154.

[18] Sergio Correia, Azzedine Boukerche, and Rodolfo I Meneguette. 2017.
An architecture for hierarchical software-defined vehicular networks.
IEEE Communications Magazine 55, 7 (2017), 80–86.

[19] Steve Crowe. 2019. How drones & robots helped extinguish Notre
Dame fire. https://www.therobotreport.com/how-drones-robots-
helped-extinguish-notre-dame-fire/. Accessed: 2021-05-17.

[20] Miguel Diogo, Bruno Cabral, and Jorge Bernardino. 2019. Consistency
Models of NoSQL Databases. Future Internet 11, 2 (2019), 43.

[21] Dormando. 2020. memcached - a distributed memory object caching
system. https://memcached.org/. Accessed: 2021-05-17.

[22] Nasif Ekiz, Tara Salih, Sibel Kucukoner, and Kemal Fidanboylu. 2005.
An overview of handoff techniques in cellular networks. International
journal of information technology 2, 3 (2005), 132–136.

[23] Mohammed S Elbamby, Cristina Perfecto, Mehdi Bennis, and Klaus
Doppler. 2018. Toward low-latency and ultra-reliable virtual reality.
IEEE Network 32, 2 (2018), 78–84.

[24] Milan Erdelj, Michał Król, and Enrico Natalizio. 2017. Wireless sensor
networks and multi-UAV systems for natural disaster management.
Computer Networks 124 (2017), 72–86.

[25] Milan Erdelj and Enrico Natalizio. 2016. UAV-assisted disaster manage-
ment: Applications and open issues. In 2016 international conference
on computing, networking and communications (ICNC). IEEE, 1–5.

[26] Marco Fiore and JérômeHärri. 2008. The networking shape of vehicular
mobility. In Proceedings of the 9th ACM international symposium on
Mobile ad hoc networking and computing. 261–272.

[27] Ramon R Fontes, Samira Afzal, Samuel HB Brito, Mateus AS Santos,
and Christian Esteve Rothenberg. 2015. Mininet-WiFi: Emulating
software-defined wireless networks. In 2015 11th International Confer-
ence on Network and Service Management (CNSM). IEEE, 384–389.

[28] Edward Gan, Jialin Ding, Kai Sheng Tai, Vatsal Sharan, and Peter Bailis.
2018. Moment-based quantile sketches for efficient high cardinality
aggregation queries. Proceedings of the VLDB Endowment 11, 11 (2018),
1647–1660.

[29] GoSquared. 2020. gosquared/redis-clustr: Redis Cluster client for
Node.js. https://github.com/gosquared/redis-clustr. Accessed: 2021-
05-17.

[30] Harshit Gupta and Umakishore Ramachandran. 2018. Fogstore: A
geo-distributed key-value store guaranteeing low latency for strongly
consistent access. In Proceedings of the 12th ACM International Confer-
ence on Distributed and Event-based Systems. ACM, 148–159.

[31] Harshit Gupta, Zhuangdi Xu, and Umakishore Ramachandran. 2018.
Datafog: Towards a holistic data management platform for the iot age

at the network edge. In {USENIX} Workshop on Hot Topics in Edge
Computing (HotEdge 18).

[32] Xiaolin Jiang, Hossein Shokri-Ghadikolaei, Gabor Fodor, Eytan Modi-
ano, Zhibo Pang,Michele Zorzi, and Carlo Fischione. 2018. Low-latency
networking: Where latency lurks and how to tame it. Proc. IEEE 107, 2
(2018), 280–306.

[33] Rafał S Jurecki and Tomasz L Stańczyk. 2014. Driver reaction time
to lateral entering pedestrian in a simulated crash traffic situation.
Transportation research part F: traffic psychology and behaviour 27
(2014), 22–36.

[34] Gorkem Kar, Shubham Jain, Marco Gruteser, Fan Bai, and Ramesh
Govindan. 2017. Real-time traffic estimation at vehicular edge nodes.
In Proceedings of the Second ACM/IEEE Symposium on Edge Computing.
1–13.

[35] Srinivas Kashyap and Samir Khuller. 2003. Algorithms for non-uniform
size data placement on parallel disks. In International Conference on
Foundations of Software Technology and Theoretical Computer Science.
Springer, 265–276.
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