Oblique: Accelerating Page Loads Using Symbolic Execution

Ronny Ko, James Mickens
Harvard University

Abstract

Mobile devices are often stuck behind high-latency links.
Unfortunately for mobile browsers, latency (not bandwidth)
is often the key influence on page load time. Proxy-based
web accelerators hide last-mile latency by analyzing a page’s
content, and informing clients about useful objects to prefetch.
However, most accelerators require content providers to di-
vulge cleartext HTTPS data to third-party analysis servers. Ac-
celeration systems can be installed on first-party web servers,
avoiding the violation of end-to-end TLS security; however,
due to the administrative overhead (and additional VM costs)
associated with running an accelerator, many first-party con-
tent providers would prefer to outsource the acceleration
work—if outsourcing could be secure.

In this paper, we introduce Oblique, a third-party web ac-
celerator which enables secure outsourcing of page analysis.
Oblique symbolically executes the client-side of a page load,
generating a prefetch list of symbolic URLs. Each symbolic
URL describes a URL that a client browser should fetch, given
user-specific values for cookies, the User-Agent string, and
other sensitive variables. Those sensitive values are never
revealed to Oblique’s analysis server. Instead, during a real
page load, the user’s browser concretizes URLs by reading
sensitive local state; the browser can then prefetch the asso-
ciated objects. Experiments involving real sites demonstrate
that Oblique preserves TLS integrity while providing faster
page loads than state-of-the-art accelerators. For popular sites,
Oblique is also financially cheaper in terms of VM costs.

1 Introduction

Two trends are reshaping modern web services: the increasing
prevalence of mobile traffic, and the continued shift from
HTTP to HTTPS. 53% of all page requests now originate
from smartphones [5]. 90% of those requests use HTTPS [16].

Many mobile users (particularly in emerging markets) are
still stuck behind slow 3G and 4G links; even high-bandwidth
5G links often suffer from 4G latencies [11]. Unfortunately,
page load times are usually determined by latency, not band-
width [21, 24]. A variety of mobile page accelerators try
to mask last-mile latency by (1) analyzing the objects (e.g.,
HTML and JavaScript files) that are contained by a page, and
then (2) reducing the perceived fetch latencies for those ob-
jects (e.g., using server-side pushing [1,24,29,34,35] or client-
side prefetching [21,29]). Unfortunately, the shift from HTTP
to HTTPS has created tensions between security, performance,
and the financial cost of hosting a web site. Accelerators like

Blake Loring
Royal Holloway, University of London

Ravi Netravali
UCLA

First-party
content
provider

Third-party
Oblique server

|
i
| |
| <«
First-party Client
web servers browser

Figure 1: Overview of Oblique’s design. A developer uploads
page content to Oblique’s analysis server (D). Oblique returns
the path constraint tree for the page (2). The developer up-
loads the page content to web servers ((3)), injecting Oblique’s
JavaScript library into the page’s HTML. Later, when a user
loads the page (@), the prefetching library uses the path con-
straint tree to prefetch objects ().

Silk [1] that perform remote dependency resolution [3,24,35]
route client traffic through third-party proxies; these proxies
are owned by browser vendors or mobile providers, and are
operated for the benefit of customers. The proxies require
access to cleartext HTTPS content to determine which objects
to prefetch (§2). Thus, content providers that use HTTPS are
faced with a dilemma: allow third-party proxies to man-in-the-
middle TLS connections, or forgo the performance benefits
provided by outsourced web accelerators. The former choice
breaks end-to-end TLS security, and the latter option hurts
page load times.

A content provider could decide to run a first-party web
accelerator like Vroom [29] locally; this approach would avoid
revealing cleartext HTTPS data to an untrusted middlebox.
However, the content provider would incur a new financial
penalty. Running a web accelerator requires extra CPU cycles
and memory space beyond what is required to run a traditional
web server. The content provider would have to pay for those
extra VM resources.

https_req::UserAgent |

Other browser types

==“Chrome Mobile”

| https_req::cookie[“darkMode™]

==(un0// || IIINES"

dark-mode.css
gui.js
{{https_req::cookie[“uid”]}}.html

light-mode.css
gui.js
default.html

Figure 2: A simplified example of a path constraint tree. At
page load time, Oblique’s client-side JavaScript library tra-
verses the tree, using load-time concrete values to trace a path
to a leaf. The leaf enumerates which URLs Oblique should
prefetch. Those URLs may need to be concretized with load-
time values (e.g., a cookie value in this example).

In this paper, we introduce Oblique, a new system for accel-
erating page loads. Oblique’s goal is to improve the load time
reductions provided by state-of-the-art accelerators, while en-
abling cheaper, more secure outsourcing of the analyses which
identify the objects that a client should prefetch. Figure 1 de-
picts Oblique’s architecture. When a content provider creates
a new page, the provider feeds the new content to a third-party
Oblique server. The server performs a symbolic page load, ex-
ploring the possible behaviors of a web browser and a web
server during the page load process. The output of the sym-
bolic page load is a path constraint tree, as shown in Figure 2.
Each leaf is a set of URLSs that a client should prefetch, and
each path from root to leaf represents symbolic constraints
on the actual client-side and server-side state that is observed
at the time of a real page load. During an actual page load,
Oblique inspects concrete state like a client’s cookie, traces a
path through the constraint tree, and prefetches the relevant
objects using a client-side JavaScript library.

Security: Oblique’s offline analysis server does not see con-
crete instances of uniquely-identifying client data. For ex-
ample, the server does not observe concrete values for any
user’s cookies or User-Agent string. Instead, the analysis
server only sees page content that could have been fetched
by any actor on the internet who can issue HTTPS requests.
Later, during an actual page load, the analysis server is totally
uninvolved, and receives no information about sensitive con-
crete values. In contrast, remote dependency resolution (RDR)
forces clients to divulge cleartext HTTPS traffic, exposing
cookies and other private values.

Financial cost: Oblique’s offline symbolic analysis occurs
when a new page version is created. The analysis cost (as
measured by VM rental fees) is amortized across all client
loads of the page. For popular pages, this amortized expense
will be less than the aggregate per-page-load costs incurred
by third-party RDR or first-party accelerators like Vroom.
RDR must launch a proxy-side web browser for every client-

initiated page load, whereas a Vroom-enabled web server must
analyze HTML on-the-fly (§5.2).

Performance: In addition to Oblique’s security and cost
benefits, Oblique also loads pages up to 16% faster than RDR
and Vroom (§5.2). The reason is that Oblique’s symbolic
analysis enables more accurate prefetching: fewer unneces-
sary objects are prefetched, and more objects that are truly
needed are prefetched. For example, Oblique can accurately
model URLs that embed random numbers; these numbers
are represented symbolically in a path constraint tree, and are
late-bound to concrete values at page load time (when a client
generates concrete random numbers). In contrast, Vroom and
RDR early-bind random numbers at analysis time, resulting
in wasted prefetches, or potentially prefetchable objects being
ignored (§3.3).

Summary: This paper provides three contributions:

e We describe how to symbolically evaluate client-side
page load activity (§3.2), using concolic execution to
model the JavaScript engine and the rendering engine.
Core technical challenges involve tracking symbols that
flow across the DOM interface, and preventing Oblique’s
third-party server from gaining insights about sensitive
client-side values derived from nondeterministic func-
tions like Math.random().

e We also describe how to symbolically evaluate the
server-side half of a page load. By analyzing both sides
of a load, Oblique can generate even better prefetching
hints (§3.4). The core challenges involve the complex-
ities of HTML templating engines, and the careful or-
chestration needed to ensure that server-side symbols
propagate to the symbolic analysis of client-side behav-
ior. To analyze both client-side and server-side behavior,
Oblique requires access to backend code and data; that
state is sensitive, so Oblique should execute on first-party
machines in this mode.

e We build and evaluate an Oblique prototype, and com-
pare it to prior state-of-the-art load accelerators. When
Oblique executes in third-party analysis mode, it only
analyzes client-side symbols; in this mode, first-party
developers can securely outsource prefetch analysis to
Oblique, enjoying better security than RDR, and faster
page loads than both RDR and Vroom. For popular pages,
Oblique also provides lower economic costs due to bet-
ter amortization of analysis overheads. If page owners
are willing to run Oblique on first-party infrastructure,
Oblique’s client+server analysis can unlock even greater
reductions in load time.

Oblique requires no changes to end-user browsers, and reduces
overall page load times by up to 31%. To the best of our
knowledge, Oblique is the first web accelerator that securely
enables outsourced prefetch analysis for HTTPS content.

2 Background

A web page’s dependency graph [21] captures the load-order
relationships between a page’s constituent objects. For exam-
ple, a page’s top-level HTML might contain references to a
JavaScript file and an image. To load the page, a browser must
fetch and evaluate both objects. Evaluating the JavaScript file
might generate additional fetches, e.g., because the executed
JavaScript code uses the Fetch API to issue new HTTP re-
quests. Evaluating the image file causes the associated pixels
to be displayed; the reception of the image data may also
trigger JavaScript onload event handlers. Those handlers can
generate more fetches. The overall page load completes when
a critical subset of a page’s objects have been fetched and eval-
vated. Different load metrics use different criteria to identify
the critical subset (§5).

Web accelerators leverage knowledge of a page’s depen-
dency graph to reduce a page’s load time. One popular ap-
proach is remote dependency resolution (RDR) [1, 3,23, 24,
26,35]. An RDR system deploys a proxy server that has low-
latency paths to the internet core. An end-user’s browser sends
each page load request to the proxy. Upon receiving such a
request, the proxy launches a headless browser (i.e., a browser
that lacks a GUI). The proxy-side browser loads the requested
page and streams the fetched objects to the user’s browser.
By doing so, the proxy can partially mask the user’s high last-
mile latency: the page’s dependency graph is resolved via the
proxy’s fast network links, and the bytes in each discovered
object are pushed to the client as soon as the proxy receives
those bytes.

RDR can reduce page load times by up to 40% [24]. Un-
fortunately, RDR proxies are computationally expensive to
run, because web browsers (even headless ones) are complex,
resource-intensive applications. A proxy can use backwards
program slicing [37] to try to only execute the JavaScript
code that influences calls to functions like Fetch (). How-
ever, slices are often inexact, and the degraded prefetching
underperforms traditional RDR for 34% of pages [34].

An RDR proxy must act as a man-in-the-middle for TLS
connections. Doing so allows the headless browser to parse
cleartext web content and fetch the same objects that a user’s
browser will eventually want to fetch. However, breaking
TLS’s end-to-end security is obviously problematic; it allows
RDR proxies to see user cookies and other sensitive HTTPS
content.' This security violation also plagues non-RDR ac-
celerators that perform third-party analysis of dependency
graphs [6,22,40]. Cryptographic schemes that allow middle-
box computation over encrypted TLS data [32] are insuffi-
ciently expressive to analyze dependency graphs; prefetch
analysis requires a Turing-complete language to parse HTML
and evaluate JavaScript.

Vroom [29] is a first-party web accelerator: dependency

'WatchTower [24] allows each HTTPS origin to run its own RDR proxy.
This approach solves the security problem by exacerbating the computational
overhead problem, since now every HTTPS origin must run a proxy.

analysis runs on infrastructure belonging to the content
provider. For each page, Vroom performs both offline and
online analysis. The offline phase runs periodically (e.g., once
an hour), using a headless browser to collect the set of URLSs
loaded by a page. Across multiple offline page loads, Vroom
identifies a “stable set” of URLs that were fetched during
each load. When a client initiates a real page load, a Vroom-
modified web server parses HTML on-the-fly while stream-
ing it to the client, extracting the embedded URLs. These
embedded URLs, plus the ones found during offline analysis,
comprise the set of URLS to prefetch. The web server induces
the client to speculatively load these URLs via a combination
of HTTP/2 push [2] and <1ink> prefetch hints [42].

Vroom’s analyses run on first-party machines, so HTTPS se-
crets are not leaked to third parties. However, Vroom’s online
analysis cannot be outsourced securely: a benevolent mobile
provider who wants to run Vroom on behalf of its users will
have to break the HTTPS confidentiality of real user page
loads. Vroom’s offline phase also requires hand-tuning to
deal with the heterogeneity of client browsers. For example,
many sites define mobile and desktop versions of each page.
A server determines which version to return by examining
the User—-Agent header in a client’s HTTP request. Vroom’s
offline phase must be manually configured to explore the state
space of all client-specific parameters like User-Agent and
the client’s screen size. Oblique’s symbolic analysis allows
Oblique to automatically explore this state space.

3 Design

At a high level, Oblique’s offline analysis generates a prefetch
tree for a page. The tree informs a client which HTTPS ob-
jects to prefetch in which situations. The input to the tree
traversal is client-specific, potentially-sensitive information
like cookie values; the output is a set of URLs. Oblique gener-
ates the tree by symbolically evaluating the client-side of a
page load (§3.2). The URLs (found at the leaf nodes) are sym-
bolic expressions that a client makes concrete by plugging in
client-specific information that is never revealed to Oblique.
If a page uses Node [25] (a popular server-side JavaScript
framework) to generate HTML, Oblique can also symboli-
cally evaluate server-side code (§3.4). Receiving visibility
into both client and server execution allows Oblique to gen-
erate prefetch trees with more true positives and fewer false
negatives: in other words, clients will fetch more useful ob-
jects and fewer unnecessary ones.

3.1 Overview of Concolic Execution

Oblique uses a particular variant of symbolic evaluation called
concolic execution [14,31]. In concolic execution, a program
is given a concrete set of initial inputs. The program is then
executed under the observation of the concolic framework.
The concolic framework assigns a “shadow” symbolic ex-
pression to each input value and to each internal program
variable. An input’s initial symbolic expression is only con-

strained by the limitations of the input’s type. For example,
a uint32 input x might receive an initial concrete value of 2,
but an initial symbolic constraint of (0 < x < 232 —1). Dur-
ing the program’s execution, the assignment y = x/2 would
result in y receiving the concrete value of 1, and the symbolic
constraint y == x/2. When the program’s execution hits a
branch statement (e.g., if (x >= 42){...}else{...}), ex-
ecution proceeds along the appropriate path, but the sym-
bolic expressions for the branch-test variables are updated. In
the running example, the else clause is executed because x
(equal to 2) is less than 42; x’s symbolic constraint is updated
to become (0 < x < 42). As the program continues execu-
tion, variables receive updated concrete values and updated
shadow constraints. Eventually, the program halts or a time-
out fires. The concolic framework then explores a different
execution path by backtracking along the branch history and
selecting a branch direction to invert. In the running example,
the concolic framework might choose to explore the taken
side of the branch if (x >= 42){...}else{...}. Todo so,
the framework inverts the relevant part of x’s symbolic expres-
sion, generating the constraint (42 < x < 232 —1). The frame-
work consults an SMT solver [7, 12] to generate a concrete
value for x that satisfies the new constraints. Concolic execu-
tion then proceeds down the new branch until the program
terminates or a timeout fires. This backtrack-and-explore pat-
tern repeats until all execution paths have been discovered or
(more likely) the overall time budget for concolic execution
expires. For each discovered path, the framework records the
path constraints, i.e., the symbolic constraints on all of the
input variables which must be true for the path to be taken.
Note that path constraints are different than the symbolic
constraints on a particular variable. In our running example,
the constraint on y is y == x/2. The path constraints for that
execution path are the aggregate set of constraints placed on
x and the rest of the program inputs.

3.2 Analyzing Client-side Behavior

In the context of a concolic page load, the program inputs are
client-specific environmental variables. These environmen-
tal variables determine the content returned by web servers,
and the execution paths taken by a page’s JavaScript. For
example, when a server receives the HTTP request for an
HTML file, the server may examine the User-Agent header
to determine whether to return the mobile-optimized HTML
or the desktop-optimized HTML. The value for the local
browser’s User-Agent header is accessible to JavaScript via
the navigator.userAgent variable; JavaScript code might
inspect that variable to execute different code paths for dif-
ferent browsers. Thus, a client’s user agent string is an input
to the concolic page load. Table | enumerates the client-side
inputs that Oblique considers.

Figure 3 depicts the life-cycle for a concolic page load. A
distributor assigns concrete values to the inputs; the cookie
value is set to an empty string, and other inputs are set to

First-party
web server

1114

=

Browser

@ JS engine

(symbolic
execution)

A HHHE

HTML
renderer

Third-party
“Oblique server

DOM
interface

A

@ _ 1@

Distributor 2' Executor |
A

® @ |®

| SMT solver I

Figure 3: Overview of Oblique’s approach for symbolically
evaluating a client-side browser. See the mainline paper text
for a description of each step.

default values for mobile Chrome. The distributor hands these
values to the executor (D). The executor launches a modified
web browser () that fetches the page’s top-level HTML
(®). The HTTP request for the top-level HTML uses the
environmental values selected by the distributor. Note that the
returned HTML will be a concrete string, not a symbolic one.

As the browser parses the HTML, the browser fetches
and evaluates non-JavaScript files like CSS and images (43).
When a JavaScript file is fetched (4b), Oblique evaluates it
using a modified version of the ExpoSE concolic engine [17].
As the JavaScript code executes, Oblique records the path
constraints, and updates JavaScript variables with concrete
values and symbolic constraints. When JavaScript code dy-
namically fetches an HTTP object (e.g., via fetch (url)),
Oblique uses the concrete value of url to issue a real fetch.
However, Oblique also records the symbolic constraints on
url. These constraints, which represent a symbolic URL, are
added to the prefetch list for the current execution path. As a
contrived example, a symbolic URL might have the value
“x.com/?{{encodeURI (navigator.userAgent) } }”; this
URL would allow a web server to return different HTML
to mobile clients and desktop clients.

In the prior example, the { { } } notation indicates a symbolic
expression. The example also demonstrates how Oblique is
enlightened about certain native functions like encodeURI ().
Native functions are JavaScript-invocable methods whose
implementations are provided by C++ code inside the browser.

Input name HTTP header ‘ JavaScript variable Description

User agent User-Agent navigator.userAgent The local browser type, e.g.,
"Mozilla/5.0 (Windows; U; Win98;
en-US; 1v:0.9.2) Gecko/20010725
Netscape6/6.1"

Platform Included in User-Agent navigator.platform The local OS, e.g., "Win64"

Screen characteristics N/A window.screen. * Information about the local display,
e.g., the dimensions and pixel depth

Host Host location.host Specifies the host and port number
used by request

Referrer Referer document .referrer The URL of the page whose link was
followed to generate a request for the
current page

Origin Origin location.origin Like Referrer, but only includes the
origin, omitting path information

Last modified Last-Modified (response) | document.lastModified | Set by the server to indicate the last
modification date for the returned re-
source

Cookie Cookie (request), Set- document.cookie A string containing "key=value" pairs

Cookie (response)

Table 1: Symbolic inputs to a client-side page load.

Oblique intentionally avoids the concolic execution of native
code, since JavaScript-level semantics are the only ones of
importance. However, to ensure that native methods correctly
propagate JavaScript-level symbolic constraints, Oblique must
associate a symbol policy with each native method. A policy
describes how the symbolic inputs to a native method should
be translated to symbolic outputs for the method. Oblique
assigns policies to the most popular native methods that were
seen in our test corpus (§5.1). Those methods include the ones
defined by the Math, String, and RegExp objects. If a page
invokes a native method that lacks a symbol policy, Oblique
uses the concrete return value as the symbolic constraint; in
other words, the native function acts as a black box that never
returns symbolic data.

An HTML renderer maintains an internal data structure
called the DOM tree. The DOM tree mirrors the structure of
a page’s HTML, with each HTML tag having a correspond-
ing DOM node. JavaScript code uses the DOM interface to
query or modify the DOM tree, e.g., to implement anima-
tions and register event handlers for GUI activity. During a
symbolic page load, Oblique associates the DOM tree with
a concrete HTML string and a symbolic one; the latter al-
lows JavaScript-level symbols to flow into and out of the
DOM tree via DOM methods. For example, given a refer-
ence r to a <div> tag’s DOM node, JavaScript code could
display the browser type using the assignment r. innerHTML
= navigator.userAgent. A read of r’s parent in the DOM
tree (e.g., r.parentNode.innerHTML) would return a string
whose symbolic value contains { {UserAgent}}.

As the page load unfolds, Oblique logs the symbolic URLs
that are passed to network APIs like fetch(). Oblique
also interposes on the DOM interface, and logs the sym-
bolic URLSs which cross that interface. For example, suppose
that JavaScript code uses the Node . appendChild (imgNode)
method to add a new tag to the page. Oblique would
log the symbolic URL associated with the imgNode.src
attribute; logging the URL reflects the fact that executing
Node.appendChild (imgNode) causes the browser to fetch
an image from a remote server.

Oblique’s HTML renderer also logs the static, non-
symbolic URLs in a page. These URLs are directly specified
in a page’s static HTML (e.g., <link rel=“stylesheet”
href=“styles.css”>) or dynamically injected by
JavaScript via the DOM interface. The prefetch list for an
execution path contains the static, non-symbolic URLs and
the dynamic, possibly-symbolic URLSs that are fetched by the
path.

Oblique declares the page load to be done when the
JavaScript onload event fires. The browser fires this event
when the browser has finished the HTML parse, fetched all
objects discovered by the parse, and evaluated all of those ob-
jects. As shown in Figure 3, the JavaScript engine informs the
executor about the path constraints for the page load (). The
executor asks the SMT solver to invert a branch direction at
some point along the path (®). Inverting the branch direction
changes the symbolic constraints on the input values (§3.1).
The SMT solver generates concrete input values that satisfy
the new constraints ((7)). The executor returns those concrete

input values to the distributor (®). These values represent a
new test case that would cause the page to explore a different
execution path.

The distributor launches many executors in parallel, run-
ning each one on a separate core. As the executors complete
and return new test cases, the distributor launches new execu-
tors to explore new test cases. The distributor stops creating
new executors once a predetermined time budget expires, or
there are no more paths to explore. Higher budgets allow
Oblique to discover more execution paths, but are more ex-
pensive in terms of VM costs. We evaluate these tradeoffs in
Section 5.2.

When an executor completes its concolic page load, it
logs two things: the list of symbolic URLs fetched by the
page load, and the symbolic constraints on client-specific
inputs like cookies. Once all executors have finished, the
distributor analyses the aggregate set of executor logs to gen-
erate a tree of path constraints. Figure 2 provides an ex-
ample of such a tree. Each leaf contains a set of symbolic
URLs; each root-to-leaf path represents the client-specific
input values which indicate that a page load will fetch the
URLs at the leaf. The distributor translates the constraint
tree into a JSON data structure. Finally, the distributor gen-
erates a JavaScript library that traverses the tree; at each
node, the library applies regular expressions and compar-
ison operators to the JavaScript representation of client-
specific inputs (see Table 1). For example, the JavaScript
code /Cri0OS (54|55)/.test (navigator.userAgent) de-
termines whether the local browser is Chrome version 54 or
55 that runs atop iOS. Upon arriving at a leaf, the library con-
cretizes the symbolic URLs in the leaf, and then prefetches
those URLs using XMLHttpRequest.

Oblique sends the prefetching library (which embeds the
JSON constraint tree) to the first-party web developer. The
developer adds the library as an inline <script> tag at the
beginning of the associated page’s HTML. Later, when a
real client browser loads the page, the library issues asyn-
chronous prefetches, populating the local browser cache. As
the browser’s HTML parse examines the rest of the page
and discovers references to external objects, the browser can
pull those objects from its cache, avoiding wide-area fetch
latencies.

3.3 Nondeterministic JavaScript Functions

JavaScript defines two categories of nondeterminis-
tic functions. Timestamp functions like Date() and
Performance.now() read the system clock. Ran-
dom number generators like Math.random() and
crypto.getRandomValues () create pseudorandom or
cryptographically-random byte sequences.

JavaScript code may consult nondeterministic functions
during the construction of a dynamic URL. For exam-
ple, a page might contain code like if (Math.random() >
0.7) {url="a.jpg”}else{url="b. jpg”}. In that example,

the URL embeds no symbols, but its value is controlled by the
output of a nondeterministic function. Code like url=Date ()
+ ™. jpg” would create a URL that directly embeds the output
of a nondeterministic function.

Both kinds of dynamic URLs will induce prefetch misses
for RDR. The reason is that RDR uses a headless browser
to generate a page’s dependency graph (§2). The headless
browser and the client-side browser will likely generate differ-
ent nondeterministic values; thus, the two browsers will likely
generate different dynamic URLs. To prevent such divergence,
RDR could log the nondeterminism observed by the headless
browser, and then force clients to use the logged sequence.
This approach is the same one used by deterministic replay de-
buggers to faithfully recreate previously-observed program ex-
ecutions [8,20]. However, in the context of accelerating page
loads, this approach can break functionality. Clients will re-
ceive old wall-clock readings, and calculate elapsed time peri-
ods that do not accurately reflect the client’s true perception of
time. As a result, clients may fetch stale content or improperly
calculate frame rates for animations. From the security per-
spective, exposing a client’s crypto.getRandomValues ()
sequence to a third party is undesirable, because the client
might use the sequence to derive keys or nonces.

Vroom will also suffer prefetch misses for dynamic URLSs
that are influenced by nondeterministic functions. Vroom’s
offline analysis identifies a stable set of URLs that are fetched
by several different loads of a page (§2). Vroom’s stable set
analysis will drop URLs that only differ by a timestamp or a
random number. The analysis will also drop URLSs that do not
directly embed nondeterminism, but are fetched via branching
paths whose directions are chosen by nondeterminism.

Oblique handles these dynamic URLs without forcing
clients to divulge their nondeterminism to third parties. Dur-
ing an offline symbolic execution, Oblique creates a unique,
hidden variable for each invocation of a nondeterministic func-
tion. Oblique treats this variable as a client-specific input, akin
to document . cookie or User-Agent. This approach enables
Oblique to track how the outputs of nondeterministic functions
influence branch decisions and the construction of dynamic
URLs. For example, suppose that during symbolic execution,
a page’s JavaScript code invokes Math.random () twice, and
then calls Performance.now (). Oblique generates the hid-
den variables randg, rand;, and pnowg. As the symbolic page
load continues, the load may generate dynamic URLs like
https://foo.com/?{{randg}}.js. Oblique places these
URLs in the prefetch list as normal. The symbolic execu-
tion may also branch on the values of rand; and pnowy, just
like the symbolic execution might branch on User-Agent.
Later, during a real client-side page load, Oblique’s prefetch
library concretizes hidden variables before traversing the path
constraint tree. In the previous example, the prefetch library
would make two calls to Math.random(), and one call to
Performance.now (). With the hidden variables now con-
cretized, and with client-specific values like User-Agent in

hand, the prefetch library can now traverse the path constraint
tree and concretize all of the URLs that reside at the appropri-
ate leaf.

The library prefetches the concretized URLs. Finally,
the library dynamically patches [20] nondeterministic func-
tions like Math.random () and Performance.now (), forcing
those methods to return the values in the log of concretized
hidden variables. The prefetching library is the first JavaScript
code that executes in a page. Thus, as the rest of the page’s
JavaScript code executes, that code will craft dynamic URLs
using the same nondeterministic values that Oblique used to
construct prefetched URLs.

This approach may still result in unnatural calculations
of elapsed time. For example, a page’s normal JavaScript
code may call Performance.now (), execute a lengthy com-
putation, call Performance.now () again, and then use the
elapsed time to construct a dynamic URL. If Oblique’s
prefetching library concretizes the two hidden variables using
back-to-back calls to Performance.now (), the elapsed time
used to influence prefetching will be much smaller than the
elaspsed time used by the page’s normal JavaScript. At worst,
this will cause a wasted prefetch; Oblique only prefetches
HTTP GET requests which (unlike POST requests) cannot
induce side effects on the server. In future work, we hope
to devise mechanisms to allow concolic execution to esti-
mate wall clock time. This ability would enable Oblique to
concretize hidden timestamp variables with higher fidelity.

JavaScript is an event-driven language. Thus, the execution
order of event handlers (e.g., timers and GUI events) is another
source of nondeterminism. Oblique does not attempt to control
these sources of randomness, because the event loop only
goes live after a page’s HTML parse completes. This means
that event-loop nondeterminism cannot affect URLs fetched
during the HTML parse (e.g., via the . src attribute of HTML
tags, or XMLHt tpRequests issued by JavaScript). Event-loop
nondeterminism can affect URLs fetched after the HTML
parse completes.

3.4 Analyzing Server-side Behavior

When a web server receives a request for a page’s top-
level HTML, the server might dynamically construct the re-
turned HTML. For example, the server might inspect the
User-Agent string in the HTTP request, and return mobile
content or desktop content as appropriate. As another exam-
ple, the server might use the request’s cookie to populate the
HTML with user-specific URLs, e.g., corresponding to im-
ages of a user’s previous purchases on an e-commerce site.
Oblique’s analysis from the previous sections will not detect
this potential diversity of embedded URLs. The reason is that
the prior analysis assumes that a page has only one version
of its top-level HTML, and thus only one set of embedded
JavaScript files; if this assumption is true, then the only goal
of symbolic analysis is to explore branch paths in the fixed
JavaScript code, identifying the dynamically-fetched URLs.

3.4.1 The Workflow

To generate more accurate prefetch lists for dynamically-
generated pages, Oblique can optionally perform symbolic ex-
ecution of both client-side JavaScript (that runs in a browser)
and server-side JavaScript (that runs in the Node frame-
work [25]). The end-to-end workflow looks like this:

e Phase 1: Oblique first performs a concolic execution
of the server-side request handling code. For each
test, the inputs are the HTTP request state, as well
as nondeterministic function values (e.g., from Node’s
crypto.randomBytes () method). For each concolic
path that is explored, Oblique logs the concrete HTML
string that is generated, building a server-side path con-
straint tree. Each leaf contains a concrete HTML string,
with each root-to-leaf path representing the constraints
on server-side inputs that enable the concrete HTML
string to be generated.

e Phase 2: Each concrete HTML string is fed to the client-
side symbolic execution pipeline from Section 3.2. The
output of that pipeline is a client-side path constraint tree.
Each leaf contains symbolic URLSs to prefetch, and each
root-to-leaf path represents the symbolic constraints on
client state that trigger the fetching of the leaf’s URLs.

e Phase 3: Once Oblique has finished all of the symbolic
executions (both client-side and server-side), Oblique
creates a “super-constraint tree” which combines the
knowledge gleaned from the individual constraint trees.
The super tree maps Phase 1 path constraints on server-
side inputs to the appropriate client-side path constraint
tree from Phase 2; in other words, each leaf in the super
tree is a client-side path constraint tree.

When a real client loads the page, the web server uses the
values in the HTTP request to traverse the super tree; if the
super tree branches on the return values of server-side nonde-
terministic function, the web server concretizes those values
using the approach from Section 3.3. When the server reaches
a leaf in the super tree, the server injects the leaf’s prefetching
library into the dynamically-constructed HTML. The subse-
quent construction process for the HTML is guided by the
values in the HTTP request, and possibly by nondeterminis-
tic functions; those functions return the already-concretized
values which guided the traversal of the super tree. When
the client receives the HTML, Oblique’s prefetching library
executes as described in Section 3.2.

3.4.2 Templating Engines

In Phase 1, Obliqgue symbolically executes the server-side
request handler. A developer has two options for specify-
ing an entry point into request-handling code. First, a devel-
oper can register an http.Server.request event handler
with Obliqgue. When a client request arrives, Node creates a
new http.IncomingMessage object and invokes the handler.
Oblique uses the object’s HTTP headers as test inputs for
concolic execution of the handler.

777777 Server-side JavaScript —————-
app.get (/’, function(reqg, res) {
//...examine req and derive the template parameters,
//and then...
res.render ('template.ejs’,
{userAgent: reqg.headers[’user-agent’],
userID: "alice’,
userName: 'Alice’,
nonce: random_value});

<html>
<head></head>
<body>
<pl> Welcome to foo.com, <%= userName %>! </pl>
<% if (userAgent.includes (’Android’)) { %>

<% } else { %>

<% } %>
<img id=’'session-<%= nonce %>’
src='<%= userID %>.jpg’'>
</body>
</html>

Figure 4: An example of dynamic HTML generation using
EJS templates. EJS directives are shown in bold.

The disadvantage of the prior approach is that, during the
construction of dynamic HTML, a server may consult /0-
based sources of nondeterminism. For example, the server
may issue a database query, or send an RPC to an external
server. Oblique does not log and replay such IO responses.
Thus, the concretized Phase 1 HTML that Phase 2 consumes
may be different than the dynamic HTML that is generated at
the time of an actual page fetch. Such a mismatch would hurt
Oblique’s prefetching accuracy.

Oblique can avoid this problem if server-side code uses
a template engine to generate dynamic HTML. For exam-
ple, consider EJS [9], a popular template framework. EJS
defines a render (html, dict) method. The first argu-
ment is a template string (e.g., “<html>Hello {{name}} at
{{tstamp}}”). The second argument is a dictionary which
maps template arguments to program variables (e.g., {name:
httpReq.cookie.uid, tstamp: Date.now()}). EJS ex-
amines the template and automatically generates a JavaScript
program; this program, which is executed by render (), per-
forms the necessary computations to parse dict and emit
the customized HTML. Figure 4 provides a more complex
example of an EJS template.

If a developer uses EJS, then she can tell Oblique to con-
colically analyze the EJS-created templating JavaScript. The
output of Phase 1 is now different: it consists of server-side
path constraint trees that are associated with just the tem-
plating JavaScript, not the overall handler call chain. Each
leaf still contains a concrete HTML string that is passed to
the concolic client-side analysis in Phase 2. However, a leaf

also contains the symbolic HTML string that was output by
the Phase 1 analysis. The symbols in this string come from
the dict argument to render (). In the example from Fig-
ure 4, the symbolic HTML references the dict arguments
userName, nonce, and userID. Note that the dict argument
userAgent does not appear in symbolic HTML,; that argu-
ment is branched upon in the path conditions, but is not di-
rectly embedded in the HTML itself.

With template integration, Phase 3 is altered as well. When
the web server receives a request, the server executes the re-
quest handler up to the invocation of render (). At that point,
the server has queried any sources of nondeterminism (10-
based or otherwise); the server now possesses concrete values
for all the inputs to render (). The server can then traverse
the super tree, find the appropriate symbolic HTML, con-
cretize it, extract the static URLs inside the concrete HTML,
and then inject the appropriate prefetching library. Note that
extracting static URLs from the concretized HTML is faster
than a naive top-to-bottom HTML parse, since Oblique has a
priori knowledge of the offsets where the URLs will be.

3.5 Security Analysis

Oblique’s security properties depend on whether symbolic
analysis examines only client behavior, or both client and
server behavior. Consider the scenario in which Oblique only
analyzes client-side activity. In this case, Oblique only re-
quires access to first-party content that is already publicly
accessible via first-party web servers. From the perspective
of a first-party web server, Oblique’s third-party analysis en-
gine looks like a normal end-user browser that issues nor-
mal HTTPS fetches. During a concolic page load, Oblique
does track symbolic constraints on sensitive user values like
cookies and User-Agent strings. However, these constraints
represent a universe of possible values for sensitive variables;
the constraints are insufficiently precise to allow Oblique to
determine the specific sensitive values that belong to a particu-
lar user. For instance, we did empirically find JavaScript code
which tested cookies for substrings that were user-agnostic;
a common pattern was to inspect a cookie for a string rep-
resenting the current date. However, JavaScript code did not
contain the logical equivalent of a giant regular expression
which scanned the local cookie, testing whether the cookie
contained any value from an explicit list of valid user ids. Such
JavaScript code does not exist because it would allow anyone
to download the enclosing JavaScript file and learn all of the
valid user ids for a site! Thus, Oblique’s symbolic constraints
on cookies are insufficient to induce concrete cookie values
belonging to specific users. Similarly, if Oblique analyzes a
page and determines that a possible load path will target An-
droid users that possess a certain set of screen dimensions,
this information does not allow Oblique to infer the screen
dimensions and platform value for a particular user.

To analyze server-side behavior, Oblique requires access
to server-side code; that code is inaccessible to public web

clients. During the concolic execution of that code, Oblique
might also query sensitive databases, or contact sensitive net-
work hosts that are inaccessible to public internet hosts. Thus,
if a developer wants Oblique to analyze both client-side and
server-side behavior, Oblique should be run on first-party
machines. Compared to Vroom (which is also a first-party
accelerator), Oblique will provide faster page loads (§5.2).

3.6 Limitations

Obligue is not guaranteed to optimize every object fetch made
by every page. For example, during concolic execution, a
page’s JavaScript may invoke unmodeled native functions,
i.e., browser-provided C++ functions for which Oblique lacks
a symbolic execution policy (§3.2). If concolic execution
reaches one of those functions, Oblique must always treat
the return value as fully concrete. Doing so will hurt path
coverage if the program later branches on the value, since
concrete values cannot be “inverted” to force a new branch
direction to be explored.

Even if a page avoids unmodeled native functions, path
coverage may suffer when symbolic path constraints are diffi-
cult to invert. If the constraint solver times out while trying to
generate concrete inputs for a new path to explore, the path
will not be explored. If this happens, Oblique can miss oppor-
tunities to discover prefetchable URLs. We evaluate Oblique’s
sensitivity to time-out parameters in Section 5.2.

During concolic execution, Oblique may trigger interac-
tions with external entities. For example, a concolically-
executed browser may issue XMLHttpRequests to remote
servers. Oblique should only be used with pages for which
such interactions are idempotent (either literally or for prac-
tical purposes). This limitation is shared by all prefetching
systems which issue queries to live services to perform con-
tent analysis.

4 Implementation

To implement Oblique’s symbolic analysis, we modified Ex-
poSE [17]. ExpoSE performs concolic execution of pure
JavaScript code, but does not handle environmental interac-
tions like network 10. We modified ExpoSE to interface with
two different environmental interfaces: the Node runtime and
the Electron [10] HTML renderer. Oblique uses the Node
runtime when analyzing server-side code, and uses the Elec-
tron runtime when simulating client-side loads. As explained
in Section 3.2, we enlightened ExpoSE to model a DOM
tree symbolically, so that JavaScript-level symbolic values
can flow into and out of the DOM interface. Our changes
to ExpoSE were non-trivial, totalling roughly 4,300 lines of
code.

Oblique’s client-side prefetching library is small, contain-
ing approximately 300 lines of Javascript code. When Oblique
runs in third-party mode (§3.2), web servers require no modi-
fications (other than having to include Oblique’s prefetching
library at the top of each page’s HTML). When Oblique runs

in first-party mode (§3.4), web servers must be enlightened to
traverse the super-constraint tree, concretize nondeterministic
values, and interact with Oblique’s templating infrastructure.
To implement an Oblique-compatible web server, we created
a front-end HTTP layer that sat in front of a commodity web
server. The front-end layer used the nghttp2 HTTP library
and the myhtml HTML parser to implement the activities
described above.

5 Evaluation

In this section, we compare Oblique’s performance to that of
Vroom and RDR, two state-of-the-art accelerators for mobile
page loads. Our evaluation primarily focuses on the variant of
Oblique that only analyzes client-side behavior, since we can
evaluate this variant on a large number of commercial sites.
Using a corpus of 200 real pages, we find that Oblique reduces
page loads by up to 31%, outperforming Vroom and RDR by
up to 17% while also reducing VM costs for popular sites
(§5.2). Oblique provides these advantages while also enabling
secure outsourcing of prefetch analysis (§5.2). In Section 5.3,
we use a site that we control to provide a case study of the
benefits of analyzing both client-side behavior and server-side
behavior. We demonstrate that, if first parties are willing to
run Oblique, they can unlock even greater reductions in load
time than what client-only analysis provides.

5.1 Methodology

Our experiments used a Galaxy S10e phone that ran
Chromium v78. The browser ran atop Linux on Dex [30],
a runtime that enables Samsung phones to execute traditional
Linux executables; Linux on Dex made it easier for us to write
testing scripts and other experimental infrastructure. We auto-
mated the initiation of page loads and the collection of load
time metrics using the Browsertime [33] library. Internally,
Browsertime manipulated Chrome via Selenium’s WebDriver
APIs [36,43].

To test Oblique, Vroom, and RDR with real websites, we
built a Mahimahi-style tool [23] to record the objects in live
web pages. Afterwards, when our test phone sent an HTTP
request to an Oblique web server, a Vroom web server, or an
RDR proxy, the web server or proxy responded with recorded
content if the request hit in the replay cache; otherwise, the
web server or proxy issued a live fetch to the appropriate
content server. We ran Oblique and Vroom web servers, and
RDR proxies, on a Digital Ocean VM with 8 2.3 GHz cores,
16 GB of RAM, and a 2 Gbps NIC. The RDR proxy used
headless Chrome [28] to load pages. Vroom’s offline analysis
also used headless Chrome. The online Vroom web server
was a derivative of nghttp2 [38] that used MyHTML [4] and
Katana [27] to parse HTML and CSS.

Our phone had an LTE connection with a round-trip time
of 47 ms to our Digital Ocean VM. Our test corpus contained
200 pages from the Majestic Million [19]. We selected the
200 most popular pages for which the RTT between our phone

and a page’s web server was less than the the RTT between
our phone and our Digital Ocean VM. This setup resulted in
conservative estimates of the benefits provided by Oblique,
Vroom, and RDR, relative to the baseline scenario in which
our phone contacted normal web servers directly. For each
combination of <page, load time metric, acceleration tech-
nique>, we loaded each page 5 times and recorded the average.
By default, Oblique and Vroom pages were loaded one hour
after the completion of offline analysis, but we perform sensi-
tivity analysis on this parameter in Section 5.2.

5.2 Client-only Analysis

PLT: We first explored Oblique’s performance when only
the client side of a page load is analyzed. Figure 5 shows
results for the page load time (PLT) metric. PLT, as measured
by the time to the browser’s onload event, captures how long
a page needs to fetch and evaluate all objects referenced by
a page’s static HTML. Note that PLT only waits for some
dynamically-generated fetches to complete. In particular, PLT
waits for fetches triggered by the insertion of new DOM nodes
(e.g., document .body . appendChild (newImg)), but not for
fetches triggered directly by network APIs like fetch (url).
Thus, PLT underestimates the extent to which Oblique, Vroom,
and RDR reduce overall fetch latencies for a page.

Figure 5a shows that, for a 47 ms RTT and a cold browser
cache, Oblique provided the average page with a 24.1% re-
duction in PLT, relative to a baseline (i.e., non-accelerated)
page load. Oblique reduced PLTs by 17.3% more than RDR,
and 5.4% more than Vroom. To explore Oblique’s benefits
with higher RTTs; we connected the smartphone to a desk-
top machine via WiFi, and used netem [18] to inject addi-
tional latency along the smartphone/desktop link. As expected,
Oblique’s benefits improved as phone-server RTTs grew, be-
cause of the increasing value of hiding last-mile latency. For
example, Figure 5c¢ shows PLT results for an emulated RTT
of 150 ms. Oblique improved the average baseline PLT by
31.4%, outperforming RDR by 16.3% and Vroom by 6.2%.

A page load’s prefetch hit rate is the fraction of requested
objects that hit in the browser cache due to a successful
prefetch. As shown in Figure 6a, Oblique enjoyed better
prefetch hit rates than both Vroom and RDR. Indeed, Oblique’s
primary advantage over Vroom was the ability to successfully
prefetch dynamic URLSs that embedded nondeterministic sym-
bols (§3.3); this advantage is reflected in Figure 6b.

We define a page load’s wasted prefetch rate as the frac-
tion of prefetched objects that were never requested during
the page load. Figure 6¢ demonstrates that RDR has a much
higher percentage of wasted prefetches. The reason is that,
for each client-initiated page load, RDR loads the page twice:
once on the proxy, and once on the real client machine. Both
client-side and server-side nondeterminism may cause the
URLSs fetched by the proxy’s page load to be different than
the URLSs fetched by the client’s browser. Oblique avoids this
problem by handling nondeterministic URLs symbolically.

In contrast, Vroom’s stable-set algorithm simply filters out
many nondeterministic URLs. Thus, Vroom has fewer wasted
prefetches than RDR, because Vroom does not prefetch non-
deterministic URLs that RDR erroneously pulls; however, as
shown in Figure 6b, Vroom has a worse hit rate than Oblique
due to worse handling of nondeterministic dynamic URLs.

In comparison to RDR, both Oblique and Vroom benefited
from informing clients early about the URLs to prefetch. For
example, Oblique discovered all of these URLSs offline, and
prefetched them via the first JavaScript code that executed
on a page. Vroom included <link> preload tags at the be-
ginning of a page’s HTML, and server-pushed other objects
to prefetch. In contrast, RDR streamed objects to a client
as the proxy discovered those objects; the deeper a page’s
dependency graph was (§2), the larger the comparative advan-
tage provided by Oblique offline discovery approach. Vroom
discovered some prefetch URLs offline, and others during
the online, server-side HTML parse. However, Vroom ag-
gressively notified clients about the offline-discovered URLs
using server push and <1ink> preload tags.

Warm caches: Figure 7a depicts PLTs for all four systems
when browser caches were warm. As expected, all systems
enjoyed lower PLTs. Oblique and Vroom had similar perfor-
mance, but still outperformed RDR.

Speed Index: We also evaluated the ability of Oblique,
Vroom, and RDR to improve a page’s Speed Index [41]. Speed
Index is a visual metric that represents how quickly a page’s
above-the-fold content is rendered. A page’s Speed Index is
Jendq — %’8 dt, where end is the time of the last pixel change,
and p(¢) is the percentage of pixels that have already received
their final value; lower Speed Indices are better. The formula
rewards page loads whose overall rendering time is fast (mean-
ing that end values are small). Given two pages with the
same end value, the formula rewards the page which renders
more pixels earlier. Note that Speed Index ignores whether
JavaScript files or below-the-fold content has arrived; thus,
like PLT, Speed Index underestimates the extent to which
accelerators have successfully prepositioned objects.

Figures 7b and 7c show Speed Index results for RTTs of 47
ms and 150 ms. The basic trend is the same one observed for
PLT: Oblique has better performance than Vroom, and Vroom
has better performance than RDR. However, all of the ac-
celeration systems improve PLT more than Speed Index. For
example, with cold caches and a 150 ms RTT, Oblique reduces
PLT by 31.4%, but Speed Index by only 20.4%. The reason
is that Speed Index only considers visual content, and only
cares about the loading of JavaScript files to the extent that
the evaluated code modifies a page’s above-the-fold graphics.
However, deep chains in a page’s dependency graph are often
caused by JavaScript files whose evaluation triggers the load-
ing of additional JavaScript files [21]. All three accelerators
let clients resolve those dependency chains more quickly, but
this has less impact on Speed Index than PLT.

101 T —— Oblique (Avg: 5.23 5) 0.8] — Oblique (Avg: 5.59'5)
0.87 -~ Vroom (Avg: 5.475) ---- Vroom (Avg: 5.96 s)
0.81 —— RDR (Avg: 6.04 5) —— RDR (Avg: 668'5)
0.6 Baseline (Avg: 6.86 s) 0.61 Baseline (Avg: 8.16 s)
" 0.61 " w
0.4
0.4 004 ©
Oblique (Avg: 3.29 s)
0.21 -==- Vroom (Avg: 3.43 s) 0.2 0.2
—— RDR (Avg: 3.79 s)
0.04 Baseline (Avg: 4.34 s) 0.0 0.0
0 2 4 6 8 0 2 2 6 8 0 2 4 6 8
PLT(seconds) PLT (seconds) PLT (seconds)
(a) 47 ms RTT (b) 100 ms RTT (¢) 150 ms RTT
Figure 5: Cold-cache PLTs for Obligue, Vroom, RDR, and a baseline, non-accelerated browser.
R — Oblique (Avg: 88.2 %) /i 10— Oblique (Avg: 77.8 %) Vs 1.04 - . =
08l Vroom (Avg: 83.4 %) .///,: 0.8] Vroom (Avg: 68.2 %) /,,/-f/ 0.8/ -/‘._./
——- RDR (Avg: 71.6 %) ey —— RDR({Avg:622%) | .7/ ”
v ! e
W 0.6 L 06 W 0.6 -
a (=) a
Y 0.4] Yoa4 Y 0.4]
—— Oblique (Avg : 2.06 %)
0.2 — 0.2 027/ - Vroom (Avg : 2.24 %)
i =TT ——- RDR (Avg : 22.8 %)
0.0 "_ - - g . . 0.0 0.0 i i : - :
0 20 40 60 80 100 0 20 60 80 100 0 20 40 60 80

URL hit rate (%)

(a) Prefetch hit rate (static+dynamic URLSs)

Dynamic URL hit rate (%)

(b) Prefetch hit rate (only dynamic URLSs)

Prefetch URL waste rate (%)

(c) Wasted prefetch rate

Figure 6: Prefetch efficiency for Oblique, Vroom, and RDR.

mmm Oblique
Vroom

25

mmm RDR mmm Oblique mmm RDR

N
o

14
1.0
""" K124
0.8 by
S 10/
0.6 3
w 3
v} (7]
0.4 x
Oblique (Avg: 2.68 s) 3
| ---- Vroom (Avg: 2.69 s) £
0.2
—— RDR (Avg: 2.85 s) 3
0.01 Baseline (Avg: 3.04 s) é_ 2
0 1 2 3 4 5 6

o

8_
6_
: I
| |

= =
o w

Speed Index speedup (%)
w

PLT (seconds) Cold cache

(a) PLT (warm cache, 47 ms RTT)

(b) Speed Index (47 ms RTT)

I Vroom
0- I I

Warm cache Cold cache Warm cache

(c) Speed Index (150 ms RTT)

Figure 7: Warm-cache PLTs and Speed Indices (both cold and warm caches). Note that subfigures (b) and (c) have different

y-axis scales.

Stale analytic results: In Figures 5 and 7, the offline anal-
yses for Oblique and Vroom occurred one hour before a page
load. Figure 8a depicts average PLTs when Oblique and
Vroom used analytic data from farther in the pass. Unsur-
prisingly, Oblique and Vroom performed better with more
recent analytic data. However, for up to 12 hours of staleness,
Oblique maintained its advantage over Vroom; both Oblique
and Vroom also maintained their advantages over RDR and a
non-accelerated browser.

Additional analysis time: Given an infinite amount of time,
Oblique’s offline analysis would be guaranteed to find a com-
plete tree of path constraints; in other words, every possible

concretization of client-side symbols would be covered by
some root-to-leaf tree path. In practice, Oblique’s symbolic
analysis is constrained by two parameters: ¢ represents the
maximum execution time for a particular execution path,”
and T represents the overall amount of time that Oblique will
analyze the page. By default, Oblique uses ¢ = 10 minutes and
T = 30 minutes. If fully exploring a particular path requires
more time than ¢, Oblique will only discover a subset of the
URLs associated with the path. If discovering all paths in a
page takes longer than 7', Oblique will not generate a prefetch
list for the undiscovered paths.

2 A timeout occurs when the SMT solver cannot negate a branch condition
in the current path (§3.1).

1.0
Vroom

«

mmm Oblique
0.8

Browser
RDR

IS

0.6
w
8

0.4

w

~

—— 20t/60T (Avg: 3.31s)
-- 10t/30T (Avg: 3.32's)
—— 5t/15T (Avg: 3.47 s)
3t/5T (Avg: 3.62 s)

PLT (seconds)

0.2

-

0.0
1 hour 7 hours 12 hours 0 2 4 6 8
Analysis period (hours)
PLT (seconds)

(a) PLT as a function of the stal- (b) PLT as a function of the time
eness of the offline analytic data. budget given to Oblique’s offline
These results use a47 ms RTT and symbolic analysis. These results

cold caches. use a 47 ms RTT and cold caches.

Website count

[(Avg: 367.0 ms) = (Avg: 15.7 ms) ‘

Website count
»
S

N
5

D‘HIHIMW

0 1000 2000 3000
Extra pi ing time (ms) per

ol D
4000 0 50 100 150 200
request Extra processing time (ms) per webpage request

(c) RDR: Per-page-load computa- (d) Vroom: Additional per-page-

tional time required by a proxy.

load computational time required.

Figure 8: The impact of stale Oblique/Vroom analyses, and the additional computational overheads of RDR and Vroom.

Figure 8b depicts Oblique’s PLT benefits for different val-
ues of # and T'. In those experiments, the PLT for a page was
defined as the average PLT across all discovered paths; to test
the PLT for a particular discovered path, our test browser used
concretized client-side symbols that triggered the path. Fig-
ure 8b shows that Oblique is basically insensitive to ¢ values
above 10 minutes and T values above 30 minutes. The reason
is that, for the average page in our test corpus, only 7 minutes
were needed to completely explore a path; furthermore, the
median page only contained 7 execution paths.

Economic costs: For a given version of a page, Oblique per-
forms an offline analysis once, constructs a path constraint
tree, and then incurs no online costs during a real client load.
In contrast, RDR must launch an RDR proxy for each client
load, and Vroom must perform online HTML parsing. Fig-
ures 8c and 8d depict those per-page-load CPU costs.

A VM owner pays for a virtual CPU by the second or by
the hour. Once a virtual CPU is fully loaded, any additional
computation to perform will force the VM owner to rent more
virtual CPU seconds. For a fully-loaded virtual CPU, Vroom
requires a VM owner to pay for an additional 15.7 ms of ad-
ditional compute time per page load. Thus, Oblique’s offline
analysis becomes cheaper than Vroom’s smaller (but repeated)
online costs after 7/15.7 page loads, where T is Oblique’s of-
fline analysis time in units of milliseconds. For example, with
a T of 30 minutes, Oblique becomes financially cheaper after
114,650 page loads; with a T of an hour, Oblique becomes
cheaper after 229,299 loads. Since RDR imposes much heav-
ier computational overheads than Vroom, Oblique becomes
cheaper much faster—after 4,904 loads or 9,809 loads for
a T of 30 minutes or a 7 of an hour. Importantly, these es-
timates assume that, when a page changes, Oblique’s prior
analysis is totally invalidated. We are currently investigating
how Oblique can use incremental symbolic execution [13, 15]
to amortize our analysis costs even more aggressively.

5.3 Oblique in First-party Mode

When Oblique runs on first-party infrastructure, Oblique can
symbolically evaluate client-side and server-side behavior.

However, to do this, Oblique must be able to examine back-
end code. We had no access to server-side code for the com-
mercial sites in our test corpus; thus, we had to evaluate first-
party Oblique on a collection of modified open-source sites
that we ran ourselves. Due to space restrictions, we focus on
a single case study of an open-source EJS site. In the text
below, Oblique-C refers to a setup in which Oblique can only
analyze client-side activity. Oblique-SC refers to a setup in
which Oblique can evaluate both server and client behavior.

Gallery Viewer [39] is a site whose core functionality is
displaying a rotating set of images. Each image is associ-
ated with metadata like an author, a category (e.g., “nature
scenes”), and a description of the image; metadata is stored
in on-disk JSON files. Users can also chat with each other in
real time, and submit comments on particular images. From
the perspective of Oblique, the site is interesting because of
how it uses cookies and random number generators. The site
assigns a unique cookie to each user. When a user requests the
page’s top-level HTML, the server uses the cookie to query
a server-side table of user preferences. The table indicates
the types of images that a user likes to view. Given those
preferences, the server leverages a random number generator
to select random images from the user’s preferred image cate-
gories. The server inserts the associated image URLSs into the
dynamically-generated HTML that is returned to the user’s
browser.

For this particular site, no client-side symbols are relevant
to prefetching. However, two kinds of server-side symbols
are relevant: the cookie value in the HTTP request for the
top-level HTML, and the random numbers that are used to
select image URLSs.

e Oblique-SC correctly prefetches all of the image URLSs.
During Phase 1 of analysis (§3.4), Oblique-SC symbol-
ically evaluates the templating JavaScript, creating a
symbolic HTML string. In Phase 3, i.e., during a real
page load, Oblique-SC runs the server-side event handler
up to the call to render (). At that point, Oblique-SC
concretizes the symbolic HTML using the live cookie
data and logged values from the random number genera-

tor. Oblique-SC then extracts the image URLs from the
concretized HTML, and creates a prefetch library that
downloads those URLs.

e Oblique-C lacks visibility into server-side behavior. Thus,
an Oblique-C client incorrectly prefetches the URLS in
the concretized HTML that was seen during offline anal-
ysis.

e Vroom correctly prefetches the image URLSs; the Vroom
web server identifies the URLs during the on-the-fly
HTML parse.

e RDR incorrectly prefetches the image URLs. The HTML
returned to the proxy’s headless browser will contain
different URLs than the ones in the HTML returned to
the user’s browser; the URLSs in the first HTML file are
prefetched by the client.

For a cold browser cache and a 47 ms RTT, Oblique-SC and
Vroom had similar performance, with PLTs of 2.01 seconds
and 2.06 seconds, respectively. Oblique-C did only slightly
better than RDR (2.29 seconds versus 2.37 seconds). The
non-accelerated page load required 2.76 seconds.

Oblique-SC has larger computational costs than Oblique-C;
during offline analysis, more symbolic execution is required,
and during an actual page load, web servers must participate
in Phase 3 activity. The extent to which Oblique-SC is prefer-
able to Oblique-C depends on whether first parties want to
pay these costs, and the extent to which a site uses server-
side symbols to generate HTML. However, the results from
Section 5.2 demonstrate that Oblique-C alone can provide
impressive reductions in page load time.

6 Conclusion

Oblique is a new system for accelerating mobile page loads.
Oblique uses symbolic execution to analyze the various ways
that a page load could proceed. For each potential outcome,
Oblique creates a list of symbolic URLSs that the corresponding
page load would fetch. These URLSs are concretized at the time
of an actual page load, and then prefetched using Oblique’s
client-side JavaScript library. Oblique works on unmodified
browsers, and provides faster page loads than current state-of-
the-art approaches. When run in third-party mode, Oblique
enables secure outsourcing of prefetch analysis while also
enabling reductions in VM costs.

References

[1] Amazon. What Is Amazon Silk?, 2020.
https://docs.aws.amazon.com/silk/latest/
developerguide/introduction.html.

[2] M. Belshe, BitGo, R. Peon, Google, M. Thomson,
and Mozilla. Hypertext Transfer Protocol Version
2 (HTTP/2), May 2015. RFC 7540. https://
tools.ietf.org/html/rfc7540.

[3] D. Bhattacherjee, M. Tirmazi, and A. Singla. A Cloud-
based Content Gathering Network. In Proceedings of
HotCloud, Santa Clara, CA, July 2017.

[4] A. Borisov. Fast C/C++ HTML 5 Parser, January 8,
2020. https://github.com/lexborisov/myhtml.

[5] Broadband Search. Mobile vs.
Usage (Latest 2020 Data), 2020.
/ /wuw.broadbandsearch.net /blog/mobile-
desktop-internet-usage-statistics.

Desktop
https:

[6] M. Butkiewicz, D. Wang, Z. Wu, H. V. Madhyastha,
and V. Sekar. Klotski: Reprioritizing Web Content to
Improve User Experience on Mobile Devices. In Pro-
ceedings of NSDI, Oakland, CA, May 2015.

[7]1 L. de Moura and N. Bjorner. Z3: An Efficient SMT
Solver. In Proceedings of Tools and Algorithms for the
Construction and Analysis of Systems, Budapest, Hun-
gary, April 2008.

[81 G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai,
and P. M. Chen. ReVirt: Enabling Intrusion Analy-
sis through Virtual-Machine Logging and Replay. In
Proceedings of OSDI, Boston, MA, December 2002.

[9] M. Eernisse. EJS: Embedded JavaScript Templating,
2020. https://ejs.co/.

[10] Electron Community. Electron Documentation, 2020.
https://www.electronjs.org/docs/development/
v8-development.

[11] F. Rizzato and I. Fogg. How AT&T, Sprint, T-Mobile
and Verizon differ in their early 5G approach, February
20, 2020. https://www.opensignal.com/2020/
02/20/how-att-sprint-t-mobile-and-verizon-
differ-in-their-early-5g-approach.

[12] V. Ganesh and D. L. Dill. A Decision Procedure for
Bit-Vectors and Arrays. In Proceedings of the Interna-
tional Conference in Computer Aided Verification, Berlin,
Germany, July 2007.

[13] P. Godefroid. Compositional Dynamic Test Generation.
ACM SIGPLAN Notices, 42, January 2007.

[14] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
Automated Random Testing. In Proceedings of PLDI,
Chicago, IL, June 2005.

[15] P. Godefroid, S. K. Lahiri, and C. Rubio-Gonzalez. Stat-
ically Validating Must Summaries for Incremental Com-
positional Dynamic Test Generation. In Proceedings
of the International Static Analysis Symposium, Venice,
Italy, September 2011.

https://docs.aws.amazon.com/silk/latest/developerguide/introduction.html
https://docs.aws.amazon.com/silk/latest/developerguide/introduction.html
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc7540
https://github.com/lexborisov/myhtml
https://www.broadbandsearch.net/blog/mobile-desktop-internet-usage-statistics
https://www.broadbandsearch.net/blog/mobile-desktop-internet-usage-statistics
https://www.broadbandsearch.net/blog/mobile-desktop-internet-usage-statistics
https://ejs.co/
https://www.electronjs.org/docs/development/v8-development
https://www.electronjs.org/docs/development/v8-development
https://www.opensignal.com/2020/02/20/how-att-sprint-t-mobile-and-verizon-differ-in-their-early-5g-approach
https://www.opensignal.com/2020/02/20/how-att-sprint-t-mobile-and-verizon-differ-in-their-early-5g-approach
https://www.opensignal.com/2020/02/20/how-att-sprint-t-mobile-and-verizon-differ-in-their-early-5g-approach

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

Google. Google Transparency Report:
HTTPS encryption on the web, 2020. https:
//transparencyreport.google.com/https/
overview?hl=en.

B. Loring, D. Mitchell, and J. Kinder. ExpoSE: Prac-
tical Symbolic Execution of Standalone JavaScript. In
Proceedings of SPIN, Santa Barbara, CA, July 2017.

F. Ludovici and H. P. Pfeifer. NetEm - Network Emula-
tor. http://man7.org/linux/man-pages/man8/tc-
netem.8.html.

Majestic. The Majestic Million: The million domains
we find with the most referring subnets, 2020. https:
//majestic.com/reports/majestic-million.

J. Mickens, J. Elson, and J. Howell. Mugshot: Determin-
istic Capture and Replay for JavaScript Applications. In
Proceedings of NSDI, San Jose, CA, April 2010.

R. Netravali, A. Goyal, J. Mickens, and H. Balakrishnan.
Polaris: Faster Page Loads Using Fine-grained Depen-
dency Tracking. In Proceedings of NSDI, Santa Clara,
CA, March 2016.

R. Netravali and J. Mickens. Prophecy: Accelerating
Mobile Page Loads Using Final-State Write Logs. In
Proceedings of NSDI, Renton, WA, USA, April 2018.

R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Win-
stein, J. Mickens, and H. Balakrishnan. Mahimahi: Ac-
curate Record-and-Replay for HTTP. In Proceedings of
ATC, Santa Clara, CA, July 2015.

R. Netravali, A. Sivaraman, J. Mickens, and H. Balakr-
ishnan. WatchTower: Fast, Secure Mobile Page Loads
Using Remote Dependency Resolution. In Proceedings
of Mobisys, Seoul, South Korea, June 2019.

OpenlJS Foundation. Node.js Homepage, 2020. https:
//nodejs.org/en/.

Opera Norway. Opera Mini, 2020.
www.opera.com/mobile/mini/android.

https://

QFish. A CSS Parsing Library in Pure C99,
2020. https://github.com/hackers-painters/
katana-parser.

J. Ribeiro. Chrome Headless, 2020. Docker
Hub. https://hub.docker.com/r/justinribeiro/
chrome-headless.

V. Ruamviboonsuk, R. Netravali, M. Uluyol, and H. V.
Madhyastha. Vroom: Accelerating the Mobile Web with
Server-Aided Dependency Resolution. In Proceedings
of SIGCOMM, Los Angeles, CA, August 2017.

[30] Samsung. Web Development on a Phone. Up-
dated for Linux on DeX., 2020. https://
webview.linuxondex.com/.

[31] K. Sen, D. Marinov, and G. Agha. CUTE: A Concolic
Unit Testing Engine for C. In Proceedings of ESEC/FSE,
Lisbon, Portugal, September 2005.

[32] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy. Blind-
Box: Deep Packet Inspection over Encrypted Traffic. In
Proceedings of SIGCOMM, London, United Kingdom,
2015.

[33] Sitespeed.io. Browsertime: Your browser, your page,
your scripts, April 15, 2020. https://github.com/
sitespeedio/browsertime.

[34] A. Sivakumar, C. Jiang, Y. S. Nam,
S. Puzhavakath Narayanan, V. Gopalakrishnan,
S. G. Rao, S. Sen, M. Thottethodi, and T. N. Vijayku-
mar. Nutshell: Scalable whittled proxy execution for
low-latency web over cellular networks. In Proceedings
of Mobicom, Snowbird, Utah, October 2017.

[35] A. Sivakumar, S. Puzhavakath Narayanan, V. Gopalakr-
ishnan, S. Lee, S. Rao, and S. Sen. PARCEL: Proxy
Assisted BRowsing in Cellular Networks for Energy
and Latency Reduction. In Proceedings of CoONEXT,
Sydney, Australia, December 2014.

[36] Software Freedom Conservancy. SeleniumHQ: Browser
Automation, 2020. https://www.seleniun.dev/.

[37] F. Tip. A Survey of Program Slicing Techniques. Jour-
nal of Programming Languages, 3:121-189, 1995.

[38] T. Tsujikawa.
nghttp2.org.

Nghttp2 Proxy, 2020. https://

[39] R. Villalobos.
and Express.js, 2018.
planetoftheweb/expressjs.

Building a Website with Node.js
https://github.com/

[40] X.S. Wang, A. Krishnamurthy, and D. Wetherall. Speed-
ing Up Web Page Loads with Shandian. In Proceedings
of NSDI, Santa Clara, CA, March 2016.

[41] WebPageTest.org. Documentation: Speed Index, 2020.
https://sites.google.com/a/webpagetest.org/
docs/using-webpagetest/metrics/speed-index.

[42] World Wide Web Consortium (W3C). Resource
Hints, July 2, 2019. W3C Working Draft. https:
//www.w3.0rg/TR/resource-hints.

[43] World Wide Web Consortium (W3C). WebDriver,
March 27, 2020. W3C Working Draft. https://
www.w3.0rg/TR/webdriver/.

https://transparencyreport.google.com/https/overview?hl=en
https://transparencyreport.google.com/https/overview?hl=en
https://transparencyreport.google.com/https/overview?hl=en
http://man7.org/linux/man-pages/man8/tc-netem.8.html
http://man7.org/linux/man-pages/man8/tc-netem.8.html
https://majestic.com/reports/majestic-million
https://majestic.com/reports/majestic-million
https://nodejs.org/en/
https://nodejs.org/en/
https://www.opera.com/mobile/mini/android
https://www.opera.com/mobile/mini/android
https://github.com/hackers-painters/katana-parser
https://github.com/hackers-painters/katana-parser
https://hub.docker.com/r/justinribeiro/chrome-headless
https://hub.docker.com/r/justinribeiro/chrome-headless
https://webview.linuxondex.com/
https://webview.linuxondex.com/
https://github.com/sitespeedio/browsertime
https://github.com/sitespeedio/browsertime
https://www.selenium.dev/
https://nghttp2.org
https://nghttp2.org
https://github.com/planetoftheweb/expressjs
https://github.com/planetoftheweb/expressjs
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://www.w3.org/TR/resource-hints
https://www.w3.org/TR/resource-hints
https://www.w3.org/TR/webdriver/
https://www.w3.org/TR/webdriver/

	Introduction
	Background
	Design
	Overview of Concolic Execution
	Analyzing Client-side Behavior
	Nondeterministic JavaScript Functions
	Analyzing Server-side Behavior
	The Workflow
	Templating Engines

	Security Analysis
	Limitations

	Implementation
	Evaluation
	Methodology
	Client-only Analysis
	Oblique in First-party Mode

	Conclusion

