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ABSTRACT
Low interaction response times are crucial to the experience that
mobile apps provide for their users. Unfortunately, existing strategies
to alleviate the network latencies that hinder app responsiveness fall
short in practice. In particular, caching is plagued by challenges in set-
ting expiration times that match when a resource’s content changes,
while prefetching hinges on accurate predictions of user behavior
that have proven elusive. We present Marauder, a system that syn-
ergizes caching and prefetching to improve the speedups achieved
by each technique while avoiding their inherent limitations. Key to
Marauder is our observation that, like web pages, apps handle inter-
actions by downloading and parsing structured text resources that
entirely list (i.e., without needing to consult app binaries) the set of
other resources to load. Building on this, Marauder introduces two
low-risk optimizations directly from the app’s cache. First, guided
by cached text files, Marauder prefetches referenced resources dur-
ing an already-triggered interaction. Second, to improve the efficacy
of cached content, Marauder judiciously prefetches about-to-expire
resources, extending cache lives for unchanged resources, and down-
loading updates for lightweight (but crucial) text files. Across a wide
range of apps, live networks, interaction traces, and phones, Ma-
rauder reduces median and 90th percentile interaction response times
by 27.4% and 43.5%, while increasing data usage by only 18%.
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1 INTRODUCTION
Mobile apps have become the predominant medium through which
mobile users access Internet services, accounting for over 80% of
user attention time on smartphones [27, 39]. Crucial to the success
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of mobile apps are low response times and user-perceived latency.
Recent reports have shown that users negatively respond to delays on
the order of just 100 ms [6], and that they will abandon interactions
or even delete apps if response times exceed 2-3 seconds [7, 13, 28].
Thus, inflated response times not only affect user experience, but can
also have a significant impact on content provider revenue [15, 47].

Given the importance of mobile app performance, much
work has been devoted to improving their responsive-
ness [8, 9, 11, 21, 24, 31, 37, 61]. Yet, apps continue to underperform
in practice, delivering median response times of 2.9 seconds even
on state-of-the-art phones and LTE networks (§3.2). In line with
prior studies [9, 51, 61], we find that network transfer delays are the
primary culprit for high response times.

Today, there exist two primary classes of techniques to alleviate
the negative impact that network delays have on app responsiveness:
caching and prefetching. In principle, both are highly effective, par-
ticularly given the patterns of repetition exhibited in user interactions
with apps [29]. However, each has fundamental drawbacks that have
limited their use and effectiveness in practice (§3.3).

• Caching [14, 35, 36, 41, 48, 49, 59, 60, 62], based on HTTP headers
streamed from servers, enables mobile apps to store local copies of
static resources and eliminate subsequent network fetches for those
resources until they change. Although caching is widely used (74%
of resources are cacheable in our experiments), existing policies are
far from optimal, foregoing 52% of potential cache hits compared
to policies that perfectly evict resources only when their content has
changed. We discover that the issue is not simply a lack of aggres-
sive policies. Instead, owing to the large variance in the rate at which
a given resource’s content varies over time, developers typically opt
for conservative (i.e., low) time-to-live values (TTLs) to fully retain
control of content changes and prevent the loading of stale content.

• Prefetching systems [8, 9, 24, 31, 37, 61] aim to predict future
user interactions and download the required content ahead of time
for storage in the client cache. The drawbacks of prefetching are
well-documented [44, 50], and largely stem from the difficulty
in predicting precisely what interactions users will make, when,
and what resources will be required. Incorrect predictions result
in wasted bandwidth and smartphone energy. Indeed, the best
prefetching policies supported by the apps in our experiments
deliver improvements of 59-82% for app responsiveness, but
inflate data usage by 2.4-4.1×; prior prefetching systems similarly
report up to 4.2× data overheads [9]. Consequently, only 6% of
apps in our corpus employ prefetching by default.

We present Marauder, a system that combines caching and
prefetching in a way that improves the speedups realized with
each technique while sidestepping the aforementioned risks and
practical challenges (i.e., low TTLs+hit rates or stale content for
caching, wasted bandwidth for prefetching). Our high-level insight
underpinning Marauder is that, despite the installation of client-side
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binaries, mobile apps commonly respond to user interactions using
a similar model to that in web page loads [40, 42]. In particular, apps
discover subsequent requests to make by parsing previously fetched
text files. Further, we find that those text files are structured such that
it is possible to derive most (94%) of the URLs that they reference
purely by analyzing their text contents (rather than analyzing
app binaries [9, 61]). Using this insight, Marauder optimizes app
responsiveness directly from the app’s cache in two ways.

Caching for just-in-time (JIT) prefetching. Rather than prefetch-
ing according to (potentially inaccurate) predictions of what a user
may do in the future, Marauder leverages the structure in text files to
prefetch during the current interaction. To do this, Marauder statically
analyzes each downloaded text file to extract a list of referenced
URLs, taking special care to handle factors like dynamic query
strings and relative URLs. Then, when that text file is requested at the
start of a future interaction, in addition to serving it from the cache
or fetching it over the network (if uncacheable), Marauder also issues
asynchronous prefetch requests for the resources it references. Impor-
tantly, this approach is low-risk because Marauder only prefetches
resources that are referenced by a file that was explicitly requested
and is about to be processed. Yet, this prefetching strategy is fruitful
since referenced resources cannot be fetched until the corresponding
text file is downloaded (if it is not cached) and also parsed.

Prefetching to improve the efficacy of cached resources. Building
on our observation that TTLs are fundamentally difficult to set
correctly, we find that 47% of resources expire in the cache despite
their content not changing. As a result, to maximize the efficacy of
already-cached content, Marauder proactively prefetches about-to-
expire resources in hopes of extending their TTLs. However, as with
traditional prefetching, there is a chance of wasting bandwidth since
Marauder is unaware of what resources will be requested in the future.
To mitigate this risk, Marauder employs a hybrid approach in which
it uses cheap HEAD requests (that do not ship payloads) to extend
the TTLs for non-text resources whose content has not changed, and
preferentially downloads content updates for text resources using
conditional GET requests. This strategy leverages the importance
of text files with respect to guiding JIT prefetching and blocking
downstream fetches, and is also low-risk as text files account for only
4% of the bytes downloaded in the median interaction.

Marauder is immediately deployable today, preserves end-to-end
HTTPS security (unlike proxy-based systems [9, 11, 21, 42]), and
does not require developers to modify servers, app binaries, or
smartphone operating systems. Instead, as with our current prototype,
Marauder simply replaces the caching libraries that most apps rely
on with a version that embeds the aforementioned optimizations
(Figure 1). Further, none of the optimizations in Marauder can break
app functionality or change the content displayed to the user; in the
end, the app will load all of the up-to-date resources.

We evaluated Marauder using a wide range of 50 popular Android
apps, real mobile phones, live networks (WiFi and LTE) and servers,
and realistic user interaction traces. Our experiments across these
conditions reveal that Marauder reduces median and 90th percentile
response times by 27.4% and 43.5% as compared to default caching
and prefetching policies, while adding negligible (18%) bandwidth
overheads. Further, Marauder provides 2.1× more benefits than
recent prefetching systems [61], while imposing 91% lower data
overheads. The source code and experimental data for Marauder are
available at https://github.com/muralisr/marauder.
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Figure 1: Marauder is immediately deployable in the existing app
ecosystem, requiring only a direct swapping of an app’s caching library
with Marauder’s version.

2 METHODOLOGY
We start by describing the experimental setup that we used throughout
this paper. Our setup, illustrated in Figure 2, covers a wide range of
live mobile apps, real mobile phones and networks, and realistic user
interaction traces.

Apps used. We crawled the Google Play Store [18] in July 2020 and
collected an Android Application Package (APK) for 75 popular
apps. Our crawl considered a variety of categories including news,
entertainment, weather, lifestyle, sports, art & design, personalization,
and shopping. From this set, in order to operate with our current
implementation of Marauder (§5), we focus on the 50 apps that use
unobfuscated versions of the popular OkHttp caching library [54].

User interaction traces. User interaction patterns heavily influence
mobile app performance and the efficacy of network acceleration
techniques like caching and prefetching. To generate realistic user
interaction traces for our entire corpus, we use the Humanoid app
testing framework [32]. Humanoid employs deep neural networks
to learn interaction patterns from actual user traces, and then explore
new apps and UIs like a real user would. Humanoid was trained on
the 10k Rico app dataset [12]. During exploration, Humanoid guides
the AndroidViewClient UI monkey [2] by specifying, at each screen,
where the monkey should interact. The output of a Humanoid session
is a trace that specifies a series of actions to perform (e.g., “tap(x,y)”),
as well as the delay between actions (to account for user think time).
We generate 20 such traces for each app in our corpus, where each
trace includes a median of 20 clicks and spans 2-3 minutes to match
prior reports of user session times [16, 61].

Running experiments. For each app in our corpus, we consider the
default APK, as well as a variant that embeds Marauder; we describe
how to generate the latter in §5. We load both variants onto two
powerful phones, a Google Pixel 4 (Android 10; 2.0 GHz octa-core
processor; 6 GB RAM) and a Samsung Galaxy Note 9 (Android
Oreo; 2.3 GHz octa-core; 6 GB RAM). Due to space constraints, we
present results for the Pixel 4, but note that all reported results and
trends were comparable with the Galaxy Note 9.

We randomly select 5 user interaction traces per app, and apply
them 𝛿 minutes apart. In accordance with prior studies of user-app
interactions [29], we consider 𝛿 values spanning 10 mins–1 day; if
unreported, the default value is 𝛿 =60𝑚𝑖𝑛𝑠.

During experiments, the apps contact live origin servers using
home WiFi or Verizon LTE networks with strong signal strength.
Thus, to ensure a fair comparison with regards to app content and
network/server delays, we run each trace back-to-back using the
default and Marauder versions of the corresponding app. As our focus
is primarily on accelerating subsequent (warm cache) interactions,
we ignore the first trace for each app as it is entirely used to prime the
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Figure 2: Overview of our evaluation setup. Realistic user interaction
traces are generated offline, and are randomly cycled through during
online experiments; experiments use real phones, live mobile networks,
and live origin servers.

cache. Note that each trace represents a distinct interaction session,
and thus a subset of interactions in subsequent traces will also expe-
rience cold caches; we preserve such interactions in our results, and
provide a breakdown of warm versus cold cache interactions in §6.

Performance metrics. Our primary performance metric is interac-
tion response time (IRT), or the time between when a user performs
an on-screen tap to trigger an interaction, and the time when the final
screen for that interaction is completely rendered. To measure IRT,
we record each phone’s screen for each interaction using ffmpeg [3].
We then process the collected video using the scene-cut tool [4] to
track when the screen stopped visually changing. We identify and
exclude dynamic pixels, or those that continually change by design
(e.g., videos), using the same techniques employed by similar web
performance metrics such as Speed Index [17].

3 THE STATE OF APP PERFORMANCE
In this section, we first review how mobile apps respond to user
interactions today (§3.1), and present results to highlight the negative
impact that network delays have on app responsiveness (§3.2). We
then describe why classic and well-studied optimizations fail to
sufficiently alleviate such network overheads (§3.3).

3.1 Background on App Operation

Each interaction that a user performs with a mobile app (e.g., a screen
tap) triggers the firing of event handlers/callbacks (e.g., onTouch())
that are defined by the app binary [5, 51, 52]. Each event handler
quickly begins responding to the specific event, either by updating
the screen with pre-downloaded information (e.g., expanding a
dropdown menu) or by issuing network requests to origin servers.
Like the web, requests most often use the HTTP protocol. Upon
receiving responses from servers, the app’s handlers process them
using logic that is either embedded in the downloaded files or in the
app binary. Such processing potentially results in subsequent requests
and rendering updates to the screen, and this process continues
recursively until the final screen is rendered for the interaction.

Apps often use third-party caching libraries (e.g., OkHttp [54],
Volley [19]) to mediate issued requests and downloaded responses
between the app and servers [37]. Like typical HTTP caches (e.g., in
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Figure 3: Mobile app interaction delays on WiFi and LTE.
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Figure 4: Percentage of IRT accounted for by network delays.

web browsers), previously downloaded responses are used to service
subsequent requests for the same resource based on the cacheability
set by servers in HTTP headers. In particular, servers embed cache
directives in HTTP headers indicating the time-to-live (TTL) for the
corresponding resource, which in turn dictates how long that resource
can be safely reused [41]. However, unlike traditional caches, app
caching libraries store all downloaded resources, including those
that are marked as uncacheable and those whose TTLs have expired
(and are thus unsafe to directly serve). When such a resource is subse-
quently requested by the app, the caching library issues a conditional
GET request for that resource to download its content only if it has
changed. Thus, this approach attempts to eliminate redundant data
transfers (and save bandwidth), but does not reduce fetch latencies.

3.2 Motivation

Mobile app interactions are too slow. Figure 3 plots the distribution
of interaction response times (IRTs) for the apps and traces in our
corpus. As shown, median and 90th percentile IRT values are 1.6
and 3.7 seconds on a WiFi network, and jump to 2.9 and 6.7 seconds
on an LTE network. Thus, interaction response times frequently
(and considerably) exceed the 2-3 seconds that users are willing to
tolerate [7, 13, 28].
Network delays are key contributors. Mobile app response times
are determined by both the network delays incurred during content
fetches, as well as the client-side computation delays to parse/render
that content and other code in the APK. In order to dissect the high
response times from above, we evaluated our corpus of apps and
traces in a setting where network delays were set to ≈0ms. To do this,
for each interaction, we loaded it twice, back-to-back, with the first
run evaluating standard performance, and the second run evaluating
performance without network delays. To ensure high cache hit rates
in the second run despite the intrinsic nondeterminism in certain app
requests (e.g., those that embed timestamps), we configured OkHttp’s
cache hit logic to employ the Mahimahi URL matching heuristic [43]
that identifies safe scenarios to serve cached resources despite URL
discrepancies. Even with this heuristic, 9% of resources still failed to
hit in the cache. To limit network delays for such resources, we relayed
their fetches to origin servers using low-latency wired networks.

For each interaction, we compared IRTs with and without network
delays. As Figure 4 shows, network delays account for 38% and 64%
of IRT for the median interaction on WiFi and LTE, respectively.
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Resource Type % of resources cacheable % of bytes cacheable
Images 85.3% 99.9%
HTML 44.7% 94.9%
JSON 64.6% 42.5%
CSS 100% 100%

JavaScript 67.6% 96.2%
XML 90.2% 60.7%

Binary 98.2% 93.0%

Table 1: Cacheability properties of different resource types.
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Figure 5: Comparing per-interaction cache hit rates with existing
caching strategies and the optimal content-based one.
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Figure 6: Speedups with existing and optimal caching strategies, as
compared to cold cache interactions (i.e., no caching). Results are for
the LTE network.

3.3 Limitations of Existing Optimizations

The above results reflect the default operation mode of the apps in
our corpus. In other words, any caching or prefetching specified
by an app’s APK or origin servers is employed. Yet response times
remain too high. Here, we explore how much and how effectively
these optimizations are applied.

3.3.1 Caching
Caching is widely used and helps. Across our corpus and traces,
we observe that 74% of resources are marked as cacheable for a
non-zero amount of time by servers. Table 1 further breaks this down
by resource type. For instance, 85.3% and 99.9% of image files and
bytes are cacheable for some period; note that the discrepancy in files
and bytes is entirely due to single-pixel tracking images that are often
not cacheable. In our experiments, this translates to an overall cache
hit rate of 28% for the median interaction (the “Existing Caching”
line in Figure 5), and a 44% median speedup over entirely cold cache
interactions (the “Existing Caching” line in Figure 6).

Current caching is suboptimal. To understand how effective
existing caching policies are, we compared them with an optimal
caching strategy that is based on resource content (rather than
HTTP caching headers). More specifically, we analyzed the results
from Figure 3 to determine the ideal time-to-live (TTL) for each
resource, which is defined as the time until the resource’s content
changed (if it did at all). We then used the same setup applied above
to evaluate performance without network delays (§3.2) to replay the
interactions with the ideal TTLs enforced. As shown in Figure 5, the
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Figure 7: Variation in the ideal TTL (i.e., based on when content actu-
ally changes) for each resource fetched in our experiments. Zeros pertain
to resources that never changed, changed once, or changed at fixed rates.

optimal caching strategy increases the median cache hit rate by 2.1×
compared to existing policies. Figure 6 depicts the impact that these
improved cache hit rates have on interaction response times: median
IRTs drop by 32% compared to existing policies.

The problem. Existing caching practices necessitate that developers
explicitly set a TTL for each resource that they serve. Unfortunately,
setting such TTLs is difficult as the ideal TTL for each resource
varies over time. For example, as shown in Figure 7, the standard
deviation of ideal TTLs for the median resource in our experiments
was 2 hours. In such cases, developers are faced with a tradeoff. On
the one hand, developers can be conservative and select the low end
of the ideal TTL spectrum for a resource to ensure that they retain
control to quickly disseminate any updates to its content. However,
this foregoes many cache hits during periods when the ideal TTL is
larger than the minimum one. Alternatively, developers can select
a higher value in the ideal TTL spectrum to improve cache hit rates
at the risk of having the client use a stale version of the resource.
The gap between existing and optimal caching strategies in Figure 5
confirms that (as expected) developers typically opt for conservative
TTLs to ensure up-to-date content for all clients.

3.3.2 Prefetching
Prefetching is less common. 6% (i.e., 3) of the apps in our corpus
have prefetching enabled by default when the user is connected
to WiFi. These apps are all in the news category, and they employ
custom prefetching policies to download, at regular intervals (e.g.,
every 2 hours), the text articles that are referenced by the app’s home
screen. In addition, the apps give users the ability to manually alter the
prefetching policy with respect to the prefetching time interval, the
content downloaded (e.g., prefetching images in addition to text files),
and the settings under which prefetching should happen (e.g., WiFi
only, WiFi+LTE). Further, 1 app has such prefetching as an option that
is disabled by default. Our results thus far have considered the default
prefetching policies for each app. However, to develop a holistic view
of prefetching today, we also reran experiments under all possible
prefetching policies that each app supports; the results below only
consider the 4 apps with support for at least one prefetching policy.

Prefetching can help. To understand the potential speedups with
prefetching, we compared the performance of each app under two
settings: the best supported prefetching policies that delivered the
largest speedups, and a policy in which prefetching was entirely
disabled. As shown in Figure 8, the best prefetching policies improved
median IRTs by 59.3-82.4% across the WiFi and LTE networks.

The problem. Prefetching inherently requires accurate predictions
of what clients will request in the future. Many prior works [44, 50]
have highlighted the difficulty in making such predictions accurately
for different users and apps. As a result, as noted above, apps with
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Figure 8: Speedups with the best (i.e., max speedups) prefetching
policies supported by each app, as compared to no prefetching at all.

support for prefetching commonly opt for generic policies that
fetch large amounts of content, much of which goes unused. Thus,
despite the potential speedups, prefetching in practice is highly
wasteful in terms of resource usage. For example, the best policies
from Figure 8 impose data overheads of 2.4-4.1×. Such wastage
can result in high cellular data plan costs, and can also eliminate
IRT speedups, especially in bandwidth-constrained settings where
explicitly-requested resources must contend with resources that
were unnecessarily prefetched. In contrast, the most conservative
prefetching policies (excluding no prefetching at all) supported by
the apps in our corpus result in median bandwidth wastage of 6.7%;
however, these policies yield speedups of only 9-13%.

4 DESIGN OF MARAUDER
Marauder is a mobile app acceleration framework whose goal is to
collectively harness the power of caching and prefetching in a manner
that sidesteps the risks and limitations of each technique in isolation
(§3.3). At a high level, the key idea behind Marauder is to use judicious
prefetching to maximize the utility (i.e., cache hits) for already-cached
objects, and to then use those cached objects to guide just-in-time (i.e.,
during the current interaction) prefetching. Crucially, in designing Ma-
rauder, our overarching principle is to ensure direct deployability, i.e.,
operation with existing (legacy) apps, servers, and operating systems.

In this section, we first outline several key observations that we
made from the experiments in §3 that both highlight opportunities for
improvement with existing caching and prefetching strategies, and
guide the operation of Marauder (§4.1). We then describe the end-to-
end workflow of Marauder by separately discussing its offline/back-
ground operation (§4.2) and online handling of app requests (§4.3).

4.1 Guiding Observations

Three measurement observations from our study of caching and
prefetching policies (§3.3) motivate the set of optimizations
employed by Marauder. We describe them in turn, along with the
corresponding implications for Marauder’s design.

Observation 1. In line with the way that apps respond to user inter-
actions today (§3.1), we find that the text files (i.e., JSON, HTML,
JavaScript, CSS, and XML) fetched for a given interaction directly
embed listings for the majority of non-text resources required for that
interaction. To illustrate this, we parsed the text files fetched in our
experiments in search of the URLs for non-text files that were fetched;
we describe our static parsing methodology in §4.2. We find that the
URLs for 94% of the fetched non-text resources could be derived from
previously-fetched text files. This is surprising in that, despite the
installation of client-side binaries, apps follow a request model similar
to that in web page loads [40], whereby subsequent requests are made

Figure 9: Delay between when the client’s cache serves a text file and
receives a subsequent request for a referenced resource.

Figure 10: Discrepancy between existing TTLs and ideal TTLs that are
based on when a resource’s content changes.

by parsing previously fetched text resources. Further, text files are
structured to clearly delineate referenced resources, as opposed to
seemingly arbitrary data blobs that only the app binary can interpret.

The implication of this observation is that, as text files are being
parsed and executed by the app, we can issue prefetch requests
for any referenced file directly from the app’s cache. In doing so,
the early-stage parsing and execution delays of text files would be
overlapped with the network fetch delays for referenced non-text files.
Importantly, such JIT prefetching is low risk (as compared to the exist-
ing strategies discussed in §3.3.2) because it only considers resources
that are directly listed in a file that was explicitly requested and is
about to be parsed. Yet it would be fruitful for two reasons. As shown
in Figure 9, the delay (from the cache’s perspective) between when a
text file is served to an application and when the first referenced file is
requested is non-negligible, with a median value of 230 ms. Further,
during this time, the network is entirely idle because, as noted above,
the text file dictates the set of other files that the app must fetch.

Observation 2. Building off of the results in §3.3.1 which show that
TTLs are often set too conservatively, we observe that the content of
cached resources often remains unchanged despite the corresponding
TTLs expiring; this occurs for 47% of resources. Figure 10 quantifies
this, showing the discrepancy between the time when a resource
expires in the cache and the time when its content actually changes.
As shown, the TTL for the median resource is set to 1.5 hours below
its optimal value.

In order to address this inefficiency, our goal is to prefetch
about-to-expire resources in hopes of extending their TTLs when
they have not changed (thereby improving their hit rates). However,
such prefetching would be risky since, similar to the challenges of
traditional prefetching, we are unaware of whether those resources
will be requested in the future and the expended bandwidth is justified.

To mitigate this risk, we leverage the fact that text files, which are
typically the root resource fetched at the beginning of an interaction,
are both high priority (since they block downstream requests and
guide the aforementioned JIT prefetching) and lightweight. In partic-
ular, the median text file in our experiments only consumes 2.3 KB;
for comparison, the median image constitutes 1.3 MB. Further, text
resources account for only 4% of the bytes downloaded in the median
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Figure 11: Resources referenced by a text file remain stable for long pe-
riods. In each distribution, a data point is the duration during which the
listed percentage of referenced resources for a text file are unchanged.

interaction, while images account for 94%. Thus, while attempting
to extend TTLs, Marauder preferentially downloads updates only
for text files that have changed, and not for other resource types that
consume more bytes and are not blocking in the interaction handling
process. For a non-text resource, Marauder only checks if its content
has changed, but does not exchange any payloads with servers.
Observation 3. Lastly, as depicted in Figure 11, we find that the set
of files referenced by a given text file often remains stable for long
durations, even as the text content changes. For example, the set of
referenced files remains identical for 4 hours for the median text file,
despite 50% of text files remaining unchanged for only 20 minutes.
Relaxing this condition to having only 90% of referenced files being
unchanged increases the median duration to 9 hours.

This does not have any bearing for text files that are up-to-date
in the app cache. However, in order to retain fine-grained flexibility
with respect to content dynamism for a given interaction, apps
occasionally (17% for the median app) mark text files as uncacheable
using the no-cache directive in HTTP headers. Such text files
are retained in the app’s cache but cannot be directly served to the
app, and instead mandate a conditional check with the origin server
(§3.1). In these cases, subsequent requests are not only blocked by the
parsing of the text file (as in observation 1), but also by the network
fetch to validate or update that text file. To alleviate such delays,
similar to the implication of observation 2, we seek to issue prefetch
requests for the files referenced by an uncacheable text file while that
text file is being validated/updated and then parsed.
Summary. Taken together, these observations present opportunities
for bolstering caching and prefetching speedups in a low-risk manner.
We next describe how Marauder (Figure 12) incorporates these princi-
ples into the background and online operation of existing app caches.

4.2 Background Operation

Marauder’s first background task is to (when possible) refresh
cached resources to improve overall cache hit rates. For each
resource in the cache with a non-zero TTL (i.e., excluding resources
marked as no-cache), Marauder adds a timer event that checks,
upon expiration, whether the resource’s content has not changed
and its TTL can be extended. As per observation 2 above, Marauder
performs the TTL extension process differently for text and non-text
files. Note that, in both cases, Marauder only uses HTTP request
formats and cache update mechanisms that are standardized and
widely supported by unmodified servers.

For text files, Marauder issues Conditional GET HTTP requests
to the corresponding origin servers using the same HTTP headers
that were used when those text files were explicitly requested by the
app in the past. These requests identify the version (and thus, content)

App
Origin 

Servers

HTTP Cache

Cache 
Refresher

JIT Prefetcher

Fetch

Conditional 
Request

Fetch 
 (cache miss)

Prefetch refs

Extract 
refs

Expiry New TTL or 
text content

Client Device
Legend: 
     Asynchronous 
     Background

Figure 12: Overview of Marauder. The app’s HTTP cache services
requests as normal. Marauder adds two optimization components. First,
for each downloaded text file, the just-in-time (JIT) Prefetcher extracts
a list of referenced URLs; those URLs are asynchronously prefetched
(through the cache; omitted for space) as soon as the corresponding text
file is re-requested. Second, for each resource that is about to expire, the
Cache Refresher conditionally extends its TTL (if its content has not
changed) or updates its content (if it is a text file).

of the cached resource by relaying HTTP cache validation headers
such as ETag and Last-Modified; ETag headers list unique IDs for the
current version of a resource such as a hash value or version number,
while Last-Modified headers indicate the creation time of the current
resource version [41]. Upon receiving a response, Marauder does one
of two things. If the response indicates that the resource has not been
modified (i.e., a 304 Not Modified), Marauder updates the TTL for
the cached resource to match the duration specified by the current re-
sponse headers. In contrast, if the response indicates that the resource
has been modified (i.e., a 200 OK), then Marauder replaces the cached
resource with the new version and its corresponding HTTP headers
and TTL. Marauder’s handling of non-text files works much in the
same way. However, in order to minimize wasted bandwidth from
updating resources that may not be requested in the future, Marauder
eschews Conditional GETs in place of HTTP HEAD requests that
enable origin servers to share information about the current version of
a resource, but preclude them from updating a cached resource when
its content has changed. Note that updating prior GET requests with
HEAD requests is compliant with the HTTP RFC [1]. Unlike GET
requests, HEAD requests do not include cache validation headers.
Instead, those headers are embedded in the response to enable clients
to determine the validity of a cached resource. Thus, upon receiving a
response, Marauder compares the values of cache validation headers
to the corresponding values for the cached version of the resource. If
the values match, Marauder extends the resource’s TTL in the cache
based on the Cache-Control headers in the HEAD’s response. Alterna-
tively, if the HEAD response indicates that the resource’s content has
changed (i.e., a mismatched cache validation header), Marauder does
not update the cached resource and instead treats it as stale moving
forward; note that we do not remove the resource from the cache, and
instead leave this to the caching library’s default eviction policy.

Marauder’s other background task is to facilitate the on-
line prefetching of resources referenced by text files. To do this,
whenever a text file is added to the app cache (even if it is marked as no-
cache, as per §3.1), Marauder asynchronously spawns a worker thread
to parse the corresponding text file’s body in search of referenced
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Figure 13: Percentage of resources per app that require types of
dynamic query strings other than those used by other resources of the
same type and from the same origin servers.

URLs. The worker statically analyzes the text file using a variety of
regular expressions and the LinkedIn URL Detector Library [34] to
find all strings that resemble a URL. Recall from observation 1 that
such static analysis results in high coverage of the URLs that comprise
an interaction. Each entry in the output of the regular expressions
is either (1) an absolute URL that embeds a protocol, hostname,
and resource URI, e.g., https://www.foo.com/bar.jpg,
or (2) a relative URL which lists the resource URI and optionally
the hostname, e.g., /bar.jpg. Relative URLs most often (96%
of the time in our corpus) adopt the hostname and protocol of the
referencing text file. Thus, Marauder follows this strategy to convert
each relative URL into an absolute version.

Now that we have a full list of absolute URLs, the final challenge
is to ensure that the URLs are listed in precisely the way that an app
would request them during a client interaction. In particular, apps
can augment absolute URLs with query parameters listing properties
such as the time, date, latitude/longitude coordinates, screen size, and
resource size/quality, e.g., ?width=400;time=1608759986.
Missing or incorrect values for any query parameter will result in
a cache miss and thus wasted bandwidth during prefetching.

Certain query strings, in particular those that pertain to resource
size, are most often statically listed in tandem with the corresponding
URL in the referencing text files, and are thus captured by the afore-
mentioned steps. However, other query parameters are inherently dy-
namic (e.g., timestamp, location), and are thus filled in during a client
interaction. To handle such cases, we leverage our finding that, for a
given origin, the set of dynamic query parameter types are almost en-
tirely shared across all requests for a given resource type. For example,
as listed in Figure 13, only 12% of requests for the median app involve
different dynamic query parameters than those used by other requests
for the same resource type and origin. Based on this finding, for each
absolute URL, Marauder identifies a previously cached resource with
the same content type and origin, and appends the corresponding dy-
namic query parameter types to the URL; note that the dynamic query
parameter values are filled in at prefetch time (described in §4.3).

Certain text files clearly delineate sets of resources that should be
fetched only after a subsequent interaction (i.e., after the one that trig-
gered the fetch of the text file) is performed. In such cases, subsequent
interactions are marked using their handler descriptions, e.g., onScroll.
At the extreme, these files list thousands of resources to cover numer-
ous future interactions. For instance, a handful of text files for the news
apps in our corpus reference sets of resources that pertain to articles
at different positions on the home screen. Since Marauder eschews
predicting future interactions and instead performs JIT prefetching for
already-triggered interactions, we do not include URLs that pertain
to future interactions in our list of referenced resources to prefetch.

4.3 Handling Client Requests

During user interactions, requests made by the app hit the cache as
normal. There are three potential scenarios, each of which warrants
a different workflow with Marauder.

• For the first request for a text file (i.e., it is not in the cache, even
as expired), or any request for a non-text file that misses in the app
cache, Marauder immediately issues the request over the network.
Upon receiving the response, Marauder sends the content to the
app, adds it to the cache, and begins the background tasks from
§4.2 to extract referenced resources if it is a text file.

• For text file requests that hit in the app cache (according to the
caching library’s default criteria for a hit), Marauder responds to
the app with the corresponding content, and immediately issues
asynchronous prefetch requests for all of the files referenced by
that text file (using the list generated offline). Note that prefetch
requests first pass through the app cache, ensuring that already
cached resources will not be re-downloaded. To issue prefetch re-
quests, Marauder first fills in values for dynamic query parameters.
Then, Marauder applies the same set of request headers used in
the request for the text resource with two exceptions. First, content
negotiation headers such as “Accept-Encoding” are not carried
over since the text and referenced files may differ in content type;
Marauder defers the setting of values for these headers to the under-
lying caching library. Second, Marauder adds a “Referer” header
listing the text resource; this header provides context for the server
with regards to the specific interaction that the client is performing.

To ensure that an app’s explicit request for a resource maps to the
version prefetched during the same interaction, Marauder tolerates
discrepancies in certain dynamic query parameter values. For
example, Marauder tolerates timestamp mismatches of several
seconds and different random number values that are used for
in-network cache busting query parameters.

• Finally, for text file requests that miss in the app cache but pertain
to an entry marked as no-cache, Marauder issues a request for
the text file followed by prefetch requests for all of its referenced
children. In the event that the text file arrives prior to certain
prefetched resources, Marauder is careful to queue subsequent
requests that the app explicitly makes for which there is already
an outstanding prefetch request. In this way, Marauder avoids
duplicate requests and wasted bandwidth; queued requests are
serviced as soon as the corresponding prefetched responses arrive.

4.4 Discussion

Preventing storage overheads. Caching libraries employ their own
eviction policies, with the most common one being least-recently-
used (LRU). With LRU, when space is needed by the cache or the
host OS, the caching library deletes the resource whose last request
was in the most distant past. However, using the above optimizations,
Marauder issues requests for resources either to refresh their cache en-
tries or to prefetch them just before the client requests them. To ensure
that such requests do not skew resource access patterns and alter app
eviction decisions such that less important resources are preserved,
Marauder’s requests bypass the caching library’s bookkeeping of
resource access frequency. In doing so, Marauder does not add any
storage overheads to apps or caching libraries, and instead lets evic-
tions happen as they normally do. Further, this ensures that Marauder
does not continually refresh resources such that they are never evicted.
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Preserving application behavior. Marauder only operates on (i.e.,
refreshes in the cache or JIT prefetches) resources fetched using
HTTP GET or HEAD request types. These request types are defined
to be “safe methods,” in that the corresponding response generation
logic should be idempotent and is not intended to trigger state changes
on the server [1]; in this way, such methods are meant to enable tasks
like web crawling, cache optimization, and prefetching, without risk
of causing harm to the intended application behavior. As a result,
Marauder’s optimizations of downloading and serving cached or
prefetched versions of resources should not affect the functionality
for apps that respect these guidelines for servicing HTTP requests.

During operation, Marauder always respects the TTLs set by appli-
cation developers via HTTP caching headers, and does not require any
modifications to those TTLs by developers. More specifically, cache
management for each resource that is prefetched or updated in the
cache reflect the cache expiration headers during the latest request for
that resource, and resources are only served to clients until their TTLs
(and accordingly, their cache entries) expire. Thus, Marauder may not
always serve the latest version of a resource to a client (e.g., if the con-
tent for a resource is updated on the server-side prior to its expiration in
the client-side cache), but all of the resources served by Marauder have
been marked by app developers as acceptable to use (via the TTLs that
they have set). This behavior mirrors that of other HTTP caches [41].

Generalizability and future outlook for Marauder. Marauder’s
optimizations extensively leverage the text-based communication
between client-side apps and servers, i.e., by preferentially updating
about-to-expire text resources in the cache, and using those resources
to determine other required resources to prefetch for an ongoing
interaction. The diverse apps used in our motivating measurements
and evaluation (§2) highlight the prevalence of this behavior in
the current app ecosystem. Moreover, we expect apps to continue
employing this operational paradigm moving forward for several
reasons: (1) many apps have converged on this behavior following
over a decade of optimizations and alterations to their ecosystem since
their inception [25], and (2) text-based communication simplifies
cross-platform development, e.g., page-embedded JavaScript running
in web browsers could interpret the same text files to determine
resources to fetch during a web page load. However, for apps that
do not use text files in this manner or if apps abort this practice in
the future, we note that Marauder could still employ JIT prefetching
in a less transparent way, e.g., by having developers explicitly specify
referenced URLs in HTTP headers.

5 IMPLEMENTATION
To implement Marauder, we forked version 3.12.0 of the OkHttp
caching library [54] and added ≈ 2500 lines of code to support the
low-risk caching and prefetching optimizations from §4; we verified
that identical changes can be made to later versions of OkHttp (e.g.,
v3.14.x and v4.8.x), but we used v3.12.0 as it was the most commonly
used by the apps in our corpus. Marauder stores references to cached
resources in need of refreshing in a PriorityQueue with constant
access time, and performs refreshing (i.e., TTL extensions and text
file updates) using Java ExecutorServices. For JIT prefetching, ref-
erenced resources are discovered with the help of the LinkedIn URL
detection library [34]. Importantly, to avoid blocking the handling
of explicit user requests, cache refreshing occurs in the background
and JIT prefetching is performed asynchronously, both on separate
worker threads. Further, to ensure that network and CPU resources are
not flooded in the face of complex apps with hundreds of resources
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(b) Distributions of 90th percentile per-app speedups.

Figure 14: IRT improvements over default app caching and prefetch-
ing policies. Bars list median or 90th percentile speedups for the median
app, and error bars span the 25-75th percentiles. 𝛿 is time between user
sessions (traces) with an app.

per interaction, Marauder caps the number of outstanding requests
that it makes (across cache refreshing and JIT prefetching) to 32.

To modify apps, we start with a JAR file housing Marauder’s
caching library and then disassemble that file using apktool [55] in
order to extract the source code for the compiled Marauder classes.
We then use apktool to disassemble our target app and check to see
if it uses an unobfuscated version of the OkHttp library that does
not contain custom modifications. If so, we replace the app’s OkHttp
library with Marauder’s, and recompile the app into a new APK.

6 EVALUATION
Using the methodology and testbed described in §2, we evaluated
Marauder across a wide range of popular apps, live mobile networks,
real phones, and realistic user interaction traces. Our key findings are:

• Marauder reduces median and 90th percentile per-app interaction
response times (IRTs) for the median apps in each case by 27.4%
and 43.5%, compared to the default caching and prefetching
policies embedded in our apps (§6.1).

• Marauder increases overall data usage for the median app by only
18%, and can also achieve 59% of its total benefits by only using
its cache refreshing optimizations that minimally inflate data usage
by 3% (§6.2).

• Marauder delivers 2.1× larger speedups than the recent Paloma
prefetching system [61], while imposing 91% lower data over-
heads. Further, compared to app-supported prefetching policies
that result in comparable (within 3%) data overheads, Marauder
delivers 3.3× larger speedups.

6.1 App speedups

Figure 14 illustrates Marauder’s ability to lower interaction response
times (IRTs) compared to the default caching and prefetching policies
employed by the apps in our corpus. For example, on LTE networks,
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Figure 15: Larger durations between user sessions (𝛿) result in more
opportunities for Marauder to accelerate resource fetches.
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Figure 16: Distribution of median per-app IRT speedups for repeat
interactions as compared to default caching+prefetching policies.
Results consider a 𝛿 of 4 hours.

Marauder accelerates the median interaction for the median app by
19.8-27.4% (or 0.58-0.81 seconds); 90th percentile IRT improve-
ments were 29.7-43.5% (or 0.87-1.27 seconds) for the median app.
Marauder’s median and 90th percentile benefits drop to 16.9-23.1%
and 26.1-33.2% on WiFi due to the lower network latencies to servers.

Figure 14 also reveals that Marauder’s improvements are more
pronounced when the time between user sessions grows (𝛿 from §2).
For example, on LTE, median IRT improvements for the median
app grow from 19.8% to 24.4% as 𝛿 increases from 20 minutes to
4 hours. Digging deeper into this, the reason is that larger 𝛿 values
provide more opportunities for Marauder to speed up the fetches of
required resources. In other words, larger 𝛿 values imply that fewer
resources will hit in the client’s cache under existing caching policies
(due to expirations). Each cache miss provides Marauder with an
acceleration opportunity, either via refreshing the cached entry (by
extending its TTL or updating its text content), or by prefetching it
during the subsequent interaction if its non-text content has changed.
Figure 15 depicts the impact of this relationship, showing that larger 𝛿
values result in more resource fetches being accelerated by Marauder.

Recall from §2 that our setup considers realistic user traces with
different sets of interactions in each. As a result, even after excluding
the first trace in a given experiment, some interactions are not
repeats of prior ones (i.e., they are cold cache interactions). Neither
Marauder nor existing caching policies provide any speedups for
cold cache interactions. To hone in on Marauder’s target interactions,
we analyzed the results in Figure 14 and excluded any interactions
whose initial request was never seen by the cache. As shown in
Figure 16, Marauder’s median benefits grow to 24.4-31.7% when
focusing solely on repeat interactions; for context, these benefits are
20.7-24.4% when all interactions are considered (as per Figure 14).

6.2 Analyzing Marauder

Ablation study. In order to understand the importance and contribu-
tions of each of Marauder’s optimization techniques, we performed
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Figure 17: Breaking down Marauder’s benefits into its constituent
optimizations. Results are for LTE, and show distributions of median
per-app IRT speedups for different 𝛿 values.

App Cache Refreshing JIT Prefetching Both Neither
Fox News 59.6% 12.8% 19.1% 8.5%

Uniqlo 25.9% 11.1% 44.4% 18.5%
Guardian 26% 13% 52.1% 8.7%

UEFA 18.2% 7% 11% 63.7%
Weather 22.6% 0% 0% 77.4%

Table 2: The source of Marauder’s speedups varies across apps, and
across the interactions within a given app. Values list the fraction of inter-
actions for each app that benefit from each of Marauder’s optimizations:
cache refreshing and JIT prefetching. ‘Both’ pertains to interactions
sped up by both of Marauder’s optimizations, while ‘Neither’ includes
those interactions that Marauder does not provide any speedups for.

an ablation study in which we selectively disabled each one. As
shown in Figure 17, background cache refreshing to improve hit rates
for already-cached resources is the largest contributor to Marauder’s
benefits, delivering 13.3-16.1% speedup at the median across the
considered 𝛿 values. In contrast, just-in-time prefetching provides
median speedups of 3.4-8.6%. Figure 17 also shows that, as 𝛿 values
grow, even though both optimizations remain important, the relative
importance gap between the two techniques shrinks. The reason is
that, especially for apps with significant amounts of dynamic content,
the contents of more resources change, and the cache refresher’s
ability to extend TTLs for non-text resources becomes more limited.

Perhaps most importantly, these results also highlight the synergy
between Marauder’s optimization techniques: Marauder consistently
delivers benefits that exceed the sum of those from its two optimiza-
tions in isolation. As an example, consider the speedups for a 𝛿 of 1
day. Median speedups with Marauder are 27.4%, while only cache re-
freshing or JIT prefetching yields improvements of 16.1% and 8.6%,
respectively. The reason is that cache refreshing keeps text content
up-to-date, which in turn ensures that Marauder JIT prefetches the
appropriate resources required for an interaction. In other words, as
text files grow out of date, the set of children that they reference also
becomes increasingly stale with respect to the interaction.

Case study of interactions. The effectiveness of Marauder’s
optimizations is influenced by the loading patterns in the specific
interactions being targeted. To better understand these relationships,
we analyzed the interactions for the apps in our corpus, and identified
three predominant patterns that affect the magnitude of speedups
delivered by Marauder. Table 2 presents results for representative
apps; note that a given interaction can exhibit multiple of these
patterns simultaneously, e.g., the ‘Both’ column of Table 2.

First, Marauder’s cache refreshing optimization is particularly
helpful for interactions whose resources remain largely unchanged
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Figure 18: Marauder’s ability to accelerate text file downloads is an
accurate indicator of overall speedups. Each point represents one app,
and results consider the LTE network.

across instantiations, and are assigned TTLs that are too conservative
with respect to the rate at which the corresponding content actually
changes. 74% of all interactions in our experiments (spread across
all 50 apps in our corpus) exhibited this behavior, and involved
synchronous downloads of resources that expired in the cache
but whose content had not changed. This behavior is particularly
common for item pages on e-commerce apps and for recent articles
on news apps. Developers conservatively set resource TTLs in these
cases so that they can update ratings/availability data for items and
update articles as events unfold. For instance, as shown in Table 2,
70.3% of the interactions for Uniqlo are accelerated by Marauder’s
cache refreshing technique, of which 81.4% are item pages. Similarly,
78.7% of Fox News’ interactions are sped up by Marauder’s cache
refreshing, of which 73.4% of are recent news articles.

Second, Marauder’s JIT prefetching optimization provides benefits
primarily for interactions that load lists or grids of content such as
image galleries, catalogs, or topic pages. Such pages are typically
indexed by text files that reference the set of resources to be loaded,
and those resources can be JIT prefetched if they cannot be serviced
by the app cache, i.e., if their content has changed since their last load,
or if they have been newly added to the referencing text file. Across
our corpus, 53% of interactions exhibited this pattern, including
31.9% of Fox News interactions and 65.1% of Guardian interactions.

Third, certain interactions load content that either (1) never
changes, e.g., old news articles, sizing charts for a given e-commerce
item, or statistics of completed sporting events, or (2) continually
change, e.g., stock tickers or live sports scores. Marauder does not
provide any speedups for such interactions as their resources are most
often tagged with long TTLs (reflecting ossification) or no-cache
headers (reflecting impending changes). We observe this pattern in 43
apps in our corpus, representing 8% of all interactions. Most notably,
in the UEFA Scores app, 63.7% of interactions were unoptimized by
Marauder (see Table 2), of which 73.3% involved rapidly-changing
content and 26.7% involved purely static content.

The importance of text files. Key to both of Marauder’s optimiza-
tions is the observation that text files are the highest priority resource
to load in an interaction for two reasons: they are typically fetched
in a blocking manner at the start of an interaction, and they list the
remaining resources needed to handle the interaction (thereby guiding
JIT prefetching). Unsurprisingly, we find that Marauder’s ability to
accelerate the loading of text files is a good indicator of Marauder’s
overall speedups for an app. Figure 18 illustrates this, showing that
Marauder’s overall improvements are larger for apps that have a high
fraction of text file downloads accelerated by Marauder.
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Figure 19: Distribution of normalized per-app bandwidth overheads
with Marauder (and its individual optimizations) relative to default app
operation. Results consider a 𝛿 of 1 hour.

Bandwidth overheads. Figure 19 shows the amount of extra band-
width that Marauder consumes to realize its speedups, as compared
to default app operation. As shown, Marauder only consumes 1.18×
more data for the median app in a given experiment, i.e., data is
summed across all interaction traces used for the app in an experi-
ment; this is far lower than that of existing prefetching systems and
app-supported prefetching approaches (§6.3). Breaking this down
further, there are two ways in which Marauder can increase an app’s
bandwidth usage: data overheads in refreshing cached resources, and
JIT prefetching of resources that the app will not require. As expected,
the former contributes only 16.7% of the overhead, with the majority
of extra bytes coming from unnecessary prefetching. The reasons for
unnecessary prefetching are that certain text files embed references
to resources that are either (1) required by subsequent interactions
which may or may not be triggered by the user, or (2) a superset of re-
sources required for the current interaction from which the app binary
chooses. While Marauder eliminates unnecessary prefetches for the
former case (§4.2), it cannot for files that list resources in a seemingly
random order and rely on app logic to select the subset to fetch. Impor-
tantly, because cache refreshing provides the bulk of speedups with
Marauder, data-conscious users can opt to disable JIT prefetching to
realize substantial IRT speedups with minimal bandwidth overheads.

6.3 Comparison with State-of-the-Art

We compared Marauder with three acceleration approaches: the
recent Paloma [61] prefetching system, as well as the most aggressive
and conservative prefetching policies supported by the apps in our
corpus. We describe the comparisons in turn.

Paloma [61]. The open-source Paloma prefetching system performs
static program analysis (both control and data flow) on app source
code to identify (1) a set of static and dynamically-constructed URL
strings to prefetch (these can be symbolic, with values determined at
runtime), and (2) trigger points in the code at which to prefetch each
URL. To determine trigger points, Paloma extracts a reachability
graph across an app’s callback handlers [58]; a user interaction
is typically handled by a single callback handler. With this graph,
Paloma denotes the trigger point for a URL that is fetched in callback
𝑌 as the end of the callback that immediately precedes𝑌 in the graph.
In doing so, Paloma only performs short-term prefetching, i.e., one
callback/interaction ahead of the current one being handled.

Paloma failed to run on 33 apps in our corpus, so we report compari-
son results for the 17 that succeeded. As shown in Figure 20, Marauder
provides larger IRT speedups than Paloma does. For example, with
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Figure 20: Marauder provides larger speedups than the recent Paloma
prefetching system [61]. Bars list median speedups for the median app,
and error bars span the 25-75th percentiles. Results are for LTE.

Approach IRT improvement Bandwidth overhead
Marauder 41.2% (49.6%) 1.13×

Most aggressive 78.1% (88.4%) 4.05×
app-supported policies

Most conservative 12.3% (20.3%) 1.09×
app-supported policies

Table 3: Marauder delivers far larger speedups compared to con-
servative app prefetching policies, while delivering comparable data
overheads. Results use LTE and a 𝛿 of 4 hour, and list medians of
per-app median (90th percentile) IRT improvements.

a 𝛿 of 4 hours, median speedups with Marauder are 11.3% larger than
those with Paloma. There are three main reasons for this discrepancy.

First, for each interaction, Paloma often requires at least two rounds
of prefetching to fetch the required resources. The reason is that
Paloma must first prefetch the interaction’s root text file before it can
determine the resources that it references. In other words, Paloma’s
static analysis can deduce that a resource will be requested, but the pre-
cise URL can often only be determined by downloading and parsing
the referencing text file. In contrast, Marauder keeps text files up-to-
date in the background (and incurs little overhead in doing so), en-
abling the prefetching of an interaction’s resources in a single round.

Second, Paloma does not improve hit rates for already-cached
resources, which when possible, are the most effective way of
eliminating network overheads. Indeed, our results from §6.2 show
that background cache refreshing are a major source of Marauder’s
overall wins. The importance of background prefetching becomes
more pronounced as 𝛿 values grow (and more cache evictions occur).
For instance, as 𝛿 grows from 20 minutes to 1 day, the additional
benefits that Marauder provides over Paloma rise from 6.1% to 15.4%.

Third, although Paloma does not explicitly rely on error-prone
prediction of user behavior, it still results in significant bandwidth
wastage, consuming 3.4× more bandwidth than the default operation
of the median app. The source of this data wastage is Paloma’s policy
of prefetching the requests that could be made by all callbacks that
are immediately reachable from the current one—not all of those
callbacks will be triggered, and requests for untriggered callbacks
result in wasted bytes. In contrast, Marauder only prefetches
during an already-triggered user interaction, and incurs 96% lower
bandwidth overheads (1.21× for the median app in this set).
App-supported prefetching policies. We also compared Marauder
with the most aggressive and most conservative prefetching policies
that each app supports. The most aggressive policy is the one that
downloads as much content as possible, as often as possible, under as

many conditions as possible (e.g., on WiFi and LTE); in our setting,
these policies delivered the largest IRT speedups. In contrast, the
most conservative policy does prefetch content, but downloads as
little as possible outside of explicitly-requested content. As in §3.3.2,
we exclude apps that do not support any prefetching policies (default
or optional) from this comparison.

Table 3 summarizes our results. Unsurprisingly, the most
aggressive policies deliver the largest speedups and data overheads
(4.05×) since they prefetch all content reachable by a user at a given
time. However, Marauder operates at a desirable point amongst the
policies that deliver practical data overheads: Marauder increases
data overheads by only 4% compared to the most conservative
policies, while delivering 3.3× the speedups.

7 RELATED WORK

Prefetching for apps. Multiple systems prefetch resources in antic-
ipation of user requests, each using a different way of determining
what to prefetch, when, and where. We describe them in turn, and
note that none improve hit rates for already-cached resources, a key
source of Marauder’s speedups.

One class of systems employ program analysis techniques
on app source code to determine both when and what to
prefetch [9, 31, 37, 61]. For example, Paloma [62] (described
in more detail in §6.3) uses static analysis techniques and a local
proxy to prefetch URLs one callback early. Similarly, APPx [9]
uses static analysis to identify inter-request dependencies, and then
(at a remote proxy) prefetches the dependent resources for each
explicit request using online learning to fill in dynamic parameters. In
contrast to these systems, our key observation is that downloaded text
files have an inherent structure that highlights referenced resources
that will be required for a given interaction. As a result, Marauder
can make accurate and low-risk prefetching decisions directly from
the generic resource caching layer; indeed, Marauder’s bandwidth
wastage is far lower than that of Paloma (§6.3) and that reported by
APPx [9], e.g., median and worst-case data wastage is 1.18× and
1.56× for Marauder, but is reportedly 1.74× and 4.17× for APPx.

Other prefetching systems rely on apps to specify the set of
objects to prefetch, and instead focus on shielding developers from
determining when it is fruitful to do so [8, 24]. For example, the IMP
library [24] dynamically adapts prefetching policies according to
tracked hit rates for past prefetches and current network conditions.
EBC [8] schedules prefetch requests upon screen unlock by balancing
the probability that a given app will be used with the amount of traffic
it hopes to prefetch. In contrast, Marauder is immediately deployable
with existing apps and does not require developer effort. Further,
Marauder does not rely on any predictions about user behavior, and
instead prefetches only after an interaction is triggered.

Finally, Looxy [23] uses a proxy to passively monitor app requests
and cluster them into groups that are typically requested together.
Upon receiving a request, Looxy’s proxy prefetches all other
resources in the same group. Though lightweight, Looxy suffers from
several drawbacks that Marauder avoids. First, Looxy is ill-suited for
apps with highly dynamic content that result in continually changing
clusters and wasted bandwidth. Second, Looxy only prefetches exact
URLs seen in the past, and does not have support for dynamic content
embedded in those URLs (e.g., query strings), limiting hit rates.

Caching optimizations. Numerous studies have observed inef-
ficiencies in the way that HTTP caches (both for web browsers
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and apps) operate [14, 35, 36, 41, 48, 49, 59, 60, 62]. These
studies have shown that apps fall short of realizing the significant
opportunities for caching [62] for a variety of reasons including lack
of adherence to the HTTP caching specification [48, 60], improperly
set TTLs [35, 36, 49], and lack of support for aliased URLs that share
the same content [26, 30, 35, 36, 41]. Our analysis of existing caching
policies (§3.3.1) mirrors these findings, and presents a fundamental
tension in resolving the poor performance, i.e., ideal TTLs vary for
a given resource. In addition, and unlike these studies, Marauder uses
cache refreshing to transparently improve hit rates for already-cached
resources, while ensuring low overheads.

In addition to the aforementioned studies, some systems also try
to improve cache utility by caching resources at finer granularites
(e.g., parts of resources) [38, 46, 56] or employing cross-app resource
caching [60]. Marauder is complementary to both: Marauder’s cache
refreshing requests could benefit from finer-grained caching, and
Marauder is agnostic to the apps that run atop it and can thus be used
in a multi-app cache as well.
Additional app optimizations. Falcon[57] and PREPP [45] uses
location, time, and device sensors to predict what apps a user will
soon use, and preload those apps to mask startup delays. Marauder
is complementary to these techniques, and instead focuses on
optimizing app responsiveness during user interactions. Other
systems [10, 11, 21, 22, 33] such as Tango [21] and Maui [11] offload
computations (and the ensuing network fetches) to well-provisioned
proxy servers in a way that balances potential speedups with mobile
device energy and data consumption. Though effective, such systems
pose significant scalability challenges to maintain proxy servers that
can support large numbers of mobile clients [53]. Worse, by relying
on proxy servers, these systems violate the end-to-end security
guarantees promised by HTTPS which now dominates web/app
transfers [20, 42]. In contrast, Marauder operates directly in an
app’s resource cache and thus preserves HTTPS security. Finally,
EdgeReduce [44] and Procrastinator [50] reduce data usage at the
cost of responsiveness by delaying resource downloads to determine
whether they will be required. Marauder operates at a different
point in the design space, aiming to reduce response times while
minimizing the data overheads in doing so; recent surveys suggest
that app providers typically opt for the latter goal [9].

8 CONCLUSION
This paper presents Marauder, a mobile app acceleration system
that carefully packages caching and prefetching techniques in a way
that sidesteps their associated risks, i.e., poorly set TTLs or stale
content with caching, and wasted bandwidth with prefetching. The
primary observation guiding Marauder’s operation is that apps handle
interactions much like the web, whereby downloaded text resources
are structured to entirely list the set of remaining URLs to fetch.
Leveraging this, Marauder introduces two low-risk optimizations
from the app’s cache. First, guided by cached text files, Marauder
prefetches referenced resources during an already-triggered inter-
action. Second, to improve the efficacy of cached content, Marauder
judiciously prefetches about-to-expire resources, extending cache
lives for non-text resources, and downloading updates for lightweight
(but crucial) text files. Overall, Marauder reduces median and 90th
percentile interaction response times by 27.4% and 43.5%, while
increasing data usage by only 18%.
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