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Abstract
Despite the rapid increase in mobile web traffic, page loads
still fall short of user performance expectations. State-of-
the-art web accelerators optimize computation or network
fetches that occur after a page’s HTML has been fetched.
However, clients still suffer multiple round trips and server
processing delays to fetch that HTML; during that time, a
browser cannot display any visual content, frustrating users.
This problem persists in warm cache settings since HTML is
most often marked as uncacheable because it usually embeds
a mixture of static and dynamic content.

Inspired by mobile apps, where static content (e.g., lay-
out templates) is cached and immediately rendered while
dynamic content (e.g., news headlines) is fetched, we built
Fawkes. Fawkes leverages our measurement study finding
that 75% of HTML content remains unchanged across page
loads spread 1 week apart. With Fawkes, web servers extract
static, cacheable HTML templates for their pages offline, and
online they generate dynamic patches which express the up-
dates required to transform those templates into the latest
page versions. Fawkes works on unmodified browsers, using
a JavaScript library inside each template to asynchronously
apply updates while ensuring that JavaScript code only sees
the state that it would have in a default page load despite
downstream content having already been loaded. Across a
wide range of pages, phones, and live wireless networks,
Fawkes improves interactivity metrics such as Speed Index
and Time-to-first-paint by 46% and 64% at the median in
warm cache settings; results are 24% and 62% in cold cache
settings. Further, Fawkes outperforms recent server push and
proxy systems on these metrics by 10%-24% and 69%-73%.

1 INTRODUCTION

Mobile web browsing has rapidly grown in popularity, gen-
erating more traffic than its desktop counterpart [18, 20, 57].
Given the importance of mobile web speeds for both user
satisfaction [11, 12, 23] and content provider revenue [21],
many systems have been developed by both industry and
academia to accelerate page loads. Prior approaches have fo-
cused on pushing content to clients ahead of time [61, 70,
76, 19], compressing data between clients and servers [4, 67,
63], intelligent dependency-aware request scheduling [14,
42], offloading tasks to proxy servers [47, 65, 10, 6], and
rewriting pages for the mobile setting (either by automati-
cally serving post-processed objects to clients [71, 43, 51],
or by manually modifying pages to follow mobile-focused
guidelines [24, 34]). Yet despite these efforts, mobile page
loads continue to fall short of user expectations in practice.
Even on a state-of-the-art phone and LTE cellular network,
the median page still takes over 10 seconds to load [7, 61].
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Figure 1: Comparing the mobile app and mobile web browser
loading processes for BBC News over an LTE cellular network.

Our key observation is that, while existing optimizations
are effective at reducing network fetch delays and client-side
computation costs during page loads, they all ignore a large
and fundamental bottleneck in the page load process: the
download of a page’s top-level HTML file. To fetch a page’s
top-level HTML, a browser often incurs multiple network
round trips for connection setup (e.g., DNS lookups, TCP
and TLS handshakes), server processing delays to generate
and serve content, and transmission time. These tasks can
sum to delays of hundreds of milliseconds, particularly on
high-latency mobile links.1 Only after receiving and parsing
a page’s HTML object can the browser discover subsequent
objects to fetch and evaluate, make use of previously cached
objects, or render any content to the blank screen. Thus, from
a client’s perspective, the entire page load process is blocked
on downloading the page’s top-level HTML object. This is
true even in warm cache scenarios, since HTML objects are
most often marked as uncacheable [44] (§2).

Eliminating these early-stage inefficiencies would be fruit-
ful for two reasons. First, overall load times would reduce
since client-side computation and rendering tasks for cached
content could begin earlier and be overlapped with network
and server-side processing delays for new content; the CPU
is essentially idle as top-level HTML files are fetched in tra-
ditional page loads. Second, and more importantly, browsers
could immediately display static content, rather than show-
ing only a blank screen as the HTML is fetched (Figure 1).
This is critical as numerous web user studies and recent per-
formance metrics highlight user emphasis on content becom-
ing visible quickly and progressively [46, 25, 35, 49, 66].

1These delays persist even for HTML objects served from CDNs since
last-mile mobile link latencies still must be incurred.
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Figure 2: Overview of cold and warm cache page loads with Fawkes. Servers return static, cacheable HTML templates, as well as
uncacheable dynamic patch files that list the updates required to convert those templates into the latest page. Updates are performed
dynamically using the Fawkes JavaScript patcher library that is embedded in the templates.

To enable these benefits, we draw inspiration from mobile
apps which, despite sharing many components with the mo-
bile web (e.g., client devices, networks, content), are able to
deliver lower startup delays (Figure 1). Apps reduce startup
times by aggressively separating static content from dynamic
content. At the start of executing a task (akin to loading a
page), an app will issue a request for dynamic content in
parallel with rendering locally cached content like structural
templates, images, and banners. Once downloaded, dynamic
content is used to patch the already-displayed static content.

Like apps, web pages already cache significant amounts of
content across loads: 63% and 93% of the objects and bytes
are cacheable on the median page. Yet startup times in warm
cache page loads remain high due to download delays of top-
level HTML files (§2). But why are HTML objects marked as
uncacheable? The reason is that they typically bundle static
content defining basic page structure with dynamic content
(e.g., news headlines or search results). HTML which em-
beds dynamic content must be uncacheable so clients see the
most recent page. Thus, at first glance, it appears that ad-
dressing this challenge with app-like templating would re-
quire a rethink of how web pages are written. However, our
measurement study (§2) reveals that web pages are already
highly amenable to such an approach given the large struc-
tural and content similarities for HTML objects across loads
of a page. For instance, 75% of HTML tags on the median
top 500 page have fixed attributes and positions across 1
week, and could thus be separated into static templates.

We present Fawkes, a new web acceleration system that
modifies the early steps in the page load process to mirror
that of mobile apps (Figure 2). Fawkes optimizes page loads
in a two-step process. In the first phase, which is performed
offline, web servers automatically produce static, cacheable
HTML templates, which capture all content that remains un-
changed across versions of a page’s top-level HTML. The
second phase occurs during a client page load; servers gen-
erate dynamic patches, which express the updates (i.e., DOM
transformations) required to convert template page state into
the latest version of a page. During cold cache page loads,
browsers download precomputed templates while dynamic
patches are being produced, and can quickly begin render-
ing template content and fetching referenced external ob-

jects as patches are pushed. In warm cache settings, browsers
can immediately render/evaluate templates and referenced
cached objects while asynchronously downloading the dy-
namic patch needed to generate the final page.

Realizing this approach with legacy pages and unmodified
browsers requires Fawkes to solve multiple challenges:

• On the server-side, generating templates is difficult: tra-
ditional tree comparison algorithms [75, 36, 16, 54, 55]
do not consider invariants involving a page’s JavaScript
and DOM state, but templates execute to completion prior
to patches being applied and thus must be internally con-
sistent. For example, removing an attribute on an HTML
tag can trigger runtime errors if downstream JavaScript
code accesses that attribute; an acceptable template must
keep or omit both of these components. In addition, graph
algorithms are far too slow to be used for online patch
generation. Instead, Fawkes uses an empirically-motivated
heuristic which trades off patch generation time for patch
optimality (i.e., number of operations; note that the final
page is unchanged). Our insight is that tags largely re-
main on the same depth level of the tree as HTML files
evolve over time. This enables Fawkes to use a breadth-
first-search variant which generates patches 2 orders of
magnitude faster (in 20 ms) with comparable content.

• On the client-side, each static template embeds a special
JavaScript library which Fawkes uses to asynchronously
download dynamic patches and apply the listed updates.
The primary challenge is in ensuring view invariance for
JavaScript code that is inserted via an update: that code
must see the same JavaScript heap and DOM state as it
would have seen during a normal page load. For exam-
ple, consider an update which adds a <script> tag to
the top of the HTML template. If that script executes a
DOM method that reads DOM state, the return value may
include DOM nodes pertaining to downstream tags in the
template—this state is already loaded in a Fawkes page
load, but not in a default one, and may trigger execu-
tion errors. To provide view invariance, Fawkes uses novel
shims around DOM methods which prune the DOM state
returned by native methods based on knowledge of page
structure and the position of the script calling the method.



We evaluated Fawkes using more than 500 real pages, live
wireless networks (cellular and WiFi), and two smartphone
models. Our experiments reveal that Fawkes significantly ac-
celerates warm cache mobile page loads compared to de-
fault browsers: median benefits are 64% for Time-to-first-
paint (TTFP), 46% for Speed Index (SI), 26% for Time-to-
interactive (TTI), and 22% for page load time (PLT). Despite
targeting warm cache settings, Fawkes speeds up cold cache
loads by 62%, 24%, 20%, and 17% on the same metrics.
Fawkes also outperforms Vroom [61] and WatchTower [47],
two recent mobile web accelerators, by 69%-73% and 10%-
24% on warm cache TTFP and SI. Importantly, Fawkes is
complementary to these approaches; Fawkes with Vroom
achieves Fawkes’s TTFP and SI benefits, while exceeding
Vroom’s PLT improvements by 22%. Source code and ex-
perimental data for Fawkes are available at https://github.
com/fawkes-nsdi20.

2 MOTIVATION

We begin with a range of measurements that illustrate the
startup discrepancies between mobile apps and web pages
(§2.1), and the amenability of web pages to app-like tem-
plating (§2.2). Results used the LTE setup described in §5.1.

2.1 Mobile Apps vs. Mobile Web
We compare the load process of mobile apps and web pages
by analyzing equivalent tasks across 10 web services; ser-
vices were selected by randomly choosing web pages from
the Alexa US top 100 list [5], and discarding those without a
corresponding mobile app. Our corpus includes news, rec-
ommendation platforms, search engines, and social media
applications. For each service, we equate loading a home-
page with a mobile browser to loading the home screen with
the mobile app. When applicable, we also compare equiva-
lent searches on both platforms. We load each task in the mo-
bile app and website back to back, and for each task, we log
the time until the first paint to the screen and collect screen-
shots for three events: the first time either platform displays
content to the user (Time-to-first paint, or TTFP), an inter-
mediate checkpoint with additional displayed content, and
the time when both platforms reach their final visual state.
Mobile app screenshots and paint events are captured via the
Apowersoft Recorder [8] and Android Systrace [31] tools,
respectively. Since apps have content cached during installa-
tion, for fair comparison, we consider warm cache page loads
(back to back). Certain mobile apps operate by displaying a
logo for several seconds during startup, prior to displaying
the home screen. We do not consider such apps here.

Startup delays are far lower with apps than web pages.
Across the corpus, our experiments reveal that TTFP values
are between 3.5×–5.2× lower with mobile apps than mobile
web pages. Figure 1 provides a representative example of
loading the home page for BBC News. As shown, despite the
high network latencies and potential server processing de-
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Figure 3: Caching has minimal impact on time-to-first-paint
since browsers cannot render cached content until they down-
load the top-level HTML (typically uncacheable).

lays, the mobile app is able to quickly display static content
that establishes the overall app layout and logos in under 300
ms. We verified that the reason for this is that the app quickly
pulls this content from its local cache while asynchronously
fetching dynamic news headlines. In contrast, the BBC web
page remains blank as the browser establishes a connection
to the backend and downloads the top-level HTML for the
page. Only upon receiving the HTML object can the browser
begin rendering any static or dynamic content to the screen–
this does not begin until 1200 ms, 4× longer than the app.

Problem: uncacheable HTML limits caching benefits for
the web. The above discrepancies between mobile apps and
web pages are indicative of a fundamental difference in the
startup tasks on the two platforms. Web HTML objects are
used to set the context for the remainder of a page load, es-
tablishing render and JavaScript engine processes, creating
a DOM tree (i.e., the browser’s programmatic representation
of the page’s HTML) and JavaScript heap, and so on. How-
ever, most HTML objects are marked as uncacheable. For
example, 72% are uncacheable across back to back loads of
the top 500 pages; this number jumps to 85% for loads sepa-
rated by 5 minutes. As a result, browsers are unable to make
use of other objects marked as cacheable (e.g., images, CSS)
until they download an HTML object; for reference, 53% and
93% of objects and bytes are cacheable on the median page.
Figure 3 illustrates this point: median TTFP values are only
5.3% lower in warm cache scenarios than during cold cache
page loads despite so many objects being cached.

2.2 Templating Opportunities for the Web
Motivated by the startup discrepancies between mobile app
and web page loads described above, we investigated how
amenable web pages are to app optimizations. Our analysis
focuses on the feasibility of extracting static templates from
HTML objects that can be cached across page loads. We con-
sider two different sets of sites: the Alexa top 500 landing
pages [5], and a smaller set which includes 10 pairs of dif-
ferent pages of the same type (e.g., different news articles or
search results). More dataset details are provided in §5.

We loaded each page (or pair of pages in the smaller cor-
pus) multiple times to mimic different warm cache scenar-
ios: back to back, 12 hours apart, 24 hours apart, and 1
week apart. In each setting, we compared the resulting top-
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Figure 4: Structural similarity for HTML files over time. Sim-
ilarity is defined as the percentage of shared tag sequences (in-
cluding tag attributes, bodies, and types).

level HTML objects to determine structural similarities. We
identify each tag as a tuple consisting of its tag type (e.g.,
<div>), HTML attributes (e.g., class), and body (e.g., in-
line script code). Since static templates can be patched dur-
ing page loads, we also consider tuple versions with all tag
attributes stripped, and with both tag attributes and bodies
stripped. Additionally, since HTML can be modeled as a tree
where ordering matters, for each tag T , we generate a se-
quence of tags by following parent tags up from T to the root
node. We then define structural similarity as the fraction of
sequences that remain identical across the HTML versions.

Opportunity: HTML structure and content is largely un-
changed over time. Figure 4 shows that HTML objects ex-
hibit high structural similarity. For example, for the median
top 500 page, 92% of HTML tags remain identical across
loads separated by 12 hours; these numbers jump to 98%
and 100% when attributes are stripped alone or with bodies.
These trends persist for different pages of the same type. For
instance, two different Instagram profile pages exhibit struc-
tural similarity of 98% when only attributes are stripped. The
trends also persist for other time windows. For example, me-
dian similarities in the 1-week setting are 75% and 95% with
nothing and attributes stripped, respectively.

Key Takeaways:

• Mobile apps exhibit a desirable startup process com-
pared to mobile web pages because apps explicitly sepa-
rate static and dynamic content, and immediately render
cached static content while dynamic content is fetched.
Web pages, on the other hand, remain blocked (blank
screen) on downloading uncacheable HTML objects, de-
spite most other objects being cacheable.

• Mobile web pages are amenable to app-like templating of
static content since HTML objects (typically uncacheable)
have large structural similarities over long time periods.

3 DESIGN

Figure 2 shows the high-level design of Fawkes. Clients use
unmodified browsers to load pages as normal. On the server
side, websites must run Fawkes to handle incoming client
HTTP(S) requests. The server-side Fawkes code performs
two primary tasks. For a given page, Fawkes statically an-
alyzes possible variants of the unmodified top-level HTML
objects for the page and extracts a single static HTML
template which maximally captures shared HTML content
across versions. The generation of the static HTML tem-
plate is performed offline, i.e., not during a client page load.
Then, when a user loads the page, Fawkes compares the
static HTML template to the target HTML, or the one that
the default web server would have served without Fawkes,
and generates a dynamic patch, which is a JSON file with
an ordered list of DOM updates required to convert the tem-
plate page into the target one.

The static HTML template includes an inline JavaScript
“patcher” library that asynchronously downloads the dy-
namic patch file, and upon receiving it, dynamically applies
the listed updates. During cold cache loads, Fawkes’s server
first returns the cacheable, static HTML template, and then
streams the dynamic patch with HTTP/2 server push soon
after; the template is sent earlier since it is precomputed, and
this allows the browser to quickly start rendering template
content and fetching referenced external resources. During
warm cache page loads, the browser immediately begins to
evaluate and render the cached template and other cached
objects that it references as the patch downloads.

3.1 Server-Side Operation
In order to generate static HTML templates, Fawkes’s server-
side component leverages state-of-the-art tree matching al-
gorithms [54, 55]. The goal of these algorithms is to de-
termine the minimum distance between two (or more) tree
structures; recall that HTML files are structured as trees (§2).
In particular, these algorithms take as input a set of trees
whose nodes are assigned labels. The algorithms then com-
pute a set of operations that, if applied, would efficiently
transform the first input tree into the second. Operations typi-
cally comprise three primary types: delete operations remove
a node and connect its children to its parent, insert operations
add a node to a specific position in the tree, and rename op-
erations do not change node positions but instead only alter
a node’s label. Algorithm execution works much like string
edit distance techniques, using dynamic programming and
assigning each operation a cost of 1.

Altering tree matching algorithms: Fawkes must alter ex-
isting tree matching algorithms in several ways to ensure that
they are compatible with HTML and web semantics. First,
existing algorithms require each tree node to be labeled with
an individual string. However, HTML tags can include state
beyond simple tag type (e.g., <div> or <link>), each of
which could be shared across versions of a page. Properties



include attributes (e.g., class) that control the tag’s behav-
ior with respect to CSS styling rules and interactions with
JavaScript code, and bodies such as inline JavaScript code
or text to print. Failing to consider attributes during HTML
comparison can result in either broken pages if attributes
are incorrectly treated as equivalent, or suboptimal templates
if shared attributes are not maximally preserved, i.e., any
attribute discrepancy would require omitting a tag. Thus,
Fawkes’s tree comparison algorithm labels each HTML tag
with a (type, [attributes], body) three-tuple.

Second, Fawkes opts to not support rename operations,
and instead only supports new merge operations. Unlike re-
name operations that can entirely change a node’s label to
deem it equivalent to a node in the other tree, merge opera-
tions can only alter a tag’s attributes or body to claim such
equivalence. Importantly, merge operations do not allow tag
types to be modified. The reasoning behind this decision is
that different tags impose different semantic restrictions on
HTML structure. For instance, an <img> tag is self-closing,
and cannot contain children tags, while <div> tags can have
arbitrary children structures. Rewriting a <div> tag to an
<img> tag would thus trigger cascading effects on existing
children tags, leading to smaller templates.

Generating static HTML templates: Fawkes uses the
above tree matching framework to generate static HTML
templates from a set of HTML files. We describe how to
get this input set in §3.3, and for simplicity, describe the
approach assuming two input HTML files. To start, Fawkes
runs its tree matching algorithm to generate a set of oper-
ations which, if applied, would convert HTML1 to HTML2.
Fawkes then iterates through HTML1 and selectively applies
certain updates to only keep content that is shared across the
inputs. Delete operations are directly applied to HTML1 as
they represent content which is not shared across versions
and thus should not be part of the static HTML template.
Similarly, insert operations are ignored as they represent con-
tent that must be added to reach HTML2 and is thus not
shared. Finally, Fawkes strips all content (tag attributes and
bodies) referenced by merge operations as these highlight
discrepancies between HTML versions.

While applying these operations and generating static
HTML templates, Fawkes must be careful to preserve page
semantics and not violate inherent dependencies between
page state. In particular, Fawkes must ensure that static
HTML templates are internally consistent and do not trig-
ger JavaScript execution errors when parsed; this is impor-
tant as templates are parsed to completion prior to any patch
updates being applied. The key challenge is that altering
an HTML tag’s attributes or body can have downstream ef-
fects due to the shared state between JavaScript code and the
DOM tree [42]. For example, a downstream <script> tag
may access an upstream <p> tag’s attribute. Deleting that
<p> tag’s attribute can thus trigger execution errors when
the browser reaches the <script> tag. Similarly, differ-

ent <script> tags can share state on the JavaScript heap.
As a simple example, an upstream tag may define a variable
which the downstream tag accesses. Thus, cutting the up-
stream tag’s body can trigger downstream execution errors.

Existing tree matching algorithms are unaware of such
dependencies and are agnostic to the HTML execution en-
vironment. Thus, Fawkes applies a post-processing step to
ensure that such dependencies are not violated in the static
HTML template. Fawkes essentially iterates through the
static HTML template, and upon detecting an altered tag,
cuts downstream <script> tags. Fawkes could leverage
techniques like Scout [42] to more precisely characterize the
dependencies between tags and JavaScript code in an effort
to preserve more state in static HTML templates. However,
accurately capturing such fine-grained dependencies would
require web servers to also execute HTML content and load
pages. Our empirical results motivate that templates derived
from static tree analysis sufficiently keep the browser oc-
cupied with render and fetch tasks as dynamic patches are
fetched, obviating the need for dynamic processing.

Generating dynamic patches: Fawkes servers must gener-
ate dynamic patches that list updates which, if applied, would
convert the page state produced by a template into its de-
sired final form. The inputs for patch generation are the static
HTML template and the target HTML which is the file that a
default web server would serve during the current page load.

The tree comparison algorithm described above can pro-
duce the desired set of transformation updates that a patch
must contain. However, such algorithms are far too slow for
patch generation which, unlike template generation, must be
performed online, during client page loads. Thus, Fawkes
uses a tree comparison heuristic which trades off patch gen-
eration time for optimality in terms of number of operations
in the patch. The key insight is empirically motivated: we ob-
serve that tags most often remain on the same depth level of a
tree as HTML files evolve over time. Our analysis of HTML
files for 600 pages over a week revealed that, at the median
and 95th percentile, 0% and 1% of tags in target HTML files
were at a different depth than they were a week earlier. This
property favors a breadth-first-search approach over a depth-
first-search one, and implies that we need not consider new
positions for a tag outside of its current level (as traditional
algorithms would). So, for each level in the target HTML
file, Fawkes’s algorithm works as follows:

1. Create hash maps for both the target and template
HTML files that list all of the nodes for a given tag type
in the order they appear on that level (from left to right).

2. Iterate through the template’s level from left to right and
handle each node in one of two ways. If the node’s tag
type exists in the same level of the target, match this
node to the closest node of the same type with the same
parent, and remove that node’s entry from the target’s
hash map; if no node has a matching parent, match to
the closest node of the same type. Record a merge op-



eration by comparing the attributes and bodies for the
matched nodes. Else, if the tag type does not exist in
the same level of the target, delete this node in the tem-
plate and record a delete operation.

3. Once we reach the end of the template’s level, apply
move operations to order all matched nodes in the tem-
plate in the same way as they appear in the target; ob-
jects which remain in the same position do not require
any operation. Note that move operations (which sim-
ply change the position of a node) are not supported by
traditional tree diffing algorithms, and are only enabled
by our heuristic’s “look ahead” hash maps. Also, note
that moves made at this level are immediately reflected
in lower levels of the tree as children are reordered.

4. Finally, from left to right, insert any remaining nodes
listed in the target’s hash map to the appropriate posi-
tion. Record insert operations for these additions.

The key limitation of this heuristic is with respect to nodes
moving across levels in the tree. Traditional algorithms can
identify such cases, while Fawkes’s approach would auto-
matically require a delete at the original level and an insert
at the new level. However, as noted above, such transforma-
tions are rare. In addition, matching nodes to their closest
counterparts with the same parent could be suboptimal: an
inserted node in the target can create cascading suboptimal
rename and move operations for nodes of that type. Despite
such potential inefficiencies, correctness of the final page
load is unaffected. We compare this heuristic to standard tree
comparison algorithms and other heuristics in §5.5.

Each update in a dynamic patch must identify a node to
which the update should be applied. Fawkes identifies DOM
nodes by their child paths from the root of the HTML tree.
For example, a child path of [1,3,2] represents an HTML tag
that can be reached by traversing the first child of the root
HTML tag, the third child of that tag, and then the second
child of that tag. Child path ids are easy to compare and can
be computed purely based on HTML tree structure.

3.2 Client-Side Operation
To load a page, a mobile browser first loads the static
HTML template, whose initial tag is the Fawkes patcher
JavaScript library. The patcher begins by issuing an asyn-
chronous XMLHttpRequest (XHR) request for the page’s
latest dynamic patch. The patcher defines a callback function
on the XHR request which will be executed upon receiving
the dynamic patch JSON file to apply updates. The patcher
then defines the DOM shims required by the callback to ap-
ply the dynamic patch updates (described below). Finally, the
patcher removes its HTML <script> tag from the page to
prevent violating downstream state dependencies and to en-
sure that the final page’s DOM tree is unmodified. We note
that the state defined by the patcher persists on the JavaScript
heap despite its tag being removed from the page.

Applying updates: Upon downloading the dynamic patch,

<html>

<div> <script> <div>

<img> <img> <a>

DOM	
Pruning	
Boundary

Figure 5: Update challenge 1: provide view invariance to
JavaScript code by hiding downstream DOM state. Shaded
nodes are part of the static HTML template. The <script>
tag is inserted via Fawkes’s patcher and calls a DOM method to
find <img> tags. The native DOM method would return the two
nodes outlined in bold, even though the rightmost one would
not be returned in the default page load; Fawkes’s DOM shims
prune the rightmost node from the return value.

the patcher’s callback function iterates over the listed updates
and applies them in order until completion. To apply a given
update, the patcher first obtains a reference to the affected
DOM node (i.e., the one listed in the update) by walking the
DOM tree based on the listed child path. The patcher then
uses native DOM methods to apply the update.

For insert operations, the patcher first creates a new DOM
node using document.createElement(), sets the appropriate
attributes with Element.setAttribute(), and then adds it to
the appropriate position in the DOM tree by calling docu-
ment.insertBefore(). Adding nodes to the DOM tree can have
cascading effects with respect to rendering and layout tasks
(both of which are expensive). To mitigate these overheads,
Fawkes intelligently looks ahead in the update list to deter-
mine if subsequent updates reference the node being added
by the current insert update [43, 22]. In these cases, Fawkes
constructs a DOM subtree on the JavaScript heap prior to
applying the entire subtree to the actual DOM. Fawkes uses
similar techniques to handle merge and delete operations.

Handling DOM discrepancies: There are two main chal-
lenges with applying updates, both of which relate to
JavaScript execution and its interaction with the DOM tree.
Fawkes handles both using a novel set of shims (or wrappers)
around DOM methods, which are the vehicles with which
JavaScript can access or modify the DOM tree.

• The first issue is with providing view invariance for
JavaScript code inserted via an update: that code must see
the same JavaScript heap and DOM state as it would have
seen during a normal page load. This is challenging since
updates are not applied until after a page’s static HTML
template is entirely parsed. For example, consider Figure 5
where an inserted <script> tag invokes a DOM method
to read <img> tags in the page. The return value for this
method would include an <img> tag that is downstream
in the page’s HTML; this divergence from the default page
load could trigger JavaScript execution errors or alter page
semantics. To handle this, Fawkes shims all DOM meth-
ods which return a DOM node or a list of DOM nodes;
examples include document.getElementById() and docu-



ment.getElementsbyTagName(). Each shim calls the na-
tive method and prunes the result prior to returning it to
the client. Pruning is done by identifying the position in
the DOM tree of the script invoking the DOM method, and
then removing DOM nodes in the result which are below
that position in the DOM tree. Fawkes’s shims skip prun-
ing for callback functions (e.g., timers) and provide view
plausibility since the page makes no guarantee on what
DOM state those asynchronous events can encounter. We
note that it is not possible for inserted scripts to see less
DOM state than it would in a default page load because
updates are ordered with respect to HTML positions.

• The second issue is that JavaScript code can alter the
DOM tree in ways that affect the child path ids for subse-
quent updates. The reason is that the child path ids listed
in the dynamic patch are based on the static HTML, which
does not consider JavaScript execution, but are applied to
the dynamic DOM tree which JavaScript code can manip-
ulate (Figure 6). To handle this, Fawkes shims DOM meth-
ods that affect DOM structure, either by adding, remov-
ing, or relocating nodes; example methods include doc-
ument.appendChild() and document.insertBefore(). Each
shim calls the native method, logs its effect on DOM struc-
ture (e.g., the child path of an added node), and then re-
turns the value. When the patcher attempts to apply an up-
date, it first checks this log, and modifies the child paths in
the remaining updates based on the listed DOM changes.
We note that JavaScript can also invalidate a listed up-
date, e,g,. by replacing a <div> tag with an <img> tag in
the same position. Fawkes’s shims detect these alterations,
and the patcher discards such updates since JavaScript
takes priority over HTML for final page structure.

3.3 Identifying HTML Objects to Consider
Fawkes’s server-side static template generation inherently
relies on having a set of representative HTML files from
which to extract a template. Here we discuss several ap-
proaches for websites to generate this input set for each of
their pages; Fawkes is agnostic to the specific approach that
a site uses for this. We note that the input set need not be
comprehensive and cover all possible HTML versions for a
page since patches will include all necessary updates to reach
the target page. However, considering a comprehensive set of
HTML objects can reduce the number of updates required at
runtime, leading to improved performance.

Option 1: empirical analysis: One approach is for web
servers to log the HTML objects that they would serve to
clients over time without Fawkes. Fawkes can then periodi-
cally recompute a static HTML template based on the latest
served HTML files to account for structural modifications
that developers make to the page. An advantage of this ap-
proach is that the static HTML templates will inherently be
based off of the popular pages that are actually served to
clients. For instance, if a very rare state configuration would

<html>

<script> <link> <div>

<img> <a>

Insert	<a>
Original position:	<0,1,1>
Modified position:	 <0,2,1>

Figure 6: Update challenge 2: revise update positional infor-
mation to reflect JavaScript execution. Shaded nodes are part
of the static HTML template. Upon execution, the <script>
tag inserts an adjacent <link> tag into the page. Later, when
the patcher tries to apply an update to insert an <a>, the listed
child path id has gone out of date and must be updated.

alter the structure of a page, most page loads would benefit
from not considering this version in template generation.

Option 2: leveraging web frameworks: An alternative ap-
proach is to leverage the model-view-controller architecture
that many popular web frameworks (e.g., Django, Ruby on
Rails, and Express) use. In these systems, incoming requests
are mapped to a controller function which generates a re-
sponse by executing application logic code that combines
application data and premade HTML blocks. Note that these
blocks are small, spanning only a few tags each, and are sig-
nificantly augmented with HTML tags generated by applica-
tion logic–this precludes us from using these blocks as our
templates. To leverage this structure, we can perform stan-
dard static program analysis [62, 37] on application code
(particularly the controller for the URL under consideration)
to determine the possible HTML block combinations and dy-
namically produced HTML code that could result for a page.

Option 3: hybrid approach: A final approach is to perform
static program analysis on the application backend source
code to determine what inputs affect HTML structure, e.g.,
Cookie values, database state, time of day, etc. Fawkes can
then simply probe the backend with different input values to
generate a range of potential HTML objects that could be
returned to clients; static HTML template generation would
then work in the same way as Option 1.

Case studies: Our evaluation (§5) primarily focuses on Op-
tion 1. However, to validate the feasibility of the remaining
options, we analyzed the source code of two real open source
web applications: Reddit [2] and ShareLatex [1]. Both appli-
cations follow the MVC model described above, with Reddit
using the Python Pylons framework [58] and ShareLatex us-
ing NodeJS’s Express [50]. For both applications, we wrote
custom static analyzers which profile the controller for the
sites’ landing pages. The output of the profiler is an interme-
diate template that intertwines HTML code with Python (or
JavaScript) logic that, when executed, reads in application
variables and outputs a fully formed HTML file. Following
branch conditions and unrolling loop bodies in the interme-
diate template revealed that a ShareLatex project page has
16 possible HTML structures, while Reddit can have over
150. We note that, for this analysis, any tag insertion/dele-
tion or change in tag composition (e.g., an attribute value)



is treated as a new page structure. Consequently, despite the
large number of potential HTML structures, both pages are
highly amenable to large static templates.

3.4 Subtleties

Handling different template versions: Since Fawkes
clients cache static HTML templates, and Fawkes servers
can decide to generate new templates based on page mod-
ifications or popularity changes, it is possible that different
clients have different template versions cached. One option
is to have clients check for updates prior to evaluating cached
templates using the If-Modified-Since HTTP header, but this
would eliminate most of Fawkes’s warm cache benefits as
a browser would have to incur multiple round trips before
rendering any content for the user. Instead, to handle these
differences, static templates include a hash of the template
contents as a variable in the inline patcher code. The patcher
includes this information in its XHR request for a dynamic
patch file; no browser modifications are required.

In order to make use of hash information in client requests,
Fawkes servers must maintain a mapping of hashes to past
static HTML template files which covers the max duration
over which the templates are cacheable, i.e., if the templates
for a URL are set to be cacheable for 1 day, the Fawkes server
must store an entry for each template version served over the
past day. Importantly, we expect these storage overheads to
be low as our results highlight that templates remain largely
unchanged on the order of weeks, and across personalized
versions of pages for different users (§2 and §5).

Updating cached templates: Fawkes can use the hash-
based approach described above to ensure benefits despite
variations in cached templates. However, over time, Fawkes
servers may wish to update cached templates to reflect sig-
nificant changes in page structure that may deem past ver-
sions poor in terms of performance. For this, Fawkes servers
simply send updated templates along with dynamic patches
served with HTTP/2 server push. Because the pushed tem-
plates will remain cacheable for longer durations than the
currently cached versions, default browsers will automati-
cally replace the cached template for subsequent loads.

Static templates across URLs: In scenarios where static
templates are generated for individual URLs by consider-
ing their possible HTML variants, templates can be cached
directly under the page’s URL. However, as we discuss in
§2 and §5, Fawkes’s template caching approach can provide
significant benefits across different URLs of the same page
type, e.g., different search result pages or news articles. To
support such scenarios efficiently, browsers must slightly al-
ter their caching approach to allow objects to be cacheable
across multiple URLs. Websites can specify a regular expres-
sion that precisely covers the URLs for which the template
applies, and browsers would use the same cached template
for any load which matches that regular expression.

4 IMPLEMENTATION

On the server-side, Fawkes’s template and dynamic patch
generation code are written in 1912 and 462 lines of Python
and C++ code, respectively. Both components are imple-
mented as standalone modules for seamless integration with
existing web servers and content management platforms [17,
73]. Module inputs are a set of HTML files, and outputs
are full formed HTML and JSON files that can be directly
shipped to client browsers. For template generation, Fawkes
extended the APTED tree comparison tool [55, 56]. HTML
parsing and modification are done using Beautiful Soup [60].

On the client-side, Fawkes’s JavaScript patcher library
consumes 3 KB when compressed with Brotli [27]. The
patcher is written entirely using native DOM and JavaScript
methods, and is thus compatible with unmodified web
browsers. We note that the DOM shims are shared across
pages, and thus could be cached as a separate object from
each page’s static template to reduce bandwidth costs.

5 EVALUATION

5.1 Methodology
We evaluated Fawkes using two phones, a Nexus 6 (Android
Nougat; 2.7 GHz quad core processor; 3 GB RAM) and a
Galaxy Note 8 (Android Oreo, 2.4 Ghz octa core; 6 GB
RAM). Fawkes performed similarly across the two devices,
so we only report results for the Nexus 6. Unless otherwise
noted, page loads were run with Google Chrome (v75).

Our experiments consider two different sets of pages:

• Alexa top 500 US landing pages [5]. We augment this list
with 100 interior pages that were randomly chosen from
a pool of 1000 pages generated by a monkey crawler [3]
that clicked links on each site’s landing page.

• a smaller set of 20 pages that includes pairs of different
pages of the same type. Starting from the Alexa top 50
list, we identified page types that have many versions, and
manually generated pairs for each one, e.g., two Google
search results and two public Twitter profile pages.

In order to create a reproducible test environment and
because Fawkes involves page modifications, our evalua-
tion uses the Mahimahi web record-and-replay tool [48]. We
recorded versions of each page in our corpus at multiple
times to mimic different warm cache scenarios: back to back
page loads, and page loads separated by 12 and 24 hours.
Mobile-optimized (including AMP [24]) pages were used
when available. To replay pages, we hosted the Mahimahi
replay environment on a desktop machine. Mobile phones
were connected to the desktop machine via both USB teth-
ering and live wireless networks (Verizon LTE and WiFi)
with strong signal strength. The desktop initiated page loads
on the mobile device using Lighthouse [28], and all con-
trol traffic for this was sent over the USB connection. All
web and DNS traffic were sent over the live wireless net-
works into Mahimahi’s replay environment. We modified
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Figure 7: Distributions of warm cache (back to back and 12 hour) per-page improvements with Fawkes vs. a default browser (i.e.,
using each page’s default HTML) for 600 pages.

Mahimahi to faithfully replay the use of HTTP/2 (including
server push decisions) and server processing delays observed
during recording; details of these modifications are listed in
§A.1.

In accordance with §3, in all experiments, Fawkes’s tem-
plates are generated a priori (i.e., offline). We apply server
processing delays for a given template as the median delay
observed for objects marked as cacheable in the default load
of the page; these objects likely represent premade content.
Note that this strategy ensures that templates experience the
observed server-side delays that do not relate to content gen-
eration, e.g., delays due to high server load. Unless otherwise
noted, templates are generated using the first and current ver-
sions of a page (i.e., a version at time 0, and the version in
the back to back load, 12 hours later, etc.); we present results
for other template generation strategies in §5.5. Dynamic
patches are generated online by Mahimahi’s web servers.
Server processing times for patches include both the ob-
served server processing time for the page’s original HTML
file, as well as the time taken to generate a patch.

We evaluate Fawkes on multiple web performance met-
rics. Page load time was measured as the time between the
navigationStart and onload JavaScript events. We
also consider three state-of-the-art metrics which better re-
late to user-perceived performance: 1) Speed Index (SI),
which represents the time needed to fully render the pixels
in the intial view of the page, 2) Time-to-first-contentful-
paint (TTFP), which measures the time until the first DOM
content is rendered to the screen, and 3) Time-to-interactive
(TTI), which measures how quickly a page becomes interac-
tive with rendered content, an idle network, and the ability
to immediately support user inputs. All three metrics were
measured using pwmetrics [32]. In all experiments, we load
each page three times with each system under test, rotating
amongst them in round robin fashion; we report numbers per
system based on the load with the median page load time.

Correctness and limitations: To ensure a faithful evalua-
tion, we analyzed the pages in our 600-page corpus to iden-
tify and exclude those that experience replay errors due to
either Mahimahi’s (22 pages) or Fawkes’s limitations (17
pages). Details about our correctness checks are in §A.2.
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Figure 8: Warm cache speedups for sites in our smaller corpus.

5.2 Improving User-Perceived Web Performance

Warm Cache: Figure 7 illustrates Fawkes’s ability to im-
prove performance for our 600-page corpus, compared to a
default browser, across a variety of web performance metrics
and warm cache settings; we omit results for the 24 hour set-
ting due to space constraints, but note that the trends were
the same. Benefits with Fawkes are most pronounced on the
metrics that evaluate visual loading progress, SI and TTFP.
For example, in the 12 hour warm cache setting, median SI
improvements are 38% and 22% on the LTE and WiFi net-
works, respectively. Improvements jump to 67% and 51%
for TTFP; these benefits directly characterize Fawkes’s im-
mediate rendering of static HTML templates, compared to
the lengthy blank screen in a default page load. Table 3 lists
the raw time savings pertaining to these improvements.

Despite targeting quick visual feedback, Fawkes’s results
are also significant for more general web performance met-
rics like TTI and PLT: median improvements in the 24 hour
scenario are 20% and 17% in the LTE setting. The reason is
that in warm cache settings, Fawkes enables browsers to uti-
lize network and CPU resources that go idle in standard page
loads as HTML objects are being loaded. Browsers can im-
mediately perform required rendering and processing tasks
(which are non-negligible on mobile devices [43, 41, 69, 61])
of both template content and referenced cached objects; at
the same time, browsers can issue requests for any referenced
uncacheable objects to make use of the idle network.

Across all metrics, Fawkes’s benefits are higher in LTE
settings than on WiFi networks. The reason is that network
latencies are higher on LTE networks: in our setup, last mile
(access link) RTT values were consistently around 82 ms for
LTE and 17 ms for WiFi. Higher round trip times increase the
time that default page loads are blocked on fetching top-level
HTML objects while Fawkes parses its templates.

As expected, benefits were consistently higher in the back-



Property back to back 12 hours 24 hours
Static template size (KB) 102 (601) 77 (343) 73 (358)
Dynamic patch size (KB) 6 (249) 44 (491) 52 (460)

Table 1: Analysis of Fawkes’s templates and dynamic patches
across warm cache scenarios with different time windows. Re-
sults list median (95th percentile) values for each property.
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Figure 9: Cold cache speedups with Fawkes versus a default
browser on our 600-page corpus. Bars represent medians, and
error bars span from the 25th to 75th percentile.

to-back warm cache setting than when page loads were sep-
arated by 12 or 24 hours. This is because HTML objects un-
dergo fewer changes across back-to-back loads, leading to
larger templates and fewer updates (Table 1). Larger tem-
plates result in immediate feedback that more closely resem-
bles the final page, as well as increased opportunities to uti-
lize idle CPU and network resources. Note that patch sizes
include page content (e.g., inline scripts) to be inserted.

Figure 8 illustrates similar warm cache benefits (over the
LTE network) for representative sites in our smaller corpus.
Templates are made by consideringdifferent versions of the
same page type. We note that TTFP benefits were highest for
Google search pages because those pages incur the highest
server processing times (for result generation).
Cold Cache: Although Fawkes’s template-based approach
primarily targets warm cache settings, benefits are significant
in cold cache scenarios (Figure 9). For example, median SI
and TTFP improvements were 24% and 62% for the LTE
network. These results consider templates generated using
HTML files generated 24 hours apart. The reason for these
benefits mirror those in warm cache settings, but with smaller
savings. Since static HTML templates are served faster than
dynamic patches, browsers still have a window to perform
template rendering and compute tasks with Fawkes while the
default page load is blocked. Browsers largely use this time
to quickly fetch referenced uncached objects, making better
use of the idle network. Like in warm cache settings, SI and
TTFP benefits drop to 21% and 44% on the WiFi network
due to the decreased network round trip times.

5.3 Understanding Fawkes’s Benefits

Case study: To better understand Fawkes’s performance, we
analyzed the visual progress of page loads both with and
without Fawkes. Visual progress tracks the fraction of the
browser viewport (i.e., the part of the page that is visible
without scrolling) that has been rendered to its final form.

Figure 10 shows warm and cold cache results for a rep-
resentative site in our corpus, the Yahoo homepage. In the
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Figure 10: Visual progress with and without Fawkes for the
Yahoo homepage. Warm cache loads were 12 hours apart.

warm cache scenario, Fawkes is able to make an immediate
jump (53% in 790 ms) in visual progress by parsing and ren-
dering a large part of the static HTML template, as well as
referenced static objects which are also in the browser cache.
In contrast, the default browser is blocked on the multiple
network round trips and server processing delays required to
fetch the page’s top-level HTML object; visual progress does
not increase until 1110 ms into the load. The initial render
(29% in 1270 ms) is also much smaller than with Fawkes be-
cause the default HTML parse gets quickly blocked on fetch-
ing an uncacheable JavaScript file—rendering is blocked un-
til this file is fetched and evaluated. Fawkes also has to fetch
this file, but this occurs via an applied update, at which point
Fawkes has already reached 53% visual completeness. We
note that evaluation of this script (and thus blocked render-
ing) is 27 ms worse with Fawkes due to overheads from
DOM shims. However, these overheads are overshadowed by
the large early lead in visual progress that Fawkes achieves.

In the cold cache setting, both Fawkes and the default
browser incur network delays to fetch an HTML object for
the page. However, this delay is lower for Fawkes as the
static template is pre-generated. From this point, the page
loads are largely similar to the warm cache setting: Fawkes
makes a larger immediate jump in visual progress (40% in
690 ms vs. 17% in 1250 ms) as the default browser gets
quickly blocked on fetching an external script, while Fawkes
does so only after the template is parsed. From there, both
page loads progressively render content, but Fawkes never
relinquishes its lead. We note that, though it is not visible in
the graphs, Fawkes issues requests for non-blocking external
objects (e.g., images) that are listed in the template earlier.

Template content: Fawkes’s early template parsing enables
browsers to 1) process referenced cached objects sooner in
warm cache loads, and 2) quickly issue requests for refer-
enced external objects in cold cache loads. To understand
how often these optimizations are applied, we analyzed the
static URLs listed in Fawkes’s templates; we considered tem-
plates generated using loads 12 hours apart. We found that,
on the median page, templates referenced 46% of the page’s
objects, of which 72% were cacheable.

Patch generation: As described in §3, Fawkes opts to run
a tree comparison heuristic rather than a state-of-the-art tree
diffing algorithm. Fawkes’s heuristic is designed to trade off



Algorithm # of operations Execution time (ms)
Fawkes’s heuristic 2 (667) 20 (59)

Insert-first heuristic 2 (3013) 30 (70)
Delete-first heuristic 2 (3065) 30 (70)
State-of-the-art tree

diffing algorithm (§3) 17 (136) 2717 (19702)

Table 2: Fawkes’s dynamic patch generation heuristic yields a
desirable tradeoff between patch generation time and patch op-
timality, compared to other heuristics and a state-of-the-art tree
diffing algorithm (which Fawkes uses for template generation).
Results list median (95th percentile) values.

System SI TTFP TTI PLT
Default 2.9 (3.9) 0.5 (0.5) 3.6 (4.4) 4.0 (5.2)
Fawkes 1.8 (2.9) 0.2 (0.3) 2.8 (3.5) 3.3 (4.2)
Vroom 2.4 (3.4) 0.6 (0.5) 2.9 (3.3) 3.2 (3.8)

WatchTower 2.0 (2.5) 0.6 (0.6) 2.6 (3.0) 2.8 (3.6)
Fawkes + Vroom 1.8 (2.9) 0.2 (0.3) 2.6 (3.14) 2.5 (3.4)

Table 3: Median warm (cold) cache raw times for our 600-page
corpus on an LTE cellular network. All results are in seconds,
and warm cache loads are spread by 12 hours.

patch generation time for optimality (in terms of number of
operations). To evaluate Fawkes’s heuristic on this tradeoff,
we compare it to the tree diffing algorithm Fawkes uses for
template generation, and two additional heuristics: ‘insert-
first’ and ‘delete-first’ breadth-first-search approaches where
discrepancies discovered when comparing a level in the tem-
plate and target are handled by first inserting the missing
node or deleting the mismatched node, respectively, and then
accounting for any remaining deltas (Table 2). As shown,
Fawkes’s heuristic runs 2 orders of magnitude faster than ex-
isting tree diffing algorithms. Median operations are lower
with Fawkes’s heuristic due to its move operation. 95th per-
centile operations are 5× worse with Fawkes’s heuristic due
to the inefficiences described in §3.1, but we note that this
large gap is only present in 8% of pages.

Importantly, across all warm cache page loads, Fawkes
completes heuristic execution and shipping patches to clients
before client-side template processing completes; shipping
patches before this does not improve performance a template
parsing must conclude prior to patch application.

5.4 Comparison with Vroom and WatchTower
We compared Fawkes with two recent mobile web opti-
mization systems, Vroom [61] and WatchTower [47]. With
Vroom, web servers user HTTP/2 server push to proactively
send static resources that they own to clients ahead of fu-
ture requests. In addition, Vroom servers send HTTP preload
headers [68] to let clients quickly download resources that
they will soon need from other domains. In contrast, Watch-
Tower accelerates page loads by selectively using proxy
servers based on page structural properties and network con-
ditions. When enabled, a proxy loads a page locally using a
headless browser and fast network links, and streams individ-
ual resources back to the client for processing. Our evalua-
tion considers WatchTower’s HTTPS-sharding mode, where
each HTTPS origin runs their own proxy to preserve HTTPS

security. Proxies were run on EC2 in California where the
WatchTower paper reported the highest speedups.

Table 3 compares Fawkes with Vroom and WatchTower
for both cold and warm cache loads of our 600 page cor-
pus over an LTE network; trends were similar on the WiFi
network. As shown, Fawkes is able to significantly improve
performance on the interactivity-focused metrics compared
to these systems. For example, median warm cache Speed
Index values were 24% and 10% lower with Fawkes than
with Vroom and WatchTower, respectively. Fawkes’s TTFP
benefits over these systems were 69%-73% since accelera-
tion techniques with WatchTower and Vroom only take af-
fect after incurring multiple network round trips and server
processing delays to download HTML objects.

Our results also show that Vroom and WatchTower are
more effective than Fawkes at reducing PLT; median ben-
efits are 3.3% and 16.6%, respectively. The reason is that
both Vroom and WatchTower can mask network round trips
required to fetch external objects throughout the page load,
including those triggered by non-HTML objects. Fawkes, on
the other hand, focuses on early parts of a page load–indeed,
targeting startup bottlenecks is what differentiates Fawkes
from prior acceleration techniques. Importantly, we note that
Fawkes’s early-stage optimizations are largely complemen-
tary to prior techniques.To validate this, we reran the ex-
periment above using a combination of Fawkes and Vroom.
Vroom’s server hints on the top-level HTML were sent along
with Fawkes’s dynamic patches. As shown in Table 3, this
combination outperforms any tested system in isolation.

5.5 Additional Results

Stale HTML templates: Our warm cache evaluation con-
sidered static templates that were generated using the HTML
object at time 0 and the one for the current time (e.g., 12
hours). Although this is possible using the techniques pre-
sented in §3.3 to generate representative HTML files for a
page, it is not the sole practical deployment scenario. An al-
ternative approach would be to generate static HTML tem-
plates with only back-to-back loads at a time 0, and use this
for future warm cache loads. To evaluate the impact of such
stale templates, we loaded the pages in our corpus using both
stale (i.e., generated at time 0) and up-to-date (generated us-
ing HTML files at time 0 and the current time) templates. We
considered staleness of 12 and 24 hours, and observed mini-
mal performance degradations. For example, on the LTE net-
work, median SI values dropped by only 4.2% and 6.8% for
the 12 and 24 hour scenarios; TTFP values were unchanged.

Personalized pages: We selected 20 sites from our 600 page
corpus that supported user accounts. For each site, we made
two user accounts, selecting different preferences when pos-
sible, e.g., order results based on time or popularity. We then
generated static templates from the HTML objects that each
user account fetched. Finally, we loaded one of the user’s
pages 12 hours later with a warm cache, and compared per-



formance to that of a default browser. Fawkes was able to
reduce SI by 27% and 18% on the LTE and WiFi networks,
respectively. It is important to note that these trends may not
hold for all personalization strategies. For example, pages
like Facebook can display structurally diverse content over
time and across users. However, our results illustrate that
many pages do remain structurally similar across users.

Energy savings and other browsers: Fawkes reduces (per-
page) energy usage by 7-18%, and its speedups persist across
other browsers (e.g., Firefox). Details provided in §A.3.

6 RELATED WORK

Server push systems: Numerous systems, including Vroom
(§5.4), aim to accelerate mobile page loads by leverag-
ing HTTP/2’s server push feature [9], where servers proac-
tively push resources to clients in anticipation of future re-
quests [61, 19, 70]. Fawkes is largely complementary to
server push systems as these approaches reduce fetch times
for resources loaded after the top-level HTML. In contrast,
Fawkes speeds up page startup times.

Proxy and backend accelerators: Compression proxies [4,
63, 67, 52] compress objects in-flight between clients and
servers, while remote dependency resolution proxies [65, 47,
48, 64] perform object fetches on behalf of clients. Fawkes
is orthogonal to these approaches, and can mask the network
indirection and computation overheads associated with prox-
ying. In addition, Fawkes preserves the end-to-end nature of
the web, avoiding the security challenges of proxying.

More recently, Prophecy [43], Shandian [71], and Opera
Mini [51] return post-processed versions of objects to reduce
client-side computation and bandwidth costs. All three sys-
tems must incur the same network round trips and (more)
server processing delays that default page loads to down-
load top-level HTML objects–only then do their accelera-
tion techniques help. These delays are exactly what Fawkes
aims to alleviate. We also note that Fawkes’s patcher and
shims tackle a fundamentally different challenge than those
in Prophecy and Shandian: Fawkes must execute JavaScript
code in an environment with fast-forwarded DOM state.

Dependency-aware scheduling: Certain systems have im-
proved the scheduling of network requests based on inherent
dependencies in page content. Klotski [14] analyzes pages
offline to identify high-priority objects in terms of user util-
ity, and uses knowledge of network bandwidth to stream
them to clients before they are needed. Polaris [42] uses a
client-side request scheduler that reorders requests to mini-
mize the number of effective round trips in a page load with-
out violating state dependencies. However, both systems are
unable to process or render content prior to an HTML down-
load. Thus, these systems can work side by side with Fawkes.

JavaScript UI frameworks: Libraries like Vue.js [74], An-
gularJS [26], and React [22] efficiently update client-side
page state during page loads. A key feature across these

frameworks is the use of a virtual DOM, where JavaScript-
based DOM updates are first performed on a lightweight
DOM representation, and aggregate results (rather than in-
termediate layout and render events) are applied to the actual
DOM. Using such efficient update strategies, these frame-
works support client-side page rendering, whereby a page’s
top-level HTML embeds only a single JavaScript library
that is responsible for downloading and rendering down-
stream page content. While these frameworks focus on ef-
ficiently updating content during a page load and require
developers to rewrite pages, Fawkes operates on unmodi-
fied pages and aims to quickly display content shared across
page loads. Further, unlike the client-side page rendering ap-
proach, Fawkes’s static templates embed both the JavaScript
patcher library and all of a page’s static HTML content. This,
in turn, ensures that Fawkes can render static content while
fetching downstream (dynamic) content.
Accelerating HTML loading: Google’s SDCH [15] allows
web servers to specify cacheable components of HTML files;
on subsequent loads, servers need only send new compo-
nents or deltas to cached ones, thereby saving bandwidth.
Unlike Fawkes, SDCH does not allow browsers to render
cached HTML components until the entire HTML is con-
structed. Thus, SDCH does not face the view invariance
challenges that Fawkes’s patcher does, and SDCH is unable
to reduce web startup times by rendering cached HTML con-
tent quickly for users. Other industry efforts have focused on
dividing pages into modular components called “pagelets”,
which can be generated and processed independently and in
parallel [13, 33]. Pagelets share Fawkes’s goal of improving
resource utilization to more quickly display content to users.
However, unlike Fawkes, individual pagelets do not include
a mechanism for automatically separating static and dynamic
HTML, and instead use a single response that is shipped only
after the pagelet’s dynamic content is generated.

7 CONCLUSION

Inspired by the mobile app startup process, this paper
presents Fawkes, a mobile web acceleration system that gen-
erates cacheable, static HTML templates that can be imme-
diately rendered to quickly display content to users as page
updates are fetched. Fawkes represents a shift in the web ac-
celeration space, by focusing on leveraging underutilized re-
sources at the beginning of page loads. We find that Fawkes
brings median warm cache reductions of 46%, 64%, 26%,
and 22% for SI, TTFP, TTI, and PLT, and outperforms state-
of-the-art server push and proxy-based acceleration systems
by 10%-24% and 69%-73% on SI and TTFP.
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A APPENDIX

A.1 Mahimahi Modifications
To compute per-object server processing delays, we first
recorded the RTT to each origin in a page as the median
time between the TCP SYN and SYN/ACK packets across
all connections with that origin. We then defined the server
processing delay for an object as its TTFB minus 1 RTT (for
the transmission of the HTTP request and initial response
bytes); when applicable, we also subtracted out connection
setup delays (1 or 2 RTTs depending on whether the resource
was downloaded via HTTP or HTTPS). Lastly, we modified
Mahimahi’s replayserver to wait for the corresponding
server processing delay before shipping back any object.

A.2 Correctness and Limitations
To ensure a faithful evaluation of Fawkes, we analyzed the
pages in our corpora to identify and exclude pages that ex-
perience replay errors due to either Mahimahi or Fawkes.
We excluded 22 pages due to Mahimahi replay errors, most
of which were the result of SSL errors for pages that lever-
age the Server Name Indication (SNI) feature in SSL/TLS
certificates (which Mahimahi does not support), and miss-
ing resources that Mahimahi’s URL matching heuristic was
unable to remedy.

On the remaining pages, correctness with Fawkes was
evaluated by forcing determinism upon JavaScript ex-
ecution (e.g., using fixed return values for calls to
Math.Random()) [39, 45], and comparing loads with and
without Fawkes in three ways: 1) a pixel-by-pixel analysis of
the final page (using pwmetrics’ screenshots and visual anal-
ysis tools [32]), 2) the number of registered JavaScript event
handlers (logged using shims on the addEventListener
mechanism and by iterating over the DOM tree after the
onload event fired [46]), and 3) the browser console er-
rors printed during the page load. We excluded the 17 pages
that differed on any of these three properties from our evalua-
tion. Further investigation revealed two key reasons for such
discrepancies, which are limitations with Fawkes:
• Although Fawkes cuts downstream JavaScript in tem-

plates after the first tag removal or alteration, it does not
remove CSS. The reason is that CSS rules can significantly
affect the styling of template content, bringing it closer
to the final page version. However, CSS and JavaScript
code can share state in the form of DOM node attributes.
As a result, downstream CSS files in a page’s template
can modify DOM attribute state that patched (upstream)
JavaScript code can subsequently access—this can alter
page execution and lead to errors.

• JavaScript code can dynamically rewrite downstream
HTML using the document.write() interface. How-
ever, Fawkes’s patches are based on a page’s static HTML,
which does not reflect JavaScript execution. Thus, because
our current implementation of Fawkes does not use shims
for document.write(), it is possible for JavaScript

code in the template to (correctly) rewrite downstream
HTML content, that is (incorrectly) resurrected by the
Fawkes patcher.

A.3 Additional Results

Energy consumption: To examine the impact that Fawkes
has on energy usage, we connected a Nexus 6 phone to a
Monsoon power monitor [40] and loaded our 600 page cor-
pus. During cold cache loads, Fawkes’s speedups reduce me-
dian per-page energy usage by 11% and 7% compared to a
default browser on the LTE and WiFi networks, respectively.
Benefits jump to 18% and 11% in warm cache settings (12
hours apart). In both cases, benefits are higher on LTE due
to the higher network latencies and the fact that LTE radios
consume more energy than WiFi hardware when active [65].
Additional browsers: Since Fawkes does not require any
browser modifications, we also evaluated Fawkes with Fire-
fox (v68) using our 600 page corpus and the same experi-
mental setup from §5.1. Benefits in the 12 hour warm cache
setting were quite comparable, despite Firefox using a differ-
ent rendering engine than Chrome. Fawkes reduced median
SI by 21% and 34% on the WiFi and LTE networks.

A.4 Additional Related Work

Mobile-optimized pages: Certain sites cater to mobile set-
tings by serving pages that involve less client-side computa-
tion, fewer bytes, and fewer network fetches. For example,
Google AMP [24, 34] is a recent mobile web standard that
requires developers to rewrite pages using restricted forms
of HTML, JavaScript, and CSS. Unlike AMP, Fawkes accel-
erates legacy pages without needing developer effort. Fur-
ther, Fawkes provides complementary benefits and can lower
AMP startup delays: Fawkes’s TTFP and SI reductions were
58% and 27% for the 23 AMP pages in our corpus.
Prefetching: Prefetching systems predict user browsing be-
havior and optimistically download objects prior to user page
loads [53, 38, 72]. Unfortunately, such systems have wit-
nessed minimal adoption due to challenges in predicting
what pages a user will load and when; inaccurate page and
timing predictions can waste device resources or result in
stale page content [59]. By rendering static templates as soon
as a user navigates to a page, Fawkes is able to achieve com-
parable TTFP reductions without the issues of prefetching.
Progressive Web Apps (PWAs): Google recently proposed
PWAs [29], applications that are written using standard web
languages (e.g., HTML, JavaScript), can be loaded by a stan-
dard web browser, but are installed as an application on a
user device. PWAs use service workers [30] which employ
aggressive caching and custom update logic to run offline
and support push notifications from servers. Fawkes shares
the idea of improving use of web caching and app-like update
logic. However, in contrast to PWAs which require developer
effort for creation (and potentially maintenance), Fawkes
transparently applies app-like templating to legacy pages.


