
Alohamora: Reviving HTTP/2 Push and Preload by Adapting Policies On the Fly
Nikhil Kansal*, Murali Ramanujam*, Ravi Netravali

UCLA

Abstract
Despite their promise, HTTP/2’s server push and preload

features have seen minimal adoption. The reason is that the
efficacy of a push/preload policy depends on subtle rela-
tionships between page content, browser state, device re-
sources, and network conditions—static policies that gener-
alize across environments remain elusive. We present Alo-
hamora, a system that uses Reinforcement Learning to learn
(and apply) the appropriate push/preload policy for a given
page load based on inputs characterizing the page structure
and execution environment. To ensure practical training de-
spite the large number of pages served by a site and the mas-
sive space of potential policies to consider for a given page,
Alohamora introduces several key innovations: a page clus-
tering strategy that favorably balances push/preload insight
extraction with the number of pages required for training,
and a faithful page load simulator that can evaluate a pol-
icy in several milliseconds (compared to 10s of seconds with
a real browser). Experiments across a wide range of pages
and mobile environments (emulation and real-world) reveal
that Alohamora accelerates page loads by 19-61%, provides
3.6-4× more benefits than recent push/preload systems, and
properly adapts to never degrade performance.

1 INTRODUCTION

Mobile web browsing has rapidly risen in popularity [15, 17,
51]. Given the importance of mobile web speeds for both
user satisfaction [6, 7, 19] and content provider revenue [18],
a vast array of optimizations have been developed [8, 30, 39,
40, 43, 54, 57, 61]. Yet page loads remain too slow for users
in practice, taking over 10 seconds to load even with state-
of-the-art mobile devices and LTE cellular networks [4, 54].

Recent studies have identified that a key culprit to slow
mobile page loads is the blocking network delays that arise
from the dependencies between a page’s objects [39, 54]. For
example, a browser may learn that it needs an image only af-
ter fetching and executing a JavaScript file, which is discov-
ered only after downloading and parsing the page’s top-level
HTML. Such dependency chains essentially serialize object
fetches, leading to high load times, particularly in mobile set-
tings where access link latencies tend to be high [23, 66].

The latest HTTP/2 standard [5] anticipated the negative
impact of network delays on web performance, and in re-
sponse, includes several relevant features. Most notable are
HTTP/2 push and preload. With push, servers can proac-
tively send objects to clients in anticipation of future re-
quests; requests for already-pushed objects can be satisfied

* These authors contributed equally to this work.

locally at the client, avoiding blocking network fetches. In
contrast, with preload, servers can notify clients of objects
that they will soon require (potentially from other domains)
by listing those URLs in HTTP headers. Clients issue re-
quests for those objects immediately after parsing HTTP
headers, and without evaluating response bodies, thereby
parallelizing network and computation tasks [54].

Unfortunately, despite their promise, developing perfor-
mant push/preload policies has proven to be challenging,
leading to low adoption rates. For example, we find that only
5% of the Alexa top 500 pages [3] include a domain that uses
push or preload; this drops to 0.9% for the Alexa top 10,000
pages. A major reason is that the performance of a given
push/preload policy depends on the subtle, low-level inter-
actions between page content, browser (cache) state and ex-
ecution dependencies, client device and network resources,
and QoE goals [53, 60, 69, 70]. Consequently, even for a
given page, we find that using a policy outside of the execu-
tion environment for which it was designed can either forego
significant (18-31%) performance benefits or degrade perfor-
mance by up to 20% compared to a default page load (§2).

These results preclude the use of the static policies and
guidelines promoted by prior push/preload systems [53, 54,
70], and instead highlight the need for dynamic, adaptive
policies that explicitly target the environments in which they
are deployed. For example, the aggressive push/preload poli-
cies that effectively utilize resources in high-bandwidth set-
tings must be shrunk or dispersed across a page load as link
rates drop to avoid potential network contention that slows
the downloads of blocking resources. Similarly, as device
CPU speeds decrease, policies should grow in size to take
advantage of the (increased) blocking compute delays that
leave the network idle.

We present Alohamora, a system that learns and applies
the appropriate push/preload policies for different pages and
execution environments (Figure 1). Alohamora represents its
policy generation logic as an expressive neural network that
is trained offline using Reinforcement Learning (RL); we list
the benefits of using RL in §3. During a client page load,
Alohamora’s model takes as input a set of features that sum-
marize the client’s execution environment (network, CPU,
cache contents), and structural information about the page
at hand, and outputs a push/preload policy intended to op-
timize QoE for the current load. Importantly, Alohamora
does not require new browser features, and involves minimal
server changes: servers provide structural information about
their pages (which content management systems commonly
track [14, 30, 67]), and Alohamora’s policy generation runs
transparently on a co-located frontend server.

observation
about

environment

bandwidth latency cpu cache

page load
simulator

push/preload
policy agent

neural network

push/preload
action

reward

preload a

push b

push c

push d

annotated page
dependency graph

push/preload
policy

push b with x

page load time

dependency graph
generation (offline)

Alohamora

1. Bandwidth
2. Latency
3. CPU
4. Cache

GET /

client info

response according to
push/preload policy

dependency
graph cache

push/preload
policy

web server

Alohamora co-located with web server

HTTP
messages

Figure 1: Alohamora trains (left) its push/preload policy generation model using Reinforcement Learning, exploring a large search
space of environments and policies, and learning from the resulting (simulated) performance. During client page loads (right), for
each origin, Alohamora collects the required inference inputs from client browsers (using existing features) and servers which track
changes to their page dependency graphs; the generated policies are applied transparently for the remainder of the page load.

Realizing Alohamora’s data-driven approach to HTTP/2
push/preload policy generation requires overcoming two key
practical challenges with respect to training efficiency:

• Generalizing across pages (§4): websites commonly
serve thousands of pages, and it is impractical to in-
corporate each into the training process. However, fail-
ing to incorporate different pages during training may
hide push/preload insights, and result in poorly general-
izable models. To overcome this, Alohamora leverages
our observation that even though sites serve thousands
of URLs, their pages typically cover a far smaller num-
ber of page structures. The key idea is that these shared
structural properties typically dictate the efficacy of dif-
ferent push/preload strategies. Thus, Alohamora needs not
train on multiple pages with the same structural properties,
as those would contribute similar push/preload insights.
More specifically, push/preload benefits are dictated by
resource utilization during the load process, which in turn
can be characterized by 1) browser and inter-object depen-
dencies, and 2) the overheads imposed by tasks involving
the network and CPU. By extracting this structural infor-
mation from a site’s pages and clustering pages accord-
ingly, we find that Alohamora is able to strike a desirable
balance between the number of pages required for training
and model generalizability.

• Simulating page loads (§5): Alohamora’s training in-
volves testing different push/preload policies in diverse
environments. However, the large number of potential en-
vironments and push/preload policies per page (exponen-
tial in terms of object count), coupled with the high mobile
load times described above, make this approach far too
slow. For example, even for a single environment, explor-
ing the thousands of potential policies for nytimes.com
would require 30 days on a powerful desktop machine. To
handle this, Alohamora introduces a novel page load sim-
ulator which faithfully (errors of 0.4-2.2%) predicts the
performance of a policy 3-4 orders of magnitude faster
than running a real browser; for context, this cuts training
time to 20 minutes for nytimes.com. To the best of our

knowledge, Alohamora’s simulator is the first to faithfully
predict page load performance across metrics and environ-
mental conditions, without requiring costly profiles [68] or
emulation [60] for each environment. The key insight is in
judiciously extracting invariants about the page load pro-
cess and superimposing variable resource constraints by
simulating browser-environment interactions; invariants
(e.g., page/browser dependencies) are collected via a sin-
gle profiling run with a real browser, while variable prop-
erties about the target environment and push/preload pol-
icy are taken as input. The simulator is general enough to
support other optimizations that modulate network/com-
pute delays [2, 40, 43, 57] or scheduling policies [8, 39].

We evaluated Alohamora using more than 500 web pages,
and a wide range of mobile networks, client devices, and
cache conditions. Our experiments, both emulation and real-
world, reveal that Alohamora reduces page load time and
Speed Index by 19-61% and 15-48%, respectively, compared
to a default page load (i.e., no push/preload) and standard
push/preload-all policy. In addition, Alohamora marginally
(0.9-1.7×) outperforms WatchTower [43], a recent proxy-
based accelerator, and delivers 3.6-4× more benefits than
Vroom [54], a state-of-the-art push/preload system. Impor-
tantly, whereas Vroom slows down 24-34% of page loads,
Alohamora properly adapts to never degrade performance.
Source code and experimental data for Alohamora are avail-
able at https://github.com/nkansal96/alohamora.

2 BACKGROUND AND MOTIVATION

We begin with an overview of HTTP/2 (§2.1), and then
present measurements that illustrate the potential benefits
and challenges with HTTP/2 push and preload (§2.2).

2.1 HTTP/2 Overview
HTTP/2 [5] alters the traditional HTTP/1.1 page load process
primarily by adding the following new features:

• Request multiplexing: With HTTP/1.1, browsers can
open and reuse multiple concurrent TCP connections per
origin. In contrast, HTTP/2 permits only a single con-

2 4 6
PLT (s)

0.00

0.25

0.50

0.75

1.00
CD

F

Push/preload
No Policy

(a) 24 Mbps, 20 ms, cold, 1×

2 4 6
PLT (s)

0.00

0.25

0.50

0.75

1.00

CD
F

Push/preload
No Policy

(b) 12 Mbps, 100 ms, cold, 2×

2 4 6
Speed Index (s)

0.00

0.25

0.50

0.75

1.00

CD
F

Push/preload
No Policy

(c) 12 Mbps, 100 ms, cold, 1×
Figure 2: Push/preload benefits when policies are explicitly tuned to the deployment environment’s available resources. Environments
are listed as {bandwidth, latency, cache setting, CPU slowdown}. Results are shown for either Page Load Time (PLT) or Speed Index.

nection per origin, and allows browsers to multiplex re-
quests onto that connection as parallel streams. Unlike
HTTP/1.1 pipelining, HTTP/2’s multiplexing permits out-
of-request-order delivery to avoid head of line blocking.
HTTP/2 also mandates the use of TLS (and thus, HTTPS).

• Server push: Unlike HTTP/1.1 servers which only serve
objects in response to explicit client requests, HTTP/2
servers can push objects that they own in anticipation of
future requests. Servers have flexibility in defining a push
policy, which specifies the mapping between objects that
are explicitly requested and the set of files pushed along
with them. Pushed objects are usable for the duration of
the current page load, regardless of the associated HTTP
caching headers. Note that pushed objects that are already
in the browser’s cache imply wasted network bandwidth.

• Preload: HTTP/2 also carried over HTTP/1.1’s preload
feature, which enables servers to list URLs to fetch di-
rectly in HTTP Link headers. Upon parsing such Link
headers (i.e., before parsing the response body), browsers
will immediately issue requests for the listed URLs; re-
sponses are not evaluated until the objects are referenced
by the page. Thus, like push, preload enables servers to
help browsers pre-warm their caches rather than rely-
ing on object execution to discover downstream objects.
However, preload differs from push in that: 1) requests
are client-driven and still involve network delays to ori-
gin servers, 2) the risk of re-downloading cached ob-
jects is eliminated since preload requests pass through the
browser cache, and 3) servers can specify to preload third-
party objects, not just objects that they own.

• Stream prioritization: HTTP/2 offers a mechanism with
which both clients and servers can explicitly specify how
parallel request streams on a single TCP connection share
network and server-side processing resources. In particu-
lar, endpoints can annotate each request with a single in-
teger that denotes its target share of the resources.

In this paper, we focus on the HTTP/2 push and preload
features because they are configured by servers, i.e., Alo-
hamora’s target deployment location. In contrast, stream pri-
orities are usually specified by browsers [11, 64], and yield
limited benefits [31]. We note that push/preload policies ex-
hibit a notion of prioritization that we do consider: “push
A+B with C” and “push B+A with C” are different policies.

2.2 Limitations of Static Push/Preload Policies
Push/preload policies have been widely studied, yielding
mixed performance results [16, 53, 54, 60, 70]. The key rea-
son is that the performance of a policy depends on numer-
ous page and environmental properties. To better understand
the relationships between these properties and push/preload
policies, we performed a study involving 50 random pages
from the Alexa top 500 US sites [3]. Our results use the
same methodology and environmental parameters (network,
device CPU, cache, QoE metrics) described in §6.1.

For each environment and page combination, we selected
the best policy using a brute force search. Since the num-
ber of potential policies for a page scales exponentially with
the number of objects (which regularly exceeds 100), a com-
plete brute force search across environments is impractical.
Instead, to ensure practicality and sufficient coverage, we
weighted object types based on their potential for block-
ing the client-side page load (i.e., JS = CSS > image >
font) [39, 59]. To generate a policy, we randomly selected
the number N of objects to push/preload, and then sampled
the object types N times according to their relative priorities
(picking randomly within each type). Finally, we randomly
selected the fraction of objects to mark as push vs. preload,
and for each object, we randomly selected an earlier object
in the load to push/preload from. Using this approach, for
each page, we generated 200 policies and picked the one that
delivered the largest improvements.

Takeaway 1: Push/preload has potential. For each envi-
ronment and page pair, we compared the best push/preload
policy (selected explicitly for that pair) to a default page
load (i.e., no push/preload). Figure 2 shows representative re-
sults for several settings. As shown, when selected explicitly
based on the environment, push/preload policies are able to
provide significant speedups. For instance, in the {24 Mbps,
20 ms RTT, cold cache, 1x CPU slowdown} setting, median
(95th percentile) page load time benefits are 18% (44%).

Takeaway 2: Push/preload policies do not generalize well.
Despite the potential benefits, our results also highlight that
push/preload policies quickly degrade in performance when
run outside of the precise environments for which they were
tuned. To evaluate this, we performed multiple experiments
in which we started with a fixed environment, and selectively
modulated each environmental factor while keeping the oth-

Metric CPU Cache Latency Bwidth Loss
0

2

4

6

8

Qo
E

M
et

ric
 (s

ec
on

ds
)

Best Policy No Push/Preload X-Applied Policy

Figure 3: Push/preload performance degrades as the environ-
ment changes. The base configuration was {12 Mbps, 100 ms,
cold cache, 1x CPU, PLT}; each cluster modulates only one fac-
tor. “Best Policy” was tuned to each setting, and “X-Applied”
applies the base configuration’s best policy to each setting. Bars
show medians, with error bars spanning 25-75th percentiles.

ers fixed. In each resulting environment, we compared the
performance of 1) the best policy for the fixed environment,
2) the best policy for the resulting environment, and 3) no
push/preload. Figure 3 depicts our results for one fixed envi-
ronment; we omit results for others due to space constraints,
but note that the trends persist. These results illustrate two
significant drawbacks to using push/preload policies across
environments. First, they leave significant (18.4-30.7%) per-
formance gains on the table compared to policies designed
explicitly for the deployment setting. Second, and worse,
they can degrade performance compared to a default page
load. For instance, performance degrades by 6% (20%) at the
median (95th percentile) when device CPU speeds change.
These slowdowns are even more pronounced when multiple
environmental factors are modified in parallel.

Summary: Collectively, our results suggest that, to realize
the significant performance potential of push/preload, poli-
cies must be designed to explicitly consider page properties
and characteristics of the target deployment environment.

3 DESIGN OVERVIEW

Figure 1 shows the high-level design of Alohamora’s offline
training and online (i.e., during client page loads) inference
phases. In this section, we will describe the workflow for
each task in the context of a single web page. We present ex-
tensions to ensure practical training via cross-page general-
ization (§4) and page simulation (§5) in subsequent sections.

3.1 Offline Training

Why RL? Alohamora represents its push/preload policy
generator as a neural network that is trained using Reinforce-
ment Learning (RL) [32]. RL offers several advantages in
this setting compared to more standard, supervised learning
approaches. Most notably, the search space of push/preload
policies is massive (exponential in terms of the number of
objects in a page, which regularly exceeds 100), and it is
impractical to generate a labeled training dataset that incor-
porates all of the fruitful push/preload policies for a page.

RL overcomes this by using an efficient exploration strategy,
whereby experience of prior tested policies is used to dynam-
ically guide the traversal through the large search space.

Training with Reinforcement Learning involves learning
from a large number of experiments and generally operates
as follows. A learning agent interacts with an environment,
and at each step, the agent observes some state in the en-
vironment, performs an action, and receives a reward from
the environment. The overall goal of the learning agent is
to maximize the cumulative (discounted) reward that it re-
ceives from the environment. In our case, the environment
is a mobile page load setting, i.e., a combination of a de-
vice, network, and browser cache. The training process is
structured as a series of episodes, each of which consid-
ers a single page and environment, and evaluates a running
push/preload policy (starting with an empty one) that is in-
crementally modified to include an additional action. An ac-
tion is a push/preload decision for a single object. We de-
scribe each component in more detail below.
Action/Action space: The action space lists the set of possi-
ble push/preload decisions for all objects in a page. Each ac-
tion is represented as a six-tuple (type, domain, push ob ject,
push ancestor, preload ob ject, preload ancestor). type
lists the action to perform (push, preload, nothing);
domain represents the domain whose objects to con-
sider if the action is “push” (“preload” can consider
objects from any domain); push ob ject/preload ob ject
and push ancestor/preload ancestor list the object to
push/preload and the object to do so with, respectively. Note
that objects are identified by ID numbers here, not precise
URLs, because URLs can vary on short time scales [8]; IDs
are converted into URLs during inference (§3.2).
Episode: At the start of an episode, Alohamora first selects
a random operating environment by picking values for the
average network bandwidth, latency, and loss rate, as well
as the mobile device CPU speed, and browser cache set-
tings (time since the last load of the page, which in turn dic-
tates cache contents [41]). Because the space of each value
is continuous and thus infinitely large, we discretize each
into bins that are sized according to prior work [43] and
our own empirical analysis of the impact that changes to
each factor have on push/preload performance. In particular,
we group network bandwidth/latency/loss rate to the nearest
5Mbps/10ms/0.5%, and CPU speed to the nearest 1× slow-
down relative to a baseline. This lets us consider far fewer
environments without sacrificing model generalizability.

In addition to the environment specification, the agent is
given access to an annotated dependency graph for the page
(Figure 5). Traditional web dependency graphs [8, 39, 43,
59] are directed acyclic graphs with a node per page ob-
ject, and edges that represent initiator relationships (i.e., a
parent’s computation triggered the fetch of a child). We add
annotations (§5.1 details how annotations are made) which
list, for each object, information about its 1) size, 2) com-

putation delays, 3) content type (e.g., HTML), 4) ordering
(timing) relative to both all other page objects and only those
objects belonging to the same domain, 5) cache status, and
6) candidacy for push/preload. Candidacy reflects the fact
that only recurring objects in a page should be considered
for push/preload, in order to reduce the potential for wasting
bandwidth; we determine candidacy in the same way as prior
work [54], by loading the page several times and extracting a
stable list of URLs. Collectively, the operating environment
and annotated dependency graph represent the observable
state that the agent can glean from the environment.

Throughout an episode, the agent selects actions accord-
ing to a probability distribution over the potential space of
6-tuples (i.e., the action space described above). The proba-
bility distribution function starts as uniform, but is dynam-
ically updated based on the agent’s experiences. More for-
mally, the agent uses a policy gradient method [33] in which
it estimates the gradient of the expected total reward for each
possible new action—the agent selects the action predicted
to deliver the highest reward. For each new action that is
added to the running push/preload policy, the updated pol-
icy is evaluated in the environment to obtain a reward that is
fed back to the agent along with the observable state.

Each episode ends when the agent either chooses an action
of type “nothing,” repeats an action to push/preload an object
that is already represented in the running policy, or selects an
invalid (i.e., disallowed) action, e.g., pushing across domains
or preloading an ancestor object. Regardless of which reason
ends an episode, upon completion, Alohamora automatically
assigns a reward of 0 to signal to the agent that the terminal
policy is not one to consider. The policies learned for each
episode are ultimately aggregated to generate Alohamora’s
overall push/preload policy generation model. We note that
training can be configured to adhere to a preset bandwidth
cap for pushed objects, i.e., we can end an episode if a policy
that pushes an undesirably high number of bytes arises.

Reward function: Structuring the reward function requires
careful thought because each action in an episode is not en-
tirely independent. Thus, rather than simply using the page
load metric of choice, we structured our reward function to
take into account the relative improvement or degradation
(on the metric of choice) per action, giving a boost in reward
as the agent discovers a set of actions that leads to a new
global (i.e., within an episode) minimum. More formally, we
define the reward for the ith action in an episode as:

Ri(Pi,Pi−1,Pbest) =

k1
Pi

Pi < Pbest
k2Pi−1

Pi
Pi < Pi−1

−k2Pi
Pi−1

Pi > Pi−1

where Pi, Pi−1, and Pbest are the raw values for the target
QoE metric for the current, previous, and best-so-far policies
in the episode, respectively. k1 and k2 are constants, where
k1 >> k2. The idea is to give a positive (negative) reward pro-

portional to an improvement (regression) in QoE. We note
that the reward function is compatible with any QoE metric
that denotes improved performance with lower values. We
consider different reward structures in §6.5.

Implementation: Alohamora trains its models with
Ray [36], using the RLLib [26] and Tune [27] libraries.
Each model is a recurrent neural network that consists of
2 densely-connected layers with 256 units and the tanh
activation function, followed by an LSTM with cell size 256.
As shown in §6.5, LSTMs are helpful given the sequential
nature of each episode: they prevent the agent from infinitely
deferring its reward and always choosing longer policies
over shorter ones. Training stops after 150 iterations, or if
the standard deviation in the past 50 rewards is less than 5%
of the last one (whichever comes first).

Our implementation uses the latest A3C [33] algorithm,
but is compatible with others [34, 65]. As reported in prior
work, A3C may incur high convergence times when net-
work conditions or reward signals exhibit high variance dur-
ing training [29]. Alohamora’s training process sidesteps this
in two ways. First, in addition to reducing training times,
Alohamora’s page load simulator eliminates noise in the ob-
served reward signal. Second, Alohamora trains on deter-
ministic emulated networks (including time-varying links)
using Mahimahi [44], so network characteristics are un-
changed within each training episode.

3.2 Online Inference
At runtime, Alohamora introduces a frontend server (or re-
verse proxy) that is colocated with the existing server for
a domain (Figure 1); colocating ensures that end-to-end
HTTPS security is preserved. All client requests first hit the
Alohamora server, whose goals are to 1) collect the informa-
tion required to query its policy generation model, 2) query
the model, and 3) apply the suggested policy to the current
load. Each origin in a page independently runs Alohamora to
generate its own policy; training explores a sufficient num-
ber of policies to enable an origin to hedge against the set
of policies that other origins may employ. We present results
for partial deployment scenarios in §6.

Data collection for inference: The information required to
query the policy generation model matches the observable
state from training, i.e., network bandwidth, latency, loss
rate, CPU speed, cache status, and annotated dependency
graph. Alohamora collects the required network, device,
and cache information through its interactions with clients,
and the annotated dependency graphs directly from origin
servers. Importantly, all data collection involving clients
leverages existing interfaces that modern browsers already
expose. In other words, Alohamora does not require any new
browser features, and instead only needs certain pre-existing
features to be enabled.

To extract network latencies, Alohamora’s server analyzes
the SYN/SYN-ACK time during the client’s initial connec-

tion setup. Further, summaries of the client’s cache are col-
lected using either the latest cache manifest standards [46],
or a server-based cookie which logs the time since the user’s
last load of the page [12]. We note that caching information is
collected on a per-domain basis in order to preserve existing
web privacy guarantees, i.e., a domain only learns about the
cached objects that it owns. CPU speeds are set based on the
HTTP User-Agent header that denotes the client device [37].
Lastly, average network bandwidth and loss information are
collected using browser user experience reports [9].

Alohamora also requires an up-to-date dependency graph
to determine the precise URLs to push/preload according to
the generated policy. Alohamora relies on origin web servers
to collect and share updated dependency graphs offline [30],
as those servers are the first to be aware of page changes.
In particular, content management systems [14, 67] support
hooks that fire any time a page-altering change is pushed,
e.g., for A/B testing. Alohamora adds a transparent hook to
collect up-to-date dependency graphs, which requires only a
lightweight (headless) load of the largely local page [40, 43].

Applying push/preload policies: Upon receiving a client re-
quest for a page, Alohamora’s server queries its model to
generate a push/preload policy that directly targets the cur-
rent load. The resulting policy is a listing of object IDs to
push/preload, and the corresponding ancestors. Alohamora
then uses the latest dependency graph to translate IDs to pre-
cise URLs (according to positions in the dependency graph).
Finally, to enforce the policy, the Alohamora server issues
local HTTP(S) requests (mimicking client HTTP headers) to
the colocated origin server, which responds with the up-to-
date objects. Alohamora then applies the policy to the re-
turned object headers throughout the rest of the page load.

4 GENERALIZING ACROSS PAGES

In practice, sites commonly serve thousands of different
pages. Unfortunately, incorporating each page into the train-
ing process would be far too slow and resource intensive.
Consequently, Alohamora faces a tricky tradeoff: train on
only a few of a site’s pages and achieve efficient training at
the risk of omitting pages that warrant unique push/preload
strategies, or train on many of a site’s pages to develop gen-
eralizable policies at the expense of high training overheads.

Alohamora addresses this tradeoff by leveraging the ob-
servation that, even though sites serve thousands of different
pages, those pages typically cover a small number of page
structures, e.g., because they are automatically generated us-
ing a fixed set of templates, and thus share styles, JavaScript
libraries, etc. [30, 48]. For example, news sites intuitively
comprise a main home page, category home pages, and sev-
eral classes of article pages. The key idea here (validated be-
low) is that these shared structural properties typically dictate
the efficacy of different push/preload strategies, and thus, we
need not train on multiple pages that are structurally similar.

The primary challenge with leveraging this insight is in

determining precisely which pages in a site are necessary
to consider during training. Answering this implicitly re-
quires an understanding of what pages have sufficient struc-
tural similarity from the perspective of the push/preload poli-
cies that they warrant. In other words, how should we repre-
sent and compare pages to determine structural similarity?
Our goal is for representations to be coarse enough to avoid
deeming all pages as structurally different (which would
eliminate savings in training efficiency), but also detailed
enough to capture structural differences that affect policies.

4.1 Clustering by Page Structure
We observe that the efficacy of a push/preload policy de-
pends on the utilization of network and client device re-
sources throughout the page load process. Building off of
this, the primary determinants of resource utilization are 1)
browser- and page-imposed dependencies [38, 39, 59], e.g.,
JavaScript execution blocking HTML parsing, and 2) the du-
ration and overhead of different page load tasks involving the
network or CPU. To capture all of these factors and identify
page structures that warrant similar policies, Alohamora uses
the annotated dependency graphs described in §3. Recall
that the structure of these dependency graphs captures inter-
object dependencies and constraints on request scheduling,
while the per-object annotations characterize network and
CPU overheads of fetch and execution tasks.

Given these dependency graphs (or trees) for each page
that we hope to accelerate for a site, Alohamora defines the
distance between two page’s trees Ti and Tj as the tree edit
distance between them; we use the state-of-the-art APTED
algorithm [50]. The cost of inserting/deleting a node is set to
1, and the cost of each change to any part of a node’s label
(content type, size, execution time, etc.) is set to 0.25, i.e, la-
bel alterations are equally weighted such that changes to all
labels are equivalent to a node insertion/deletion. To avoid
incorporating label edits that minimally impact push/preload
strategies, Alohamora deems objects that have sizes or exe-
cution times within δ% of each other as equivalent; we use
δ = 25% but find the precise value to have little impact as
node insertions/deletions dominate difference values.

After computing the distances between each pair of
trees, we construct a distance matrix D where Di, j =
distance(Ti,Tj). With this, Alohamora can run any clus-
tering algorithm that operates on non-Euclidean distance
functions—we use agglomerative clustering [63]—to group
pages that are structurally similar from a push/preload per-
spective. During clustering, we minimize the average dis-
tance between the pages in a cluster while permitting islands
(a cluster of size 1); we sweep a range for the target number
of clusters, and choose the lowest one which, if increased,
does not result in a new island. From there, Alohamora only
considers a single (random) page per cluster for training.

Handling page changes: Recall that origin servers track
changes to their page dependency graphs and share those

graphs with Alohamora’s runtime server (§3). A natural
question is how to determine when a change to a page’s de-
pendency graph is substantial enough to deem Alohamora’s
model suboptimal (for that page) and prompt a retrain? To
answer this, upon receiving a graph from an origin server,
Alohamora re-clusters by computing the pair-wise distances
between the new graph and graphs for all pages used in
training. If the new clustering results remain stable such that
the new graph falls into an existing cluster, then Alohamora
needs not retrain. On the other hand, if the new page forms an
island, then Alohamora will automatically trigger a re-train.
During re-training, Alohamora will still use its model to ser-
vice pages whose graphs have not substantially changed.

Prior work has shown that page dependency graphs remain
structurally similar over long time scales (e.g., weeks), with
only the precise URLs changing over short periods [8, 39,
43]. Thus, we expect retraining with Alohamora to be infre-
quent in practice. For example, we verified that the clustering
results from Figure 4 are unchanged across 2 weeks.

4.2 Evaluations
We performed case studies on 100 randomly selected sites in
the Alexa top 500 US list [3]. For each site, we ran a monkey
crawler [1] that generated a list of 300 URLs by perform-
ing random interactions (e.g., clicks) starting from the site’s
landing page. From this set of URLs, we selected 30 pages
that covered the logical clusters that we perceived for the
page, e.g., articles vs. home page vs. user profile pages. For
each of the 30 pages, we generated the corresponding an-
notated dependency graph, computed the pair-wise tree edit
distances to all other pages, and performed the clustering de-
scribed above. The generated clusters largely matched our
high-level clustering intuition, e.g., for The Atlantic’s
website, there exists a cluster for the home page (1), articles
(21), category pages (5), and user profile pages (3).

We evaluated our clustering strategy for each site as fol-
lows. We first ran a brute force search (§2.2) to find the best
push/preload policy for each of the site’s considered pages.
We then applied each page’s best policy to all of the other
pages for the site, including those in the same cluster, and
those in other clusters. In each case, we measured the frac-
tion of potential push/preload benefits that a page x’s best
policy achieved for another page y (as compared to the im-
provements delivered by y’s best policy). In the event that a
referenced object was missing for a page, we removed the
corresponding action from the policy; this was rare as poli-
cies are based on fetch order IDs, not precise URLs.

Figure 4 lists our results for one environment; we note that
the trends held for the other environments in §6.1. As shown,
we find that push/preload policies are able to generalize well
within a cluster, but not across clusters for a given page. In
particular, at the median, policies that are generated and ap-
plied to the pages within a cluster achieve 89.6% of the po-
tential push/preload benefits; this number drops to 36.3% for

25 0 25 50 75 100
% of potential benefits achieved

0.00
0.25
0.50
0.75
1.00

CD
F

Intra-cluster
Inter-cluster

Figure 4: Policies generalize well within (but not across) Alo-
hamora’s clusters. Results are for the {24 Mbps, 20 ms, 2×CPU
slowdown, PLT} setting, and consider 100 sites, with 30 pages
each. For each site, we applied each page’s best policy to all
other pages, and measured the % of potential benefits achieved.

policies that are applied across clusters. §A.2 shows results
for two representative pages, and also presents end-to-end re-
sults for Alohamora’s policies given this clustering strategy.

5 PAGE LOAD SIMULATOR

Even for a single page, training is impractical due to the large
number of policies and environments, and the slowness of
mobile page loads. To accelerate training (§3), Alohamora
uses a novel page load simulator that, given an annotated de-
pendency graph for a page, a target execution environment,
and a push/preload policy as input, outputs an estimated QoE
(e.g., PLT, SI) value. Unlike prior simulators (§A.1), Alo-
hamora’s is able to faithfully predict load performance (with
any policy) across metrics and environments, without requir-
ing costly profiles [68] or emulation [60] per environment—
this is critical for Alohamora’s training as loading pages in
each environment would forego most simulation speedups.
We will start by describing our simulator’s operation in the
context of cold cache loads, no push/preload, and PLT, and
then relax those assumptions in §5.4 and §A.1. We note that
Alohamora’s simulator focuses on HTTP/2 page loads.

5.1 Collecting Simulator Inputs
The first step in the simulation process is to profile a load
of the target page to extract information characterizing prop-
erties dictated by page composition [39] or browser depen-
dencies [38, 59]. These properties do not describe the operat-
ing environment (which we will simulate), but instead dictate
how page load tasks should share the simulated resources.

To extract such information, Alohamora records the target
page with a record-and-replay tool [44], and replays the page
over an unshaped local network with desktop-level CPU re-
sources. During replay, Alohamora extracts an annotated de-
pendency graph (Figure 5) that matches the ones used in §3
and §4.1. In particular, the graph structure captures the inter-
object ordering and dependency constraints, and we add ad-
ditional annotations that characterize each object’s size, exe-
cution time, content type, etc. To aid simulation, we further
break down an object’s network and compute delays into:

1
HTML

2
CSS

3
JS

4
IMG

5
IMG

6
IMG

Delayed

2 3 4
Downloading

Downloaded

1

Delayed

4
Downloading

32
Downloaded

1

Delayed

5 6
Downloading

4
Downloaded

1 2 3

Delayed

Downloading

65
Downloaded

1 2 3 4

Object Size
Execution Time
Request Delay
Server Proc Delay

Figure 5: Operation of Alohamora’s page load simulator. The simulator operates in steps, as objects flow through these three queues,
incurring blocking (e.g., connection setup, inter-object dependencies), network, and compute delays, respectively. Once an object is
executed, its children are added to the top (as delayed) to simulate the browser discovering those dependencies.

• execution time: time spent parsing, executing, or render-
ing the object with the well-provisioned CPU; this does
not include the time to execute any referenced objects.

• request delay: the amount of time between when the ob-
ject’s parent has finished downloading, and when the ob-
ject’s request is issued; this embeds the parsing/execution
delays of the parent, as well as any synchronous process-
ing delays for objects referenced earlier in the parent’s ex-
ecution, e.g., a blocking external <script>.

• server-processing delay: server-side delay in generating
and serving the response; we extract this information di-
rectly from web record-and-replay frameworks [30, 44].

In addition to this dependency graph, Alohamora’s simu-
lator also takes as input an environmental specification, list-
ing the average network bandwidth, latency, and loss rate
(Mbps, ms, %), device CPU speed (slowdown compared to
profiling CPU speed), and browser cache contents.

5.2 Simulating the Execution Environment
In order to enforce the specified network and CPU values
on all page load tasks, Alohamora’s simulator uses a new
Request Queue abstraction. Here, we describe how the Re-
quest Queue operates on objects passed into it; we will then
describe how objects get added to the Request Queue.

At any time, the Request Queue keeps track of three types
of objects using three subqueues: delayed, downloading, and
downloaded. Delayed objects are those that have been dis-
covered by the browser, but whose downloads are currently
blocked, e.g., due to connection setup delays or the ob-
ject’s request delay; downloading objects are currently be-
ing fetched over the network; downloaded objects have been
fetched and are currently being evaluated (or awaiting evalu-
ation). At a high level, the Request Queue operates in steps,
whereby objects flow through these queues, and once exe-
cuted, children are added to the top (as delayed) to simulate
the browser discovering those dependencies. In order to de-
termine how long an object stays in each queue, the Request
Queue models the interaction between the browser and envi-
ronment, with respect to network and CPU usage.

Enforcing latency/loss overheads: In order to compute the
number of round trips required to download an object, the
Request Queue considers two factors. First, if the object is

the first to be downloaded from a given domain, the Request
Queue adds 2 RTTs to account for the TLS handshake that
HTTP/2 mandates. Second, the Request Queue estimates the
number of round trips required for the TCP-level data trans-
fer by (approximately) keeping track of TCP window state
for each connection (assuming cubic) and assuming that con-
current objects fairly share the window. More specifically,
it assumes an initial congestion window of 10 [22], addi-
tively increases the window as bytes are downloaded, and
halves the window on each idle RTO (200 ms) or probabilis-
tic packet loss. Note that these round trip counts are com-
puted when an object is added to the Request Queue, and are
thus approximate since currently downloading objects may
complete prior to the new object moving to downloading.

Enforcing bandwidth overheads: Across all concurrently
downloading objects, the Request Queue must enforce an
appropriate split of the specified network bandwidth. The
simulator treats the bandwidth specification (either average
bandwidth or a packet delivery trace [44]) as characterizing
the access link, which is commonly the bottleneck in wire-
less networks [66] and is shared by all origins’ connections.
By default, the Request Queue assumes that outstanding re-
quests fairly share the available bandwidth, thereby disre-
garding discrepancies in cross-connection window state.

Enforcing CPU overheads: The Request Queue modulates
the execution delay and request delay for each object by mul-
tiplying by the magnitude of the CPU slowdown factor. The
simulator ignores CPU core counts, and instead focuses on
clock speeds, which have been shown to be the main fac-
tor affecting browser performance [10]. To support parallel
iframe execution, the Request Queue subtracts out execution
times from concurrently delayed objects across frames.

Request Queue operation: The Request Queue proceeds
in discrete “steps”. In each, the Request Queue inspects the
lists of downloaded, downloading, and delayed objects, and
finds the object(s) that are scheduled to either finish execu-
tion first, finish downloading first (fewest bytes remaining),
or transition to downloading soonest, respectively. Each step
is clocked by the duration t until those object events com-
plete. After computing t, the Request Queue will subtract t
from the execution delays of all downloaded objects, subtract
the number of bytes that can be downloaded in t from all cur-

rently downloading objects, and subtract t from the blocking
delays for all currently delayed objects. It will then move
all delayed objects whose blocking delays have expired to
the downloading queue, and mark all objects that complete
downloading as downloaded. We discuss how downloaded
objects affect subsequent resource discovery next.

5.3 Simulating Page Loads
Starting from the root node in the dependency graph (i.e., the
top-level HTML), each time an object is marked as down-
loaded by the Request Queue, the simulator immediately
adds all of that object’s direct children as delayed to the
Request Queue, simulating the browser’s discovery of those
objects. In other words, each child of the completed object is
scheduled in a one-step look-ahead process, resulting in a de-
pendency graph traversal that is breadth-first across each ob-
ject’s children, but not necessarily across siblings with differ-
ent parents (Figure 5). Note that, after its children are added
to the Request Queue, the parent object remains in the down-
loaded queue until its execution delay expires; in parallel,
each child incurs its own request delay which characterizes
the offset in the parent’s execution until it is discovered.

This simple approach closely mimics the browser graph
traversal strategy [39, 59], but with one issue: execution
dependencies between an object’s children. For instance,
consider a simple scenario in which the top-level HTML
includes two adjacent HTML <script> tags that refer-
ence files S1 and S2, both of which have children. Because
browsers are unaware of the potential state dependencies be-
tween these two JavaScript files, upon discovering the first
<script> tag, HTML parsing would halt and trigger a
synchronous (i.e., blocking) fetch and execution of S1 [39].
This has several implications on dependency graph traversal,
which Alohamora’s simulator must account for:

• during a real load, the children of a parent may not be
scheduled in a single burst. The simulator accounts for this
by including an object’s request delay (which accounts for
inter-children blocking delays) in the duration that the Re-
quest Queue marks it as delayed (§5.2).

• even with the enforced request delay, it is possible for
the Request Queue to mark S2 as downloaded before S1,
e.g., if S2 is far smaller and the simulated network is
bandwidth-constrained. This could result in cascading dis-
crepancies in graph traversal since S1’s children should be
handled before S2’s. To handle this, the simulator also ex-
poses the Request Queue to IDs listing the object fetch
orders logged in the profiled load. These IDs inherently
follow the order in which browsers require, or are blocked
on, specific objects. With this information, the Request
Queue treats downloaded objects as a priority queue, sig-
naling object completion to the graph traversal component
only once the next required object (i.e., the lowest incom-
plete ID) is complete. Asynchronously-fetched objects are
returned after their closest synchronous neighbors.

20 10 0 10 20
% Difference

0.0

0.5

1.0

CD
F Unshaped

16Mbps/50ms
16Mbps/50ms/Warm
T-Mobile LTE Trace

Figure 6: Faithfulness of the Alohamora simulator’s predicted
PLT compared to measurements from a real browser.

We note that, despite these strategies, the simulator’s de-
pendency graph traversal still faces potential inaccuracy in
the fact that objects involving a blocking dependency, such as
S1 and S2 in the above example, may download concurrently
and share network resources. However, the simulator bounds
the cascading effects of these inaccuracies on the page load
process by ensuring that the ordering of downstream object
discovery faithfully mimics that of a real browser.

Measuring PLT: As downloaded objects complete execu-
tion in the Request Queue, they are marked with a comple-
tion time relative to the start of the page load. PLT is the
maximum object completion time [42]. In §A.1, we discuss
how other metrics such as Speed Index are measured.

5.4 Simulating Push/Preload Policies
To support push/preload, when an object is being added to
the Request Queue, the simulator also schedules the corre-
sponding objects to push and preload along with that object
(as per the input policy). The objects added for push/preload
largely share the blocking delays of the ancestor since
push/preload objects cannot begin downloading until the an-
cestor does. In particular, the Request Queue imposes the an-
cestor’s request delay, but alters the remaining delays in two
ways: 1) their server-side processing delays are preserved
(and not adopted from the ancestor), and 2) preload objects
incur an additional network RTT to account for the down-
load of the ancestor’s response HTTP headers (0.5 RTT) and
transmission of the preloaded object’s request (0.5 RTT).

Once scheduled, the key challenge is in determining how
pushed/preloaded objects affect the delays from the profiled
load; this delta could be positive or negative due to, e.g.,
bandwidth contention. To understand this, once the simu-
lator hits a pushed/preloaded object, it determines how the
object’s download progress compares (or will compare) to
the case when the object was not pushed/preloaded. This
is done by simulating the load without that object being
pushed/preloaded, and comparing the resulting delays. Note
that, if the pushed/preloaded object is blocking, delays for
downstream siblings are edited to reflect the observed deltas.

5.5 Evaluations
We evaluated our simulator by comparing to a real browser
on two metrics: fidelity in predicted performance and overall
runtime. We follow the same setup as described in §6.1.

Median 95th Percentile
Alohamora’s simulator 4.7 22

Unshaped 1347 3815
24Mbps/20ms/2x CPU 5936 16683
12Mbps/60ms/4x CPU 9631 27765

Table 1: Per-page runtimes (ms) of Alohamora’s simulator (top
row) and a real browser in different execution environments.

Fidelity: Figure 6 shows that Alohamora’s simulator reports
highly faithful load times compared to a real browser. For ex-
ample, in an environment with no network or CPU shaping
and a cold browser cache, the simulator’s reported load times
were within 0.4% and 4.3% of the real browser, at the me-
dian and 95th percentile, respectively. Median discrepancies
marginally increase to 1.4%, 1.7%, and 2.2% as fixed-rate
(16 Mbps, 50 ms link) and time-varying (T-Mobile LTE) net-
work shaping, and caching are incrementally added; we note
that the errors for all other tested environments are within 4%
of these numbers. Further, the low error rates persist when
evaluating push/preload policies (§A.1).

Runtime: As shown in Table 1, Alohamora’s simulator eval-
uates page loads 3-4 orders of magnitude faster than real
browsers, with the discrepancies growing as the target envi-
ronment becomes more resource-constrained. §A.1 describes
how simulation times vary with policy length. For context,
these runtime savings enable Alohamora to reduce the train-
ing time for a page from 10s of days to just 10s of minutes.

6 EVALUATION

6.1 Methodology
To create a reproducible test environment and cover a wide
range of environments, our evaluation mainly involves emu-
lation using the Mahimahi record-and-replay tool [44]; we
present real-world experiments in §6.4. Our main corpus
comprised the Alexa top 500 US landing pages [3], but we
also used non-landing and less popular pages in §A.2. We
recorded versions of each page at multiple times to mimic
different warm cache scenarios: back to back loads, and
loads separated by 4, 12, and 24 hours. Mobile-optimized
(including AMP [21]) pages were used when available. Ex-
periments used Google Chrome for Android (v72).

Our emulation evaluation considered a broad range of
network bandwidths (6-48 Mbps, as well as Verizon and
AT&T LTE traces [44]), latencies (0-100 ms), loss rates
(0.5-5%), and client device conditions (CPU slowdowns of
1-4×, relative to a desktop with an Intel Xeon Gold 5220
CPU @ 2.20GHz). Network emulation was performed using
Mahimahi [44], and CPU constraints were enforced using
Chrome’s Devtools Protocol [13]. Unless otherwise noted,
Alohamora generated a single policy generation model per
page that covered the aforementioned conditions; results for
Alohamora’s cross-page models based on clustering (§4) are
shown in §6.6. Further, in accordance with §3, dependency
graphs for inference were made just prior to the experiments.

We compared Alohamora to default page loads (i.e., no
push/preload) and two standard push/preload strategies: 1)
the push/preload all strategy where, on the first incoming
request, each origin pushes all static resources that it owns,
and preloads all referenced static third-party resources, and
2) the push/preload all JavaScript strategy which operates
in the same manner but only considers JavaScript objects
that (unlike images) may trigger subsequent object fetches.
With both strategies, push/preload order matches the order
in which objects are referenced by a page. Our analysis, de-
scribed in §A.2, revealed that push/preload all consistently
delivers larger speedups than push/preload all JavaScript.
Thus, for brevity, we only present results comparing Alo-
hamora with push/preload all.

Our evaluation considers two performance metrics: page
load time (PLT) measured as the time between the
navigationStart and onload events, and Speed In-
dex (SI) (measured with pwmetrics [24]) which captures the
time needed to fully render the initial viewport. Due to space
constraints, we present results for select settings, but note
that presented trends persist in all tested scenarios. For all
results, domains make push/preload decisions independently
with Alohamora, and objects can only be pushed within a
given domain, e.g., google.com cannot push an image be-
longing to g.static (which Google owns).

6.2 Page Load Speedups

Cold cache: Figure 7 illustrates Alohamora’s ability to ac-
celerate cold cache page loads across four representative
settings. For example, in a {24 Mbps, 20 ms, 1× CPU
slowdown, 0% loss} environment, median (95th percentile)
PLT improvements with Alohamora were 24% (61%); the
push/preload all strategy achieved only -0.2% (22%) im-
provements. Alohamora’s benefits persist as network and
CPU conditions change, although the generated policies
vary: benefits are 19% (45%) when conditions degrade to
{18 Mbps, 60 ms, 4× CPU slowdown, 0% loss}, 22% (57%)
when 1% loss is introduced, and 14% (60%) over a time-
varying Verizon LTE trace (not shown). Figure 7 also shows
that Alohamora provides substantial SI benefits, ranging
from 15-19% and 36-48% at the median and 95th percentile.
Importantly, across all settings, Alohamora’s push/preload
policies never degraded performance compared to a default
page load. This is in stark contrast to the static push/preload
all policy, which slowed down 40% of pages by up to 22%.

Warm cache: Figure 8 shows that, across a wide range
of warm cache browsing scenarios, Alohamora accelerates
page loads compared to both a default page load and a static
push/preload all strategy. For instance, for back-to-back (i.e.,
perfectly warm-cache) page loads, median PLT improve-
ments are 0.9 s and 0.4 s for Alohamora and the push/preload
all strategy, respectively. These relative improvements per-
sist (12-18%) as the time between page loads increases.

0 25 50 75
% Improvement

0.0

0.5

1.0

CD
F Push/Preload All (PLT)

Push/Preload All (SI)
Alohamora (SI)
Alohamora (PLT)

(a) 12 Mbps, 100 ms, 2×, 0%

0 25 50 75
% Improvement

0.0

0.5

1.0

CD
F

Push/Preload All (PLT)
Push/Preload All (SI)
Alohamora (SI)
Alohamora (PLT)

(b) 24 Mbps, 20 ms, 1×, 0%

0 25 50 75
% Improvement

0.0

0.5

1.0

CD
F Push/Preload All (PLT)

Push/Preload All (SI)
Alohamora (SI)
Alohamora (PLT)

(c) 18 Mbps, 60 ms, 4×, 0%

0 25 50 75
% Improvement

0.0

0.5

1.0

CD
F

Push/Preload All (PLT)
Push/Preload All (SI)
Alohamora (SI)
Alohamora (PLT)

(d) 18 Mbps, 60 ms, 4×, 1%
Figure 7: Load time (PLT and SI) improvements over a default page load for a static push/preload all strategy, and Alohamora.
Environments are listed as {bandwidth, latency, CPU slowdown, loss rate}. Results used cold browser caches.

Back-to-Back 4 hours 12 hours 24 hours
0

2

4

6

8

PL
T

(s
ec

on
ds

)

No Push/Preload Push/Preload All Alohamora

Figure 8: Load times in different warm cache scenarios; “No
push/preload” is a default page load. Bars represent medians,
with errors bars spanning 25-75th percentiles. Results are for
the {12 Mbps, 100 ms, 2×, 0%} setting.

6.3 Comparison to State-of-the-Art
We compared Alohamora with two recent mobile web ac-
celerators, Vroom [54] and WatchTower [43]. Vroom im-
proves upon the push/preload all policy by using a client-
side scheduler to integrate priorities into the ordering of
pushed/preloaded objects. In contrast, WatchTower selec-
tively uses proxies (per origin) that fetch objects on behalf
of clients using fast wired networks. Client-origin-proxy la-
tencies were set as if proxies were run on Amazon EC2 in
California, and WatchTower ran in HTTPS-sharding mode.

As shown in Figure 9, Alohamora outperforms Vroom on
both PLT and SI. For example, in a {12 Mbps, 100 ms, 2×
CPU slowdown, 0%, PLT} environment, benefits with Alo-
hamora are 3.6× and 1.4× higher than Vroom’s at the me-
dian and 95th percentile, respectively. The main reason for
this discrepancy is that, even though Vroom adds dynamism
to push/preload in the form of priority-based scheduling,
Vroom remains too constrained to adapt to diverse execution
environments. In particular, the set of objects to push/preload
are static and match the push/preload all approach. This is
partly evidenced by the fact that Vroom still harms a large
fraction of page loads, e.g., 34% in the {24 Mbps, 20 ms, 1×
CPU slowdown, SI} setting. In contrast, Alohamora can vary
all aspects of the push/preload policy (objects, orderings,
etc.) to best cater to the target setting, and never harm per-
formance. Figure 9 also shows that Alohamora marginally
outperforms WatchTower (0.9-1.7× more median benefits)
without requiring per-origin proxy servers.

6.4 Real-World Experiments
We also evaluated Alohamora in the wild, using the same
500-page corpus from §6.1, live Verizon LTE and residential

0 25 50 75
% Improvement

0.0

0.5

1.0

CD
F Vroom

Watchtower
Alohamora

(a) 12Mbps, 100ms, 2×, 0%, PLT

25 0 25 50 75
% Improvement

0.0

0.5

1.0

CD
F Vroom

Watchtower
Alohamora

(b) 24 Mbps, 20 ms, 1×, 0%, SI
Figure 9: Comparison with Vroom [54] and WatchTower [43].

Cellular LTE WiFi
10

0

10

20

30

40

50

60

%
 im

pr
ov

em
en

t Nexus + Alohamora
Nexus + Vroom

Galaxy + Alohamora
Galaxy + Vroom

Figure 10: PLT improvements over a default page load with
Alohamora and Vroom, in the wild. Results used cold caches.

WiFi networks, and 2 mobile phones: a Nexus 6 (Android
Nougat; 2.7 GHz quad core processor; 3 GB RAM) and a
Galaxy Note 8 (Android Oreo, 2.4 GHz octa core; 6 GB
RAM). To apply Alohamora’s policies without relying on
origin web server modifications, our setup uses an NGINX
reverse proxy server [45]. The proxy was run on a c4.large
Amazon EC2 instance in California, which had a median la-
tency of 11 ms to the origin web servers in our corpus.1

Immediately prior to the experiment, the proxy down-
loaded the dependency graph for each page, and all of the
static objects in the graph that are candidates for pushing.
The proxy also housed Alohamora’s learned model for each
page. At runtime, all requests from the mobile device were
forwarded to the proxy via DNS rules; even with a single
proxy, browsers still opened a separate connection per origin
server since connection setup decisions are based on domain
name (not IP address). Upon receiving the first request per
origin in a page, the proxy generated and applied a policy (for
that origin), pushing cached resources and rewriting HTTP
headers to reflect preload decisions. The proxy could also
apply Vroom’s policies or forward requests to origin servers.

As shown in Figure 10, median PLT improvements were
2.3-11× higher with Alohamora than Vroom; SI results fol-
lowed the same trend, but were elided for space. Figure 10

1These proxy-to-origin latencies present a pessimistic setting, since Alo-
hamora is designed to run directly on origin web servers.

Reward LSTM BW CPU Latency Loss
C1 66 (97) 61 (93) 49 (93) 48 (90) 57 (94) 59 (91)
C2 69 (97) 65 (95) 58 (95) 54 (94) 59 (92) 62 (92)

Table 2: Impact of removing features/properties in Alo-
hamora’s model. Results are reported as median (95th per-
centile) percentage of potential PLT improvements (compared
to Alohamora’s full model). “Reward” considers the intuitive
−PLT reward function. C1 and C2 are the {12 Mbps, 100 ms,
2×, 0%} and {24 Mbps, 20 ms, 1×, 1%} settings, respectively.

also illustrates Alohamora’s ability to properly adapt to con-
ditions in the wild: whereas Vroom harms performance for
up to 43% of pages, Alohamora always sped up loads.

6.5 Understanding Alohamora’s Benefits

Ablation study: To understand the relative impact of each of
Alohamora’s features and model properties, we performed
an ablation study (Table 2). Our results reveal that band-
width, latency, CPU, and loss information all play signif-
icant roles in Alohamora’s ability to generate performant
push/preload policies, with the removal of CPU inputs result-
ing in the largest median degradations (46-52%). Our results
also highlight the importance of Alohamora’s reward func-
tion and incorporation of LSTM. For instance, (intuitively)
setting the reward to −PLT leads to performance degrada-
tions of around 30% because it becomes easy for the agent to
artificially inflate the observed reward by selecting policies
with fewer actions, i.e., the earlier policies in an episode will
be favored as the cumulative reward will be lower. Remov-
ing LSTM, on the other hand, led to degradations of ∼35%,
largely due to the lack of a discount factor that guides the
agent to avoid unnecessarily favoring longer policies (§3).

Alohamora’s policies: To understand the learned insights
behind Alohamora’s benefits, we analyzed its generated
push/preload policies. Admittedly, we observe that policy
composition and the mix between push/preload varied dra-
matically across pages and resource settings; indeed, subtle
interactions between these properties were a primary motiva-
tor for Alohamora’s machine learning-based approach. How-
ever, we note the following common principles:

• In lower bandwidth settings, Alohamora either 1) reduced
the policy length or cut data-intensive objects, or more
commonly, 2) spread the same set of pushed/preloaded ob-
jects out across a larger set of parents in order to stagger
downloads and reduce bandwidth contention.

• With slower CPUs, Alohamora’s policies are careful to
only push objects whose bytes could be downloaded until
the next blocking JavaScript file is required; the goal is to
prevent downstream CPU tasks from blocking on the net-
work. In these cases, Alohamora’s policies preloaded ad-
ditional resources with the goal of having their downloads
start (after the 0.5 RTT to contact the server) only after the
next blocking resource was downloaded. In essence, the

idea is to perfectly interleave downloads of non-blocking
resources with the execution of blocking resources.

• For image-heavy sites (e.g., pinterest.com), Alo-
hamora commonly excluded JavaScript/CSS files from its
policies, and instead pushed/preloaded images that are
rendered towards the top of the viewport, particularly in
high-bandwidth settings or when SI is the target metric.
The reason is that these pages have flat (not deep) de-
pendency graphs, so blocking JavaScript files do not trig-
ger cascaded serial network fetches; instead, image down-
loads have a larger blocking impact on load times.

We leave a more detailed analysis of Alohamora’s generated
policies, and an exploration into whether those policies could
be converted into fixed general heuristics, to future work.
Unnecessary data usage: A well-documented risk with
HTTP/2 push is in having servers push objects that are not
needed by or already cached at the client browser [43, 54].
Alohamora avoids this issue in two ways: browser cache con-
tents are explicitly considered during policy generation, and
only resources that consistently appear in a page are consid-
ered for push/preload (§3.1). Consequently, we observe that
Alohamora’s policies do not waste any bandwidth, i.e., all
pushed/preloaded objects are used in the targeted page load.
Training times: Training an Alohamora model for the me-
dian page in our corpus required 76 iterations and took a total
of 19.4 minutes to reach convergence using an Amazon EC2
c5.18xlarge instance. This translates to a monetary cost
of $0.62. We note that training costs are incurred offline and
infrequently: Alohamora must retrain only when a new or
modified page falls outside of the previous cross-page clus-
ters, which we observe occurs on the order of weeks (§4.1).
Inference times: Alohamora’s policy generation adds negli-
gible delays to overall load times: median (95th percentile)
inference times are 11 ms (40 ms), respectively.

6.6 Additional Results
We briefly summarize our remaining experiments here due
to space constraints, and defer details to the §A.2.
Incremental deployment: We ran experiments to under-
stand how benefits vary with different adoption rates. We
found that benefits (unsurprisingly) increase as more do-
mains adopt Alohamora, but simply having the top-level ori-
gin can achieve 56% of the potential median benefits.
Cross-page clustering: We performed an end-to-end eval-
uation of Alohamora’s clustering strategy (§4) by training a
model for each of the 100 sites in Figure 4, using only a sin-
gle page per cluster. These models achieve 85-90% of the
improvements achieved when training on pages individually.
Other pages, input errors, and energy savings: Alo-
hamora’s benefits persist (and in fact, increase) for interior
pages and less popular sites, are robust to errors in network
or device measurements, and yield per-page mobile device
energy reductions of 16-23%.

7 RELATED WORK

We discuss the most closely related work here, and present
additional related work in §A.3.

Server push systems: Numerous studies have explored the
performance of HTTP/2 (formerly SPDY), both with and
without server push and preload [16, 20, 53, 54, 60, 70].
Like us, these works have found mixed performance bene-
fits due to the subtle relationships between HTTP/2 and net-
work characteristics, page composition, and TCP semantics.
However, these prior efforts have all investigated and pro-
moted static policies and configuration guidelines. In con-
trast, Alohamora leverages a data-driven approach to dynam-
ically tune push/preload policies by explicitly factoring in
both page composition and the target execution environment.

Mobile-optimized pages: Certain systems, most notably
Prophecy [40], automatically rewrite web pages and return
post-processed versions of objects to clients that reduce
client compute and network costs. Unlike Prophecy, Alo-
hamora does not alter page content, which has proven to be
error-prone in practice [2]. Further, Alohamora can acceler-
ate Prophecy pages which require at least one HTML file per
frame, and unmodified image and style files—these are the
static files which Alohamora targets for push/preload.

Proxy-based accelerators: Compression proxies [2, 47, 55,
58] compress objects in-flight between clients and servers,
while remote dependency resolution proxies [43, 44, 56, 57]
perform certain object fetches and computations on behalf
of clients. Though performant, such acceleration proxies vi-
olate the end-to-end security guarantees of HTTPS. Watch-
Tower [43] addresses this dilemma, but at a significant de-
ployment cost, as each origin in a page must operate its own
proxy. Alohamora avoids such security concerns by relying
only on end-to-end HTTP/2 optimizations.

Dependency-aware scheduling: Klotski [8] analyzes pages
offline to identify high-priority objects, and uses knowledge
of network bandwidth and page structure to stream them to
clients before they are needed. Klotski’s dynamic prioriti-
zation hinges on global knowledge of object fetches, which
proxies provide at the cost of security; in contrast, Alo-
hamora origins operate independently and hedge against the
decisions that other origins may make. Polaris [39] uses a
client-side scheduler that reorders requests to minimize se-
rial round trips without violating dependencies. However,
unlike Alohamora, Polaris relies on clients to discover page
resources, and thus cannot eliminate certain serial fetches.

8 CONCLUSION

Configuring HTTP/2 push/preload policies has proven chal-
lenging, as benefits depend on complex interactions between
dynamic page, network, device, and browser properties. This
paper presents Alohamora, a mobile web optimization sys-
tem that dynamically generates HTTP/2 push/preload poli-
cies using Reinforcement Learning. To ensure practicality,

Alohamora introduces novel techniques that drastically re-
duce the number of pages to consider for training, and the
cost of training any one page—these benefits come without
a drop in model generalizability. Across a broad range of set-
tings, we find that Alohamora outperforms default loads and
recent push systems by 19-61% and 3.6-4×, respectively.

Acknowledgements. We thank Harsha Madhyastha, Vaspol
Ruamviboonsuk, and Anirudh Sivaraman for their valuable
feedback on earlier drafts of this paper. We also thank
our shepherd, Aruna Balasubramanian, and the anonymous
NSDI reviewers for their constructive comments. This work
was supported in part by NSF grant CNS-1943621.

REFERENCES

[1] SeleniumHQ Browser Automation. https://selenium.
dev/, 2019.

[2] V. Agababov, M. Buettner, V. Chudnovsky, M. Co-
gan, B. Greenstein, S. McDaniel, M. Piatek, C. Scott,
M. Welsh, and B. Yin. Flywheel: Google’s Data
Compression Proxy for the Mobile Web. NSDI ’15.
USENIX, 2015.

[3] Alexa. Top Sites in the United States. http://www.
alexa.com/topsites/countries/US, 2018.

[4] D. An. Find out how you stack up to new in-
dustry benchmarks for mobile page speed. https :
/ / www. thinkwithgoogle . com / marketing - resources /
data-measurement/mobile-page-speed-new-industry-
benchmarks/, 2018.

[5] M. Belshe, M. Thomson, and R. Peon. Hypertext trans-
fer protocol version 2 (HTTP/2). 2015.

[6] N. Bhatti, A. Bouch, and A. Kuchinsky. Integrating
User-perceived Quality into Web Server Design. World
Wide Web Conference on Computer Networks : The
International Journal of Computer and Telecommuni-
cations Networking, 2000.

[7] A. Bouch, A. Kuchinsky, and N. Bhatti. Quality is in
the Eye of the Beholder: Meeting Users’ Requirements
for Internet Quality of Service. CHI, The Hague, The
Netherlands, 2000. ACM.

[8] M. Butkiewicz, D. Wang, Z. Wu, H. Madhyastha, and
V. Sekar. Klotski: Reprioritizing Web Content to Im-
prove User Experience on Mobile Devices. In Proceed-
ings of the 12th USENIX Conference on Networked
Systems Design and Implementation, NSDI. USENIX
Association, 2015.

[9] G. Chrome. Chrome User Experience Report.
[10] M. Dasari, S. Vargas, A. Bhattacharya, A. Balasubra-

manian, S. R. Das, and M. Ferdman. Impact of Device
Performance on Mobile Internet QoE. In Proceedings
of the Internet Measurement Conference 2018, IMC
’18, pages 1–7. ACM, 2018.

[11] A. Davies. HTTP/2: Discover the Performance Impacts
of Effective Prioritization. https://developer.akamai.

com/blog/2019/01/31/http2- discover- performance-
impacts-effective-prioritization, 2019.

[12] DeNA Co., Ltd. H2O Cache-Aware Push. https://h2o.
examp1e.net/configure/http2 directives.html, 2019.

[13] G. Developers. Chrome DevTools. https://developers.
google.com/web/tools/chrome-devtools/.

[14] Drupal. Drupal - Open Source CMS. https://www.
drupal.org/, 2019.

[15] E. Enge. MOBILE VS. DESKTOP USAGE IN
2019. https://www.perficientdigital.com/insights/our-
research/mobile-vs-desktop-usage-study, 2019.

[16] J. Erman, V. Gopalakrishnan, R. Jana, and K. K.
Ramakrishnan. Towards a SPDY’Ier Mobile Web?
IEEE/ACM Trans. Netw., 23(6):2010–2023, Dec. 2015.

[17] D. Etherington. Mobile internet use passes desktop
for the first time, study finds. https://techcrunch.com/
2016/11/01/mobile- internet-use-passes-desktop-for-
the-first-time-study-finds/, 2016.

[18] T. Everts and T. Kadlec. WPO stats. https://wpostats.
com/, 2019.

[19] D. F. Galletta, R. Henry, S. McCoy, and P. Polak. Web
Site Delays: How Tolerant are Users? Journal of the
Association for Information Systems, 2004.

[20] U. Goel, M. Steiner, M. P. Wittie, M. Flack, and
S. Ludin. Http/2 performance in cellular networks:
Poster. In Proceedings of the 22Nd Annual Interna-
tional Conference on Mobile Computing and Network-
ing, MobiCom ’16, pages 433–434. ACM, 2016.

[21] Google. Accelerated Mobile Pages Project – AMP.
https://www.ampproject.org/.

[22] S. Ha, I. Rhee, and L. Xu. Cubic: a new tcp-friendly
high-speed tcp variant. ACM SIGOPS operating sys-
tems review, 42(5):64–74, 2008.

[23] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and
O. Spatscheck. A close examination of performance
and power characteristics of 4g lte networks. In Pro-
ceedings of the 10th International Conference on Mo-
bile Systems, Applications, and Services, MobiSys ’12,
pages 225–238, New York, NY, USA, 2012. ACM.

[24] P. Irish. pwmetrics: Progressive web metrics. https:
//github.com/paulirish/pwmetrics, 2019.

[25] B. Jun, F. E. Bustamante, S. Y. Whang, and Z. S.
Bischof. AMP up your Mobile Web Experience: Char-
acterizing the Impact of Google’s Accelerated Mobile
Project. In Proceedings of the 25th Annual Interna-
tional Conference on Mobile Computing and Network-
ing, MobiCom. ACM, 2019.

[26] E. Liang, R. Liaw, P. Moritz, R. Nishihara, R. Fox,
K. Goldberg, J. E. Gonzalez, M. I. Jordan, and I. Sto-
ica. Rllib: Abstractions for distributed reinforcement
learning. arXiv preprint arXiv:1712.09381, 2017.

[27] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gon-
zalez, and I. Stoica. Tune: A research platform for dis-
tributed model selection and training. arXiv preprint

arXiv:1807.05118, 2018.
[28] D. Lymberopoulos, O. Riva, K. Strauss, A. Mittal, and

A. Ntoulas. PocketWeb: Instant Web Browsing for
Mobile Devices. In Proceedings of the Seventeenth
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS XVII. ACM, 2012.

[29] H. Mao, S. B. Venkatakrishnan, M. Schwarzkopf, and
M. Alizadeh. Variance reduction for reinforcement
learning in input-driven environments. In International
Conference on Learning Representations, 2019.

[30] S. Mardani, M. Singh, and R. Netravali. Fawkes: Faster
Mobile Page Loads via App-Inspired Static Templat-
ing. In Proceedings of the 17th USENIX Conference on
Networked Systems Design and Implementation, NSDI,
Berkeley, CA, USA, 2020. USENIX Association.

[31] P. Meenan. HTTP/2 Prioritization. https://calendar.
perfplanet.com/2018/http2-prioritization/, 2018.

[32] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Harley,
T. P. Lillicrap, D. Silver, and K. Kavukcuoglu. Asyn-
chronous Methods for Deep Reinforcement Learning.
In Proceedings of the 33rd International Conference on
International Conference on Machine Learning - Vol-
ume 48, ICML’16, page 1928–1937. JMLR.org, 2016.

[33] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lilli-
crap, T. Harley, D. Silver, and K. Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In
International conference on machine learning, pages
1928–1937, 2016.

[34] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu,
J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature,
518(7540):529, 2015.

[35] Monsoon Solutions Inc. Power monitor software. http:
//msoon.github.io/powermonitor/, 2018.

[36] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw,
E. Liang, M. Elibol, Z. Yang, W. Paul, M. I. Jordan, and
I. Stoica. Ray: A Distributed Framework for Emerging
AI Applications. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Imple-
mentation, OSDI’18, pages 561–577. USENIX Asso-
ciation, 2018.

[37] U. Naseer and T. Benson. Configtron: Tackling
network diversity with heterogeneous configurations,
2019.

[38] J. Nejati and A. Balasubramanian. An In-depth Study
of Mobile Browser Performance. In Proceedings of
the 25th International Conference on World Wide Web,
WWW ’16, pages 1305–1315. International World
Wide Web Conferences Steering Committee, 2016.

[39] R. Netravali, A. Goyal, J. Mickens, and H. Balakrish-
nan. Polaris: Faster Page Loads Using Fine-grained
Dependency Tracking. In Proceedings of the 13th

USENIX Conference on Networked Systems Design
and Implementation, NSDI, Berkeley, CA, USA, 2016.
USENIX Association.

[40] R. Netravali and J. Mickens. Prophecy: Accelerating
Mobile Page Loads Using Final-state Write Logs. In
Proceedings of the 15th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI,
Berkeley, CA, USA, 2018. USENIX Association.

[41] R. Netravali and J. Mickens. Remote-Control Caching:
Proxy-based URL Rewriting to Decrease Mobile
Browsing Bandwidth. In Proceedings of the 19th
International Workshop on Mobile Computing Sys-
tems & Applications, HotMobile ’18, pages 63–68.
ACM, 2018.

[42] R. Netravali, V. Nathan, J. Mickens, and H. Balakrish-
nan. Vesper: Measuring Time-to-Interactivity for Web
Pages. In Proceedings of the 15th USENIX Confer-
ence on Networked Systems Design and Implementa-
tion, NSDI, Renton, WA, USA, 2018. USENIX Asso-
ciation.

[43] R. Netravali, A. Sivaraman, J. Mickens, and H. Balakr-
ishnan. WatchTower: Fast, Secure Mobile Page Loads
Using Remote Dependency Resolution. In Proceed-
ings of the 17th Annual International Conference on
Mobile Systems, Applications, and Services, MobiSys
’19, pages 430–443. ACM, 2019.

[44] R. Netravali, A. Sivaraman, K. Winstein, S. Das,
A. Goyal, J. Mickens, and H. Balakrishnan. Mahimahi:
Accurate Record-and-Replay for HTTP. Proceedings
of ATC ’15. USENIX, 2015.

[45] NGINX. NGINX Reverse Proxy. https://docs.nginx.
com/nginx/admin- guide/web- server/reverse- proxy/,
2019.

[46] K. Oku and Y. Weiss. Cache Digests for HTTP/2. https:
//httpwg.org/http-extensions/cache-digest.html, 2019.

[47] Opera. Opera Turbo. http://www.opera.com/turbo,
2018.

[48] Optimizely. Content Management System. https:
//www.optimizely.com/optimization-glossary/content-
management-system/, 2019.

[49] V. N. Padmanabhan and J. C. Mogul. Using Predic-
tive Prefetching to Improve World Wide Web Latency.
SIGCOMM Comput. Commun. Rev., 26(3):22–36, July
1996.

[50] M. Pawlik and N. Augsten. Efficient Computation of
the Tree Edit Distance. ACM Trans. Database Syst.,
40(1):3:1–3:40, Mar. 2015.

[51] C. Petrov. 52 Mobile vs. Desktop Usage Statistics For
2019 [Mobile’s Overtaking!]. https://techjury.net/stats-
about/mobile-vs-desktop-usage/, 2019.

[52] L. Ravindranath, S. Agarwal, J. Padhye, and
C. Riederer. give in to procrastination and stop
prefetching.

[53] S. Rosen, B. Han, S. Hao, Z. M. Mao, and F. Qian. Push

or Request: An Investigation of HTTP/2 Server Push
for Improving Mobile Performance. In Proceedings
of the 26th International Conference on World Wide
Web, WWW. International World Wide Web Confer-
ences Steering Committee, 2017.

[54] V. Ruamviboonsuk, R. Netravali, M. Uluyol, and H. V.
Madhyastha. Vroom: Accelerating the Mobile Web
with Server-Aided Dependency Resolution. In Pro-
ceedings of the Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM. ACM,
2017.

[55] S. Singh, H. V. Madhyastha, S. V. Krishnamurthy, and
R. Govindan. FlexiWeb: Network-Aware Compaction
for Accelerating Mobile Web Transfers. In Proceed-
ings of the 21st Annual International Conference on
Mobile Computing and Networking, MobiCom. ACM,
2015.

[56] A. Sivakumar, C. Jiang, S. Nam, P. Shankaranarayanan,
V. Gopalakrishnan, S. Rao, S. Sen, M. Thottethodi, and
T. Vijaykumar. Scalable Whittled Proxy Execution for
Low-Latency Web over Cellular Networks. In Proceed-
ings of the 23rd Annual International Conference on
Mobile Computing and Networking, Mobicom. ACM,
2017.

[57] A. Sivakumar, S. Puzhavakath Narayanan, V. Gopalakr-
ishnan, S. Lee, S. Rao, and S. Sen. Parcel: Proxy as-
sisted browsing in cellular networks for energy and la-
tency reduction. In Proceedings of the 10th ACM Inter-
national on Conference on Emerging Networking Ex-
periments and Technologies, CoNEXT ’14, pages 325–
336, New York, NY, USA, 2014. ACM.

[58] J. Volpe. Nokia Xpress brings cloud-based
compression to the Lumia line. Engadget.
https://www.engadget.com/2012/10/03/nokia-xpress-
brings-cloud-based-compression-to-the-lumia-line/,
October 3, 2012.

[59] X. S. Wang, A. Balasubramanian, A. Krishnamurthy,
and D. Wetherall. Demystifying Page Load Perfor-
mance with WProf. In Proceedings of the 10th USENIX
Conference on Networked Systems Design and Imple-
mentation, NSDI. USENIX Association, 2013.

[60] X. S. Wang, A. Balasubramanian, A. Krishnamurthy,
and D. Wetherall. How Speedy is SPDY? In Proceed-
ings of NSDI, NSDI’14, pages 387–399, Berkeley, CA,
USA, 2014. USENIX Association.

[61] X. S. Wang, A. Krishnamurthy, and D. Wetherall.
Speeding Up Web Page Loads with Shandian. In Pro-
ceedings of the 13th Usenix Conference on Networked
Systems Design and Implementation, NSDI. USENIX
Association, 2016.

[62] Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie. How
Far Can Client-only Solutions Go for Mobile Browser
Speed? In Proceedings of the 21st International Con-
ference on World Wide Web, WWW ’12. ACM, 2012.

[63] J. H. Ward Jr. Hierarchical grouping to optimize an
objective function. Journal of the American statistical
association, 58(301):236–244, 1963.

[64] M. Wijnants, R. Marx, P. Quax, and W. Lamotte.
HTTP/2 Prioritization and Its Impact on Web Perfor-
mance. In Proceedings of the 2018 World Wide Web
Conference, WWW ’18, pages 1755–1764, 2018.

[65] R. J. Williams. Simple statistical gradient-following al-
gorithms for connectionist reinforcement learning. Ma-
chine learning, 8(3-4):229–256, 1992.

[66] K. Winstein, A. Sivaraman, and H. Balakrishnan.
Stochastic Forecasts Achieve High Throughput and
Low Delay over Cellular Networks. In Proceedings
of the 10th USENIX Conference on Networked Systems
Design and Implementation, NSDI. USENIX Associa-
tion, 2013.

[67] WordPress. Blog Tool, Publishing Platform, and CMS

– WordPress. https://wordpress.org/, 2019.
[68] K. Zarifis, M. Holland, M. Jain, E. Katz-Bassett, and

R. Govindan. Modeling HTTP/2 speed from HTTP/1
traces. In International Conference on Passive and Ac-
tive Network Measurement, pages 233–247. Springer,
2016.

[69] T. Zimmermann and O. Hohlfeld. Skip to the arti-
cle Adoption, performance, and human perception of
HTTP/2 Server Push. https://blog.apnic.net/2018/04/
26/adoption-performance-and-human-perception-of-
http-2-server-push/, 2018.

[70] T. Zimmermann, B. Wolters, O. Hohlfeld, and
K. Wehrle. Is the Web ready for HTTP/2 Server
Push? In Proceedings of the 14th ACM International
on Conference on Emerging Networking Experiments
and Technologies, CoNEXT. ACM, 2018.

Length 0 1-9 10-19 20-29 30-39
Runtime 4.7 (22) 12 (73) 45 (189) 105 (348) 172 (546)

Table 3: Median (95th percentile) simulator runtimes in mil-
liseconds with varying push/preload policy length.

0 20 40 60 80 100
% Pairs Correct

0.0

0.5

1.0

CD
F

Unshaped
16Mbps/80ms

Figure 11: Alohamora’s simulator is able to correctly compare
push policy pairs (in terms of relative performance).

A APPENDIX

A.1 Additional Simulator Details
Additional performance metrics: We extended Alo-
hamora’s simulator to return the Speed Index and above-the-
fold time [42], which is the time-instant version of Speed
Index (§6.1). For this, during profiling, the simulator deter-
mines the positional information for each page component.
Note that this information is dictated by page content, and
can be parsed in relation to the target viewport size, i.e.,
we can collect positional coordinates for each page compo-
nent during the profiling load, and then determine the visible
content for any given viewport size [42]. With this informa-
tion, the simulator identifies the set of page objects that af-
fect the visual aspects of the target browser viewport, and
characterizes performance as the time when the last node in
the collected set completes its load. The simulator is also
amenable to other performance metrics. For instance, to eval-
uate Ready Index [42], the profiling step must measure the
fraction of the viewport that is visually or functionally af-
fected by each object’s execution; performance would be
progressively tracked as the weighted average between time
and each object’s fraction.
Warm cache page loads: In order to handle warm-cache
browsing scenarios, the simulator takes an additional input:
the list of resources that it should consider as cached, which
can be computed by analyzing HTTP headers according to
a desired warm cache timing, i.e., the time between the cold
and warm cache page load [41]. The simulator then oper-
ates as normal, but sets the network RTTs required to fetch
a cached resource, and the bytes that must be downloaded,
to 0; request delays for downstream children of blocking re-
source are also updated.
Simulator speed vs. push/preload policy length: Ta-
ble 3 shows that the simulator’s runtime does steadily in-
crease as the length of the push/preload policy under test
grows. The reason is that Alohamora’s approach to handling
push/preload policies requires re-simulations of the page a
number of times that is quadratic with the policy length. We
note, however, that the resulting runtimes are still several

orders of magnitude lower than default browsers, and Alo-
hamora rarely requires investigation of policies longer than
20 objects (§6).
Push/preload fidelity results: §5 presented results show-
ing the low error rates that Alohamora’s simulator achieves
for page loads that do not use push/preload policies. With
respect to push/preload policies, the key property required
for Alohamora’s training is to be able to determine which
of two policies results in superior performance. To evaluate
the simulator’s faithfulness for this, we generated 20 random
push/preload policies for each page in our corpus. For each
page, we counted the fraction of policy pairs for which the
simulator correctly predicted the relative performance (cor-
rectness was defined by a real browser). As shown in Fig-
ure 11, the simulator correctly reported the relative compar-
isons across pairs 90% of the time.
Comparison to prior simulators. Several recent works
have proposed web page load simulators and emulators. Here
we briefly describe these prior approaches, explain their lim-
itations for Alohamora’s training scenario, and contrast them
with the operation of Alohamora’s simulator.
• EPLOAD [60] controls the variability in the page load

process (for reproducible measurements) by profiling a
page load and recording fine-grained delays between
browser compute tasks (including dependencies captured
by WProf [59]). EPLOAD then replays the page load
process by replaying those blocking delays (via injected
sleeps), but making fetches over a live (controlled) net-
work. Thus, EPLOAD emulates the page load process,
running live network tasks and forcing compute delays
to match those from the profiled load. In contrast, Alo-
hamora simulates the entire page load process, by re-
specting the invariant dependencies enforced by a browser
and page content, as well as by modeling the interactions
between the browser and underlying environment. This
difference is critical to Alohamora’s simulation goals:
simulation enables Alohamora to evaluate push/preload
policies in a few milliseconds (rather than 10s of sec-
onds); EPLOAD’s emulation approach does not shrink
load times, and instead focuses on fine-grained repro-
ducibility. Consequently, EPLOAD would not be able to
accelerate training with Alohamora. Beyond this funda-
mental difference, Alohamora’s simulator also is able to
evaluate HTTP/2 push/preload policies, simulate a variety
of environmental factors (CPU speeds, etc.), and evaluate
performance on multiple performance metrics (e.g., Speed
Index)—EPLOAD lacks these features.

• RT-H2 [68] uses profiles of HTTP/1.1 page loads to es-
timate the predicted performance changes for the sce-
nario when those profiled loads were converted to using
HTTP/2. The system’s page load conversion model con-
siders how HTTP/2 features (e.g., request multiplexing)
affect the ordering of different page load tasks, as well as

25 0 25 50
% Improvement

0.0

0.5

1.0
CD

F
Push/Preload all JS (PLT)
Push/Preload all (PLT)
Push/Preload all JS (SI)
Push/Preload all (SI)

(a) 18 Mbps, 60 ms, 4×, 1%

20 0 20 40
% Improvement

0.0

0.5

1.0

CD
F

Push/Preload all JS (PLT)
Push/Preload all (PLT)
Push/Preload all JS (SI)
Push/Preload all (SI)

(b) 24 Mbps, 20 ms, 1×, 0%

Figure 12: Performance comparisons between two exist-
ing (standard) push/preload strategies: push/preload all and
push/preload all JavaScript (JS). Results are relative to default
page loads (i.e., no push/preload).

Top Level
Origin

10% 20% 50%
0

50

100

%
 B

en
ef

it
Ca

pt
ur

ed

Figure 13: Percentage of potential benefits achieved when X%
of origins in each page run Alohamora. Results are for the {12
Mbps, 100 ms, 2×} setting. Bars show medians, with error bars
spanning 25-75 percentiles.

the cascading effects that those changes have on underly-
ing network resources (e.g., TCP semantics). While simi-
lar to Alohamora’s simulator with respect to approximate
TCP modeling, the core limitation of RT-H2 (with respect
to Alohamora’s training) is that RT-H2 can only predict
the performance of HTTP/2 page loads within the exact
same settings as seen in the HTTP/1.1 profiles. In other
words, RT-H2 cannot use its profiles to predict HTTP/2
performance outside of the profiling environments. This is
problematic for Alohamora’s setting, as this implies that a
profile would have to be collected for every environment
considering during training—this would forfeit most of
the simulation benefits. Beyond this, unlike Alohamora,
RT-H2 does not consider different performance metrics,
compute resources, preload, or variable push policies.

A.2 Other Results
Comparison of existing push/preload strategies: In de-
termining a competitive performance baseline to compare
Alohamora with, we considered two standard push/preload

(static) heuristics: push/preload all and push/preload all
JavaScript. As noted in §6.1, these strategies solely differ in
the set of objects that they consider for push/preload. Using
the same experimental setup from Figure 7, we compared
these two strategies in terms of speedups that they provide
over a default page load. Figure 12 presents representative re-
sults. As shown, push/preload all provides roughly the same
(0-1% more) speedups as push/preload all JavaScript at the
median, and 5-17% larger speedups at the 95th percentile.
Incremental deployment: Since origins make independent
push/preload decisions with Alohamora, we ran experiments
to understand how Alohamora’s benefits vary with different
adoption rates. For each page in our corpus, we ordered the
domains in the page according to the fraction of objects that
they contribute. We then ran experiments where only the top
X% of origins used Alohamora; origins not running Alo-
hamora did not push/preload any objects. We also specifi-
cally considered the case where only the top-level origin de-
ployed Alohamora. As expected, Figure 13 reveals that ben-
efits increase as more domains adopt Alohamora. However,
simply having the top-level origin can achieve 56% of the
potential (i.e., with 100% adoption) median benefits.
Cross-page clustering: To this point, the presented results
considered Alohamora models that were trained for a sin-
gle page (across environments). In order to evaluate Alo-
hamora’s ability to train generalizable models across a site’s
pages, we consider the 100 sites presented in §4 (Figure 4).
For each site, we trained a single Alohamora model using
only a single (randomly selected) page from each cluster,
and evaluated across all of the site’s pages. Alohamora’s
cross-page models are able to achieve within 85-90% of the
improvements achieved when training individually on each
tested page; this slight degradation comes with the signifi-
cant benefit of improved training efficiency.
Robustness to input errors: To generate push/preload poli-
cies, Alohamora’s models ingest a variety of observations
that collectively characterize the execution environment.
While cache contents require zero approximation to collect,
network and CPU measurements can be noisy and hard to re-
port accurately. We evaluated Alohamora’s ability to deliver
speedups in the face of noisy inputs characterizing network
and CPU speeds by considering the following errors: average
bandwidth, latency, and loss errors of {1, 2, 3} Mbps, {10,
20, 30} ms, and {0.5, 1, 2}%, and CPU slowdown errors of
{1, 2, 4}×. We find that Alohamora’s generated policies are
largely robust to such errors. For instance, median PLT im-
provements dropped by only 3.4%, 4.6%, and 3.9% in the
{24 Mbps, 20 ms, 2× CPU slowdown} environment with
errors of 2 Mbps, 20 ms, and 1%, respectively. Similarly, a
CPU slowdown error of 1× resulted in only a 2.6% reduction
in PLT improvements.
Additional pages: In addition to the 500-page corpus that
we used for our primary experiments (§6.1), we also eval-

Cluster 1 Cluster 2 Cluster 3
Cluster 1 88% (91%) 50% (55%) 52% (59%)
Cluster 2 57% (52%) 94% (89%) 59% (55%)
Cluster 3 61% (56%) 49% (57%) 100% (93%)

Table 4: Evaluating Alohamora’s cross-page generalization ap-
proach. Results are for the {24 Mbps, 20 ms, 2× CPU slow-
down} setting, and 30 pages per site. Here we show results
for two representative pages that yielded 3 clusters each: NPR
(clusters with 19, 8, and 3 pages) and CNN (1, 17, and 12 pages).
For each cluster, we picked a random page and found its best
policy (via brute force search). We then applied that same pol-
icy to the other pages in the same cluster, and to pages in differ-
ent clusters. Results list the % of possible push/preload benefits
for the median page in each cluster, and are presented as CNN
(NPR). Takeaway: policies generalize well within clusters (blue
regions), but not across clusters (white regions).

uated Alohamora on two additional sets of sites: 1) 100 in-
terior pages that were collected using a monkey crawler [1]
that clicked links on each landing page in our primary cor-
pus, and 2) 100 less-popular landing pages that were ran-
domly selected from the Alexa top 10,000 list (excluding the
top 500). Using the same experimental setup described in
§6.1, we find that the previously reported trends persist, and
in fact, Alohamora’s benefits increase. For example, in the
{24 Mbps, 20 ms, 1× CPU slowdown, 0%} setting, median
PLT improvements with Alohamora were 26% and 27% for
the interior and less-popular corpora, respectively; for com-
parison, the push/preload all strategy achieved benefits of
only 3% and 5%. These results are consistent with the ob-
servations in prior work [40] that interior and less popular
pages are typically more complex, and involve longer serial
dependency chains that can be optimized.
Energy usage: To evaluate the impact that Alohamora has
on mobile device energy usage, we reused our real world

experimental setup (§6.4) and connected the Nexus 6 smart-
phone to a Monsoon power monitor [35]. Overall, we ob-
served that Alohamora reduces median per-page energy con-
sumption by 23% and 16% compared to a default page load,
on the LTE and WiFi networks, respectively. The savings
are higher in the LTE setting primarily due to the fact that
LTE radios consume more energy than WiFi hardware when
active [57]—the higher network latencies on LTE networks
lead to more significant load time reductions, which in turn
produce larger energy savings.
Clustering: Table 4 presents evaluation results for Alo-
hamora’s clustering strategy using two representative sites;
these results are a subset of those in Figure 4.

A.3 Additional Related Work

Mobile-optimized pages: Certain sites cater to mobile set-
tings by serving pages that involve less client-side computa-
tion, fewer bytes, and fewer network fetches. For example,
Google AMP [21, 25] is a recent mobile web standard that
requires developers to rewrite pages using restricted forms
of HTML, JavaScript, and CSS. Unlike AMP, Alohamora
accelerates legacy pages without developer effort. Further,
Alohamora’s adaptive push/preload policies can improve the
performance of AMP pages because all page resources still
must traverse a client’s slow mobile access link.
Prefetching: Prefetching systems predict user browsing be-
havior and optimistically download objects prior to user page
loads [28, 49, 62]. Unfortunately, such systems have wit-
nessed minimal adoption due to challenges in predicting
what pages a user will load and when; inaccurate page and
timing predictions can waste device resources or result in
stale page content [52]. In contrast, Alohamora generates
push/preload policies only after a user navigates to a page,
and considers the environmental conditions and page prop-
erties collected in situ.

