
This paper is included in the Proceedings of the
16th USENIX Symposium on Operating Systems

Design and Implementation.
July 11–13, 2022 • Carlsbad, CA, USA

978-1-939133-28-1

Open access to the Proceedings of the
16th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

Orca: A Distributed Serving System for
Transformer-Based Generative Models

Gyeong-In Yu and Joo Seong Jeong, Seoul National University;
Geon-Woo Kim, FriendliAI and Seoul National University; Soojeong Kim, FriendliAI;

Byung-Gon Chun, FriendliAI and Seoul National University
https://www.usenix.org/conference/osdi22/presentation/yu

ORCA: A Distributed Serving System for
Transformer-Based Generative Models

Gyeong-In Yu
Seoul National University

Joo Seong Jeong
Seoul National University

Geon-Woo Kim
FriendliAI

Seoul National University

Soojeong Kim
FriendliAI

Byung-Gon Chun∗

FriendliAI
Seoul National University

Abstract
Large-scale Transformer-based models trained for generation
tasks (e.g., GPT-3) have recently attracted huge interest, em-
phasizing the need for system support for serving models in
this family. Since these models generate a next token in an au-
toregressive manner, one has to run the model multiple times
to process an inference request where each iteration of the
model generates a single output token for the request. How-
ever, existing systems for inference serving do not perform
well on this type of workload that has a multi-iteration char-
acteristic, due to their inflexible scheduling mechanism that
cannot change the current batch of requests being processed;
requests that have finished earlier than other requests in a
batch cannot return to the client, while newly arrived requests
have to wait until the current batch completely finishes.

In this paper, we propose iteration-level scheduling, a new
scheduling mechanism that schedules execution at the gran-
ularity of iteration (instead of request) where the scheduler
invokes the execution engine to run only a single iteration of
the model on the batch. In addition, to apply batching and
iteration-level scheduling to a Transformer model at the same
time, we suggest selective batching, which applies batching
only to a selected set of operations. Based on these two tech-
niques, we have implemented a distributed serving system
called ORCA, with additional designs for scalability to models
with hundreds of billions of parameters. Our evaluation on a
GPT-3 175B model shows that ORCA can significantly out-
perform NVIDIA FasterTransformer in terms of both latency
and throughput: 36.9× throughput improvement at the same
level of latency.

1 Introduction

Language generation tasks are becoming increasingly
paramount to many types of applications, such as chatbot [9,
52], summarization [41,45,54], code generation [13], and cap-
tion generation [65,66]. Moreover, recent works published by

∗Corresponding author.

AI21 Labs [37], DeepMind [26,48], Google [15,21,63], Meta
Platforms [10,67], Microsoft [50], Microsoft & NVIDIA [59],
and OpenAI [12] have reported that every language process-
ing task, including translation [11, 17], classification [20, 53],
question-answering [32, 33, 40] and more, can be cast as a
language generation problem and have shown great improve-
ments along this direction. The rise of generative models is
not limited to the language domain; the AI community has
also given growing interest to generation problems in other do-
mains such as image, video, speech, or a mixture of multiple
domains [19,38,51,62]. At the heart of generative models lies
the Transformer architecture [60] and its variants [15, 47–49].
By relying on the attention mechanism [60], Transformer
models can learn better representations where each element
of the sequence may have a direct connection with every other
element, which was not possible in recurrent models [25].

To use generative models in real-world applications, we
often delegate the inference procedure to a separate service
responsible for ML inference serving. The growing demands
for this service, which should provide inference results for
client requests at low latency and high throughput, have fa-
cilitated the development of inference serving systems such
as Triton Inference Server [7] and TensorFlow Serving [42].
These systems can use a separately-developed DNN execution
engine to perform the actual tensor operations. For example,
we can deploy a service for language generation tasks by
using a combination of Triton and FasterTransformer [4], an
execution engine optimized for the inference of Transformer-
based models. In this case, Triton is mainly responsible for
grouping multiple client requests into a batch, while Faster-
Transformer receives the batch from Triton and conducts the
inference procedure in the batched manner.

Unfortunately, we notice that the existing inference sys-
tems, including both the serving system layer and the execu-
tion engine layer, have limitations in handling requests for
Transformer-based generative models. Since these models are
trained to generate a next token in an autoregressive manner,
one should run the model as many times as the number of to-
kens to generate, while for other models like ResNet [24] and

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 521

BERT [18] a request can be processed by running the model
once. That is, in order to process a request to the generative
model, we have to run multiple iterations of the model; each
iteration generates a single output token, which is used as
an input in the following iteration. Such multi-iteration char-
acteristic calls into question the current design of inference
systems, where the serving system schedules the execution
of the engine at the granularity of request. Under this design,
when the serving system dispatches a batch of requests to
the engine, the engine returns inference results for the entire
batch at once after processing all requests within the batch.
As different client requests may require different numbers of
iterations for processing, requests that have finished earlier
than others in the batch cannot return to the client, resulting
in an increased latency. Requests arrived after dispatching the
batch also should wait for processing the batch, which can
significantly increase the requests’ queueing time.

In this paper, we propose to schedule the execution of the
engine at the granularity of iteration instead of request. In
particular, the serving system invokes the engine to run only a
single iteration of the model on the batch. As a result, a newly
arrived request can be considered for processing after waiting
for only a single iteration of the model. The serving system
checks whether a request has finished processing after every
return from the engine – hence the finished requests can also
be returned to the clients immediately.

Nevertheless, a noticeable challenge arises when we at-
tempt to apply batching and the iteration-level scheduling at
the same time. Unlike the canonical request-level scheduling,
the proposed scheduling can issue a batch of requests where
each request has so far processed a different number of tokens.
In such a case, the requests to the Transformer model cannot
be processed in the batched manner because the attention
mechanism calls for non-batchable tensor operations whose
input tensors have variable shapes depending on the number
of processed tokens.

To address this challenge, we suggest to apply batching
only to a selected set of operations, which we call selective
batching. By taking different characteristics of operations into
account, selective batching splits the batch and processes each
request individually for the Attention1 operation while apply-
ing batching to other operations of the Transformer model.
We observe that the decision not to batch the executions of
the Attention operation has only a small impact on efficiency.
Since the Attention operation is not associated with any model
parameters, applying batching to Attention has no benefit of
reducing the amount of GPU memory reads by reusing the
loaded parameters across multiple requests.

Based on these techniques, we design and implement
ORCA, a distributed serving system for Transformer-based
generative models. In order to handle large-scale models,

1In some literature the Attention operation has an extended definition that
includes linear layers (QKV Linear and Attn Out Linear; Figure 1b). On the
other hand, we use a narrow definition as described in Figure 1b.

ORCA adopts parallelization strategies including intra-layer
and inter-layer model parallelism, which were originally de-
veloped by training systems [55, 58] for Transformer models.
We also devise a new scheduling algorithm for the proposed
iteration-level scheduling, with additional considerations for
memory management and pipelined execution across work-
ers.

We evaluate ORCA using OpenAI GPT-3 [12] models with
various configurations, scaling up to 341B of parameters. The
results show that ORCA significantly outperforms FasterTrans-
former [4], showing 36.9× throughput improvement at the
same level of latency. While we use a language model as
a driving example throughout the paper and conduct experi-
ments only on language models, generative models in other
domains can benefit from our approach as long as the mod-
els are based on the Transformer architecture and use the
autoregressive generation procedure [19, 38, 51, 62].

2 Background

We provide background on the inference procedure of
GPT [12, 47], a representative example of Transformer-based
generative models that we use throughout this paper, and ML
inference serving systems.

Inference procedure of GPT. GPT is an autoregressive
language model based on one of architectural variants of
Transformer [60]. It takes text as input and produces new text
as output. In particular, the model receives a sequence of input
tokens and then completes the sequence by generating subse-
quent output tokens. Figure 1a illustrates a simplified compu-
tation graph that represents this procedure with a three-layer
GPT model, where nodes and edges indicate Transformer
layers and dependencies between the layers, respectively. The
Transformer layers are executed in the order denoted by the
numbers on the nodes, and the nodes that use the same set
of model parameters (i.e., nodes representing the same layer)
are filled with the same color.

The generated output token is fed back into the model to
generate the next output token, imposing a sequential, one-
by-one inference procedure. This autoregressive procedure of
generating a single token is done by running all the layers of
the model with the input, which is either a sequence of input
tokens that came from the client or a previously generated out-
put token. We define the run of all layers as an iteration of the
model. In the example shown in Figure 1a, the inference pro-
cedure comprises three iterations. The first iteration (“iter 1”)
takes all the input tokens (“I think this”) at once and generates
the next token (“is”). This iteration composes an initiation
phase, a procedure responsible for processing the input tokens
and generating the first output token. The next two iterations
(“iter 2” and “iter 3”), which compose an increment phase,
take the output token of the preceding iteration and generate

522 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

I think this

1 4 7

5 8

is great

6 9

is great <EOS>

2

iter 1 iter 2 iter 3

3

(a) A computation graph representing
an inference procedure using a GPT
model. The graph does not depict lay-
ers other than Transformer layers (e.g.,
embedding) for simplicity.

MLP

LayerNorm

QKV Linear

Attention

Query ValueKey

Attn Out Linear

Add

Input

LayerNorm

Linear

GeLU

Linear

Add

Output

(b) A Transformer layer used in GPT.

kl,1:t−1

vl,1:t−1

kl,1:t−1

vl,1:t−1

Transformer
layer

Transformer
layer

LSTM
layer

LSTM
layer

kl,1:t
vl,1:t

kl,1:t
vl,1:t

kl,1:t+1

vl,1:t+1

kl,1:t+1

vl,1:t+1

cl,t−1

hl,t−1

cl,t−1

hl,t−1

cl,t
hl,t

cl,t
hl,t

cl,t+1

hl,t+1

cl,t+1

hl,t+1

hl−1,thl−1,t

hl,thl,t

hl−1,t+1hl−1,t+1

hl,t+1hl,t+1

hl−1,thl−1,t

hl,thl,t hl,t+1hl,t+1

hl−1,t+1hl−1,t+1

(c) Internal state usage of Transformer. h, k, v, and c refer
to layer input/output, Attention key, Attention value, and
LSTM internal memory, respectively. l denotes layer
index and t denotes token index.

Figure 1: Illustrations for GPT’s inference procedure, Transformer layer, and internal state usage.

the next token. In this case, “iter 3” is the last iteration because
it produces “<EOS>”, a special end-of-sequence token that
terminates output generation. Note that while the increment
phase comprises multiple iterations because each iteration
is only able to process a single token, the initiation phase is
typically implemented as a single iteration by processing all
the input tokens in parallel.

The original Transformer [60] employs two stacks of Trans-
former layers, while GPT’s architecture consists of a single
layer stack, namely decoder. Figure 1b shows a Transformer
layer used in GPT. Among the operations that compose the
Transformer layer, Attention is the essence that distinguishes
Transformer from other architectures. At a high level, the At-
tention operation computes a weighted average of the tokens
of interest so that each token in the sequence is aware of the
other. It takes three inputs, query, key, and value, computes dot
products of the query (for the current token) with all keys (for
the tokens of interest), applies Softmax on the dot products
to get weights, and conducts weighted average of all values
associated with the weights.

Since the Attention requires keys and values of all pre-
ceding tokens,2 we consider the keys and values as internal
states that should be maintained across multiple iterations. A
naïve, state-less inference procedure would take all tokens in
the sequence (including both the client-provided input tokens
and the output tokens generated so far) to recompute all the
keys and values at every iteration. To avoid such recomputa-
tion, fairseq [43] suggests incremental decoding, which saves
the keys and values for reuse in successive iterations. Other
systems for Transformer such as FasterTransformer [4] and
Megatron-LM [3] also do the same.

2Language models like GPT use causal masking, which means all pre-
ceding tokens are of interest and participate in the Attention operation.

Figure 1c illustrates the state usage pattern of Transformer,
along with LSTM [25] that also maintains internal states. The
main difference is that the size of the states (k for Attention
key and v for value) in Transformer increases with iteration,
whereas the size of the states (c for LSTM internal memory
and h for LSTM layer’s input/output) in LSTM remains con-
stant. When processing the token at index t, the Attention
operation takes all previous Attention keys kl,1:t−1 and values
vl,1:t−1 along with the current key kl,t and value vl,t .3 There-
fore, the Attention operation should perform computation on
tensors of different shapes depending on the number of tokens
already processed.

Prior to the Attention operation, there are the layer normal-
ization operation (LayerNorm) and the QKV Linear (linear
and split operations to get the query, key and value). Opera-
tions performed after Attention are, in order, a linear operation
(Attn Out Linear), an add operation for residual connection
(Add), layer normalization operation (LayerNorm), the multi-
layer perceptron (MLP) operations, and the other residual
connection operation (Add).

ML inference serving systems. Growing demands for ML-
driven applications have made ML inference serving service
a critical workload in modern datacenters. Users (either the
end-user or internal microservices of the application) submit
requests to an inference service, and the service gives replies
on the requests based on a pre-defined ML model using its
provisioned resource, typically equipped with specialized ac-
celerators such as GPUs and TPUs. In particular, the service
runs a DNN model with input data to generate output for the

3kl,1:t−1 represents Attention keys of the l-th layer for tokens at indices
1 to t−1 while kl,t is for the Attention key of the l-th layer for the token at
index t. Same for vl,1:t−1 and vl,t .

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 523

request

response

Serving System

E
n
d
p
o
in

t
Scheduler

E
x
ec

u
ti

o
n

E
n
g
in

e

Request Queue

!

" #

$

x1x1: I think
x2x2: I love

x1x1: this is great
x2x2: you

Figure 2: Overall workflow of serving a generative language
model with existing systems.

request. Just like other services operating on datacenters, a
well-managed inference service should provide low latency
and high throughput within a reasonable amount of cost.

To meet such constraints, service operators often use ML
inference serving systems such as Triton Inference Server [7]
and TensorFlow Serving [42]. These systems can be seen as
an abstraction sitting atop underlying model execution en-
gines such as TensorRT [6], TVM [14], TensorFlow [8], and
many others [44, 46], being agnostic to various kinds of ML
models, execution engines, and computing hardware. While
delegating the role of driving the main mathematical opera-
tions to the engines, serving systems are in charge of exposing
endpoints that receive inference requests, scheduling execu-
tions of the engine, and sending responses to the requests.
Accordingly, these systems focus on aspects such as batch-
ing the executions [7, 16, 35, 42, 56], selecting an appropriate
model from multiple model variants [16,27,30,57], deploying
multiple models (each for different inference services) on the
same device [7, 29, 35, 56], and so on.

Among the features and optimizations provided by serv-
ing systems, batching is a key to achieve high accelerator
utilization when using accelerators like GPUs. When we run
the execution engine with batching enabled, the input tensors
from multiple requests coalesce into a single, large input ten-
sor before being fed to the first operation of the model. Since
the accelerators prefer large input tensors over small ones to
better exploit the vast amount of parallel computation units,
the engine’s throughput is highly dependent on the batch size,
i.e., the number of inference requests the engine processes
together. Reusing the model parameters loaded from off-chip
memory is another merit in batched execution, especially
when the model involves memory-intensive operations.

Figure 2 shows an overall workflow of serving a generative
language model with existing serving systems and execution
engines. The main component of the serving system (e.g., Tri-
ton [7]) is the scheduler, which is responsible for À creating
a batch of requests by retrieving requests from a queue and Á
scheduling the execution engine (e.g., FasterTransformer [4])
to process the batch. The execution engine Â processes the
received batch by running multiple iterations of the model
being served and Ã returns the generated text back to the
serving system. In Figure 2, the serving system schedules the
engine to process two requests (x1: “I think”, x2: “I love”) in

iter 1

x1x1

x2x2

iter 2

I think

I love

this

you

this

you

iter 3

is

-

is

<EOS>

great

-

iter 4

great

-

<EOS>

-

Figure 3: An illustration for a case where the requests have the
same input length but some requests finish earlier than others.
Shaded tokens represent input tokens. “-” denotes inputs and
outputs of extra computation imposed by the scheduling.

a batch and the engine generates “this is great” and “you” for
requests x1 and x2, respectively.

3 Challenges and Proposed Solutions

In this section, we describe challenges in serving Transformer-
based generative models and propose two techniques:
iteration-level scheduling and selective batching.

C1: Early-finished and late-joining requests. One major
limitation of existing systems is that the serving system and
the execution engine interact with each other only when (1)
the serving system schedules the next batch on an idle engine;
or (2) the engine finishes processing the current batch. In
other words, these systems are designed to schedule execu-
tions at request granularity; the engine maintains a batch of
requests fixed until all requests in the batch finish. This can be
problematic in the serving of generative models, since each
request in a batch may require different number of iterations,
resulting in certain requests finishing earlier than the others.
In the example shown in Figure 3, although request x2 finishes
earlier than request x1, the engine performs computation for
both “active” and “inactive” requests throughout all iterations.
Such extra computation for inactive requests (x2 at iter 3 and
4) limits the efficiency of batched execution.

What makes it even worse is that this behavior prevents an
early return of the finished request to the client, imposing a
substantial amount of extra latency. This is because the engine
only returns the execution results to the serving system when
it finishes processing all requests in the batch. Similarly, when
a new request arrives in the middle of the current batch’s
execution, the aforementioned scheduling mechanism makes
the newly arrived request wait until all requests in the current
batch have finished. We argue that the current request-level
scheduling mechanism cannot efficiently handle workloads
with multi-iteration characteristic. Note that this problem of
early-finished and late-joining requests does not occur in the
training of language models; the training procedure finishes
processing the whole batch in a single iteration by using the
teacher forcing technique [64].

524 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

response

Orca System

E
n
d
p
o
in

trequest

Scheduler

Request Pool

E
x
ec

u
ti

o
n

E
n
g
in

e

!

"

#

x1x1 x11x11 x12x12 x13x13 x14x14

x2x2 x21x21 x22x22

x3x3 x31x31 x32x32

x4x4 x41x41 x42x42 x43x43

x1, x2, x3, x4x1, x2, x3, x4

· · ·· · ·

x15, x23, x33, x44x15, x23, x33, x44$

Figure 4: System overview of ORCA. Interactions between
components represented as dotted lines indicate that the inter-
action takes place at every iteration of the execution engine.
xi j is the j-th token of the i-th request. Shaded tokens repre-
sent input tokens received from the clients, while unshaded
tokens are generated by ORCA. For example, request x1 ini-
tially arrived with two input tokens (x11,x12) and have run
two iterations so far, where the first and second iterations gen-
erated x13 and x14, respectively. On the other hand, request
x3 only contains input tokens (x31,x32) because it has not run
any iterations yet.

S1: Iteration-level scheduling. To address the above limi-
tations, we propose to schedule executions at the granularity
of iteration. At high level, the scheduler repeats the follow-
ing procedure: (1) selects requests to run next; (2) invokes
the engine to execute one iteration for the selected requests;
and (3) receives execution results for the scheduled iteration.
Since the scheduler receives a return on every iteration, it can
detect the completion of a request and immediately return its
generated tokens to the client. For a newly arrived request, the
request gets a chance to start processing (i.e., the scheduler
may select the new request to run next) after execution of
the currently scheduled iteration, significantly reducing the
queueing delay. With iteration-level scheduling, the sched-
uler has a full control on how many and which requests are
processed in each iteration.

Figure 4 depicts the system architecture and the overall
workflow of ORCA using the iteration-level scheduling. ORCA
exposes an endpoint (e.g., HTTPS or gRPC) where inference
requests arrive at the system and responses to the requests
are sent out. The endpoint puts newly arrived requests in the
request pool, a component that manages all requests in the
system during their lifetime. The pool is monitored by the
scheduler, which is responsible for: selecting a set of requests
from the pool, scheduling the execution engine to run an it-
eration of the model on the set, receiving execution results
(i.e., output tokens) from the engine, and updating the pool
by appending each output token to the corresponding request.
The engine is an abstraction for executing the actual tensor
operations, which can be parallelized across multiple GPUs
spread across multiple machines. In the example shown in
Figure 4, the scheduler À interacts with the request pool to

decide which requests to run next and Á invokes the engine
to run four selected requests: (x1,x2,x3,x4). The scheduler
provides the engine with input tokens of the requests sched-
uled for the first time. In this case, x3 and x4 have not run
any iterations yet, so the scheduler hands over (x31,x32) for
x3 and (x41,x42,x43) for x4. The engine Â runs an iteration
of the model on the four requests and Ã returns generated
output tokens (x15,x23,x33,x44), one for each scheduled re-
quest. Once a request has finished processing, the request pool
removes the finished request and notifies the endpoint to send
a response. Unlike the method shown in Figure 2 that should
run multiple iterations on a scheduled batch until finish of
all requests within the batch, ORCA’s scheduler can change
which requests are going to be processed at every iteration.
We describe the detailed algorithm about how to select the
requests at every iteration in Section 4.2.

C2: Batching an arbitrary set of requests. When we try
to use the iteration-level scheduling in practice, one major
challenge that we are going to face is batching. To achieve
high efficiency, the execution engine should be able to process
any selected set of requests in the batched manner. Without
batching, one would have to process each selected request
one by one, losing out on the massively parallel computation
capabilities of GPUs.

Unfortunately, there is no guarantee that even for a pair of
requests (xi,x j), for the next iteration, their executions can be
merged and replaced with a batched version. There are three
cases for a pair of requests where the next iteration cannot
be batched together: (1) both requests are in the initiation
phase and each has different number of input tokens (e.g.,
x3 and x4 in Figure 4); (2) both are in the increment phase
and each is processing a token at different index from each
other (x1 and x2); or (3) each request is in the different phase:
initiation or increment (x1 and x3). Recall that in order to
batch the execution of multiple requests, the execution of each
request must consist of identical operations, each consuming
identically-shaped input tensors. In the first case, the two
requests cannot be processed in a batch because the “length”
dimension of their input tensors, which is the number of input
tokens, are not equal. The requests in the second case have
difference in the tensor shape of Attention keys and values
because each processes token at different index, as shown in
Figure 1c. For the third case, we cannot batch the iterations of
different phases because they take different number of tokens
as input; an iteration of the initiation phase processes all input
tokens in parallel for efficiency, while in the increment phase
each iteration takes a single token as its input (we assume the
use of fairseq-style incremental decoding [43]).

Batching is only applicable when the two selected requests
are in the same phase, with the same number of input tokens
(in case of the initiation phase) or with the same token index
(in case of the increment phase). This restriction significantly
reduces the likelihood of batching in real-world workloads,

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 525

QKV Linear

Split

Attention K/V Manager

Attn x4x4

Attn x3x3

Attn x2x2

Attn x1x1

Layer Input

Key

Value

x1 : (x11, x12, x13)x1 : (x11, x12, x13) x2 : (x21)x2 : (x21)

Merge

Attn Out
Linear

[7, H][7, H]

· · ·· · ·

[7, H][7, H]

[2, 3H][2, 3H]

[3, 3H][3, 3H]

[1, 3H][1, 3H]

[1, 3H][1, 3H]

[7, 3H][7, 3H]

[7, H][7, H]

x32x32

x41x41 x42x42 x43x43

x14x14

x22x22

x31x31

[2, H][2, H]

[3, H][3, H]

[1, H][1, H]

[1, H][1, H]

Figure 5: An illustration of ORCA execution engine running
a Transformer layer on a batch of requests with selective
batching. We only depict the QKV Linear, Attention, and
Attention Out Linear operations for simplicity.

because the scheduler should make a wish for the presence
of two requests eligible for batching at the same time. The
likelihood further decreases exponentially as the batch size
increases, making it impractical to use a large batch size that
can pull out better throughput without compromising latency.

S2: Selective batching. We propose selective batching, a
technique for batched execution that allows high flexibility in
composing requests as a batch. Instead of processing a batch
of requests by “batchifying” all tensor operations composing
the model, this technique selectively apply batching only to a
handful of operations.

The main problem regarding batching described above is
that the three aforementioned cases4 correspond to irregu-
larly shaped input (or state) tensors, which cannot be coa-
lesced into a single large tensor and fed into a batch opera-
tion. In the canonical batching mechanism, at each iteration,
a Transformer layer takes a 3-dimensional input tensor of
shape [B,L,H] generated by concatenating multiple [L,H] in-
put tensors of requests in a batch, where B is the batch size,
L is the number of tokens processed together, and H is the
hidden size of the model. For example, in Figure 3, “iter 1”
(initiation phase) takes an input tensor of shape [2,2,H] and
“iter 2” (increment phase) takes a tensor of shape [2,1,H].
However, when the scheduler decides to run an iteration on
batch (x1,x2,x3,x4) in Figure 4, the inputs for requests in the
initiation phase (x3 : [2,H] and x4 : [3,H]) cannot coalesce
into a single tensor of shape [B,L,H] because x3 and x4 have
different number of input tokens, 2 and 3.

Interestingly, not all operations are incompatible with such
irregularly shaped tensors. Operations such as non-Attention
matrix multiplication and layer normalization can be made to
work with irregularly shaped tensors by flattening the tensors.

4We use the first case as a driving example, but the argument can be
similarly applied to the other two cases.

For instance, the aforementioned input tensors for x3 and x4
can compose a 2-dimensional tensor of shape [∑L,H] = [5,H]
without an explicit batch dimension. This tensor can be fed
into all non-Attention operations including Linear, Layer-
Norm, Add, and GeLU operations because they do not need to
distinguish tensor elements of different requests. On the other
hand, the Attention operation requires a notion of requests
(i.e., requires the batch dimension) to compute attention only
between the tokens of the same request, typically done by
applying cuBLAS routines for batch matrix multiplication.

Selective batching is aware of the different characteristics
of each operation; it splits the batch and processes each re-
quest individually for the Attention operation while applying
token-wise (instead of request-wise) batching to other oper-
ations without the notion of requests. Figure 5 presents the
selective batching mechanism processing a batch of requests
(x1,x2,x3,x4) described in Figure 4. This batch has 7 input
tokens to process, so we make the input tensor have a shape
of [7,H] and apply the non-Attention operations. Before the
Attention operation, we insert a Split operation and run the
Attention operation separately on the split tensor for each
request. The outputs of Attention operations are merged back
into a tensor of shape [7,H] by a Merge operation, bringing
back the batching functionality to the rest of operations.

To make the requests in the increment phase can use the
Attention keys and values for the tokens processed in previous
iterations, ORCA maintains the generated keys and values in
the Attention K/V manager. The manager maintains these
keys and values separately for each request until the scheduler
explicitly asks to remove certain request’s keys and values,
i.e., when the request has finished processing. The Attention
operation for request in the increment phase (x1 and x2) takes
keys and values of previous tokens (x11,x12,x13 for x1; x21 for
x2) from the manager, along with the current token’s query,
key, and value from the Split operation to compute attention
between the current token and the previous ones.

4 ORCA Design

Based on the above techniques, we design and implement
ORCA: a distributed serving system for Transformer-based
generative models. We have already discussed the system
components and the overall execution model of ORCA while
describing Figure 4. In this section, we answer the remaining
issues about how to build an efficient system that can scale to
large-scale models with hundreds of billions of parameters.
We also describe the scheduling algorithm for iteration-level
scheduling, i.e., how to select a batch of requests from the
request pool at every iteration.

4.1 Distributed Architecture
Recent works [12, 31] have shown that scaling language mod-
els can dramatically improve the quality of models. Hence,

526 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Layer1 Layer2 Layer3 Layer4

GPU1

GPU2

GPU3

GPU4

GPU5

GPU6

Figure 6: An example of intra- and inter- layer parallelism. A
vertical dotted line indicates partitioning between layers and
a horizontal line indicates partitioning within a layer.

Execution Engine

S
ch

ed
u
le

r

Controller

Control Plane

Data Plane

Worker 1

GPU

GPU

GPU

E
n
g
in

e
M

as
te

rschedule

tokens

Controller

Worker 2

GPU

GPU

GPU

tokens

control
message

control
message

tokens

Figure 7: An illustration of the distributed architecture of
ORCA’s execution engine using the parallelization configura-
tion shown in Figure 6. For example, the first inter-layer parti-
tion (Layer1 and Layer2) in Figure 6 is assigned to Worker1,
while the second partition is assigned to Worker2.

system support for serving such large language models is get-
ting more importance, especially when the model does not fit
in a single GPU. In such a case, one should split the model
parameters along with the corresponding computation and
distribute them across multiple GPUs and machines.

ORCA composes known parallelization techniques for
Transformer models: intra-layer parallelism and inter-layer
parallelism. These two model parallelism strategies, which
are also used by FasterTransformer [4], have been origi-
nally developed for distributed training. Intra-layer paral-
lelism [55, 58] splits matrix multiplications (i.e., Linear and
Attention operations) and their associated parameters over
multiple GPUs. We omit the detail about how this strat-
egy partitions each matrix multiplication. On the other hand,
inter-layer parallelism splits Transformer layers over multiple
GPUs. ORCA assigns the same number of Transformer layers
to each GPU. Figure 6 illustrates an example application of
intra- and inter- layer parallelism to a 4-layer GPT model. The
4 layers are split into 2 inter-layer partitions, and the layers in
the partition are subdivided into 3 intra-layer partitions. We
assign each partition to a GPU, using a total of 6 GPUs.

The ORCA execution engine supports distributed execution
using the techniques described above. Figure 7 depicts the
architecture of an ORCA engine. Each worker process is re-
sponsible for an inter-layer partition of the model and can be

placed on a different machine from each other. In particular,
each worker manages one or more CPU threads each dedi-
cated for controlling a GPU, the number of which depends on
the degree of intra-layer parallelism.

The execution procedure of the ORCA execution engine is
as follows. Once the engine is scheduled to run an iteration of
the model for a batch of requests, the engine master forwards
the received information about the scheduled batch to the first
worker process (Worker1). The information includes tokens
for the current iteration and a control message, which is com-
posed of ids of requests within the batch, current token index
(for requests in the increment phase), and number of input
tokens (for requests in the initiation phase). The controller of
Worker1 hands over the information received from the engine
master to the GPU-controlling threads, where each thread
parses the information and issues proper GPU kernels to its
associated GPU. For example, the kernel for the Attention
operation uses the request id and the current token index to get
the GPU memory address of previous keys and values kept by
the Attention K/V manager. In the meantime, the controller
also forwards the control message to the controller of the next
worker (Worker2), without waiting for the completion of the
kernels issued on the GPUs of Worker1. Unlike Worker1, the
controller of the last worker (Worker2) waits for (i.e., syn-
chronize with) the completion of the issued GPU kernels, in
order to fetch the output token for each request and send the
tokens back to the engine master.

To keep GPUs busy as much as possible, we design the
ORCA engine to minimize synchronization between the CPU
and GPUs. We observe that current systems for distributed
inference (e.g., FasterTransformer [4] and Megatron-LM [3])
have CPU-GPU synchronization whenever each process re-
ceives control messages5 because they exchange the messages
through a GPU-to-GPU communication channel – NCCL [5].
The exchange of these control messages occurs at every iter-
ation, imposing a non-negligible performance overhead. On
the other hand, ORCA separates the communication channels
for control messages (plus tokens) and tensor data transfer,
avoiding the use of NCCL for data used by CPUs. Figure 7
shows that the ORCA engine uses NCCL exclusively for ex-
changing intermediate tensor data (represented by dashed
arrows) as this data is produced and consumed by GPUs. Con-
trol messages, which is used by the CPU threads for issuing
GPU kernels, sent between the engine master and worker con-
trollers by a separate communication channel that does not
involve GPU such as gRPC [2].

4.2 Scheduling Algorithm
The ORCA scheduler makes decisions on which requests
should be selected and processed at every iteration. The sched-
uler has high flexibility in selecting a set of requests to com-

5This includes various metadata such as batch size, sequence length, and
whether a request within the batch has finished processing.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 527

pose a batch, because of the selective batching technique that
allows the engine to run any set of requests in the batched
manner. Now the main question left is how to select the re-
quests at every iteration.

We design the ORCA scheduler to use a simple algorithm
that does not change the processing order of client requests;
early-arrived requests are processed earlier. That is, we en-
sure iteration-level first-come-first-served (FCFS) property.
We define the iteration-level FCFS property for workloads
with multi-iteration characteristics as follows: for any pair
of requests (xi,x j) in the request pool, if xi has arrived ear-
lier than x j, xi should have run the same or more iterations
than x j. Note that some late-arrived requests may return ear-
lier to clients if the late request requires a smaller number of
iterations to finish.

Still, the scheduler needs to take into account additional
factors: diminishing returns to increasing the batch size and
GPU memory constraint. Increasing the batch size trades off
increased throughput for increased latency, but as the batch
size becomes larger, the amount of return (i.e., increase in
throughput) diminishes. Therefore, just like other serving sys-
tems [7, 16], ORCA also has a notion of a max batch size: the
largest possible number of requests within a batch. The ORCA
system operator can tune this knob to maximize throughput
while satisfying one’s latency budget. We will discuss this in
more details with experiment results in Section 6.2.

Another factor is the GPU memory constraint. Optimiz-
ing memory usage by reusing buffers for intermediate results
across multiple operations is a well-known technique used by
various systems [4, 6], and ORCA also adopts this technique.
However, unlike the buffers for intermediate results that can
be reused immediately, buffers used by the Attention K/V
manager for storing the keys and values cannot be reclaimed
until the ORCA scheduler notifies that the corresponding re-
quest has finished processing. A naïve implementation can
make the scheduler fall into a deadlock when the scheduler
cannot issue an iteration for any requests in the pool because
there is no space left for storing a new Attention key and value
for the next token. This requires the ORCA scheduler to be
aware of the remaining size of pre-allocated memory regions
for the manager.

The ORCA scheduler takes all these factors into account:
it selects at most “max batch size” requests based on the ar-
rival time, while reserving enough space for storing keys and
values to a request when the request is scheduled for the first
time. We describe the scheduling process in Algorithm 1. The
algorithm selects a batch of requests from the request pool
(line 4) and schedules the batch (line 5). The Select function
(line 17) selects at most max_bs requests from the pool based
on the arrival time of the request (lines 20-22). Algorithm 1
does not depict the procedure of request arrival and return;
one may think of it as there exist concurrent threads insert-
ing newly arrived requests into request_pool and removing
finished requests from request_pool.

Algorithm 1: ORCA scheduling algorithm
Params: n_workers: number of workers, max_bs:

max batch size, n_slots: number of K/V slots
1 n_scheduled← 0
2 n_rsrv← 0
3 while true do
4 batch,n_rsrv← Select(request_pool,n_rsrv)
5 schedule engine to run one iteration of

the model for the batch
6 foreach req in batch do
7 req.state← RUNNING
8 n_scheduled← n_scheduled +1
9 if n_scheduled = n_workers then

10 wait for return of a scheduled batch
11 foreach req in the returned batch do
12 req.state← INCREMENT
13 if finished(req) then
14 n_rsrv← n_rsrv− req.max_tokens
15 n_scheduled← n_scheduled−1
16

17 def Select(pool, n_rsrv):
18 batch←{}
19 pool←{req ∈ pool|req.state 6= RUNNING}
20 SortByArrivalTime(pool)
21 foreach req in pool do
22 if batch.size() = max_bs then break
23 if req.state = INITIATION then
24 new_n_rsrv← n_rsrv+ req.max_tokens
25 if new_n_rsrv > n_slots then break
26 n_rsrv← new_n_rsrv
27 batch← batch

⋃{req}
28 return batch,n_rsrv

When the scheduler considers a request in the initiation
phase, meaning that the request has never been scheduled
yet, the scheduler uses the request’s max_tokens6 attribute
to reserve max_tokens slots of GPU memory for storing the
keys and values in advance (lines 23-26). The scheduler deter-
mines whether the reservation is possible (line 25) based on
n_rsrv, the number of currently reserved slots, where a slot
is defined by the amount of memory required for storing an
Attention key and value for a single token. Here, n_slots is a
parameter tuned by the ORCA system operator indicating the
size of memory region (in terms of slots) allocated to the At-
tention K/V manager. Since the number of tokens in a request
cannot exceed max_tokens, if the reservation is possible, it
is guaranteed that the manager can allocate buffers for the
newly generated keys and values until the request finishes.

Unlike the tuning of max_bs that requires quantifying the
trade-off between latency and throughput, the ORCA system

6The max_tokens attribute is a per-request option, meaning the maximum
number of tokens that a request can have after processing.

528 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Worker1

Worker2

Worker3

Time

A
1
B
1

A
1
B
1

A
1
B
1

C
1
D
1

C
1
D
1

C
1
D
1

E
1
F
1

E
1
F
1

E
1
F
1

A
2
B
2

A
2
B
2

A
2
B
2

C
2
D
2

C
2
D
2

E
2
F
2

(a) ORCA execution pipeline.

Partition1

Partition2

Partition3

A
1

Time

B
1

A
1

B
1

A
1

B
1

A
2

B
2

A
2

B
2

A
2

B
2

A
3

(b) FasterTransformer execution pipeline.

Figure 8: Comparison of the use of pipeline parallelism in
ORCA and FasterTransformer where Xi is the i-th iteration of
request X .

operator can easily configure n_slots without any experiments.
Given a model specification (e.g., hidden size, number of
layers, etc.) and degrees of intra- and inter- layer parallelism,
ORCA’s GPU memory usage mostly depends on n_slots. That
is, the operator can simply use the largest possible n_slots
under the memory constraint.

Pipeline parallelism. ORCA’s scheduler makes the execu-
tion of workers in the engine to be pipelined across multi-
ple batches. The scheduler does not wait for the return of a
scheduled batch until n_scheduled, the number of currently
scheduled batches, reaches n_workers (line 9-10 of Algo-
rithm 1). By doing so, the scheduler keeps the number of
concurrently running batches in the engine to be n_workers,
which means that every worker in the engine is processing
one of the batches without being idle.

Figure 8a depicts the execution pipeline of 3 ORCA work-
ers, using a max batch size of 2. We assume that the request
A arrives before B, which arrives before C, and so on. At first,
the scheduler selects requests A and B based on the arrival
time and schedules the engine to process a batch of requests
A and B (we call this batch AB), where Worker1, Worker2,
and Worker3 process the batch in turn. The scheduler waits
for the return of the batch AB only after the scheduler injects
two more batches: CD and EF. Once the batch AB returns,
requests A and B get selected and scheduled once again, be-
cause they are the earliest arrived requests among the requests
in the pool.

In contrast, the interface between current serving systems
and execution engines (e.g., a combination of Triton [7]
and FasterTransformer [4]) does not allow injecting another
batch before the finish of the current running batch, due to
the request-level scheduling. That is, Triton cannot inject
the next request C to FasterTransformer until the current

Params # Layers
Hidden

size
Inter-

partitions
Intra-

partitions

13B 40 5120 1 1
101B 80 10240 1 8
175B 96 12288 2 8
341B 120 15360 4 8

Table 1: Configurations of models used in the experiments.

batch AB finishes. To enable pipelined execution of multiple
inter-layer partitions under such constraint, FasterTransformer
splits a batch of requests into multiple microbatches [28] and
pipelines the executions of partitions across the microbatches.
In Figure 8b, FasterTransformer splits the batch AB into two
microbatches, A and B. Since each partition processes a mi-
crobatch (which is smaller than the original batch) in the
batched manner, the performance gain from batching can
become smaller. Moreover, this method may insert bubbles
into the pipeline when the microbatch size is too large, mak-
ing the number of microbatches smaller than the number of
partitions. While FasterTransformer needs to trade batching
efficiency (larger microbatch size) for pipelining efficiency
(fewer pipeline bubbles), ORCA is free of such a tradeoff –
thanks to iteration-level scheduling – and can easily pipeline
requests without dividing a batch into microbatches.

5 Implementation

We have implemented ORCA with 13K lines of C++, based
on the CUDA ecosystem. We use gRPC [2] for the com-
munication in the control plane of the ORCA engine, while
NCCL [5] is used in the data plane, for both inter-layer and
intra-layer communication. Since we design ORCA to fo-
cus on Transformer-based generative models, ORCA pro-
vides popular Transformer layers as a building block of mod-
els including the original encoder-decoder Transformer [60],
GPT [47], and other variants discussed in Raffel et al. [49].

We have also implemented fused kernels for LayerNorm,
Attention, and GeLU operators, just like other systems for
training or inference of Transformer models [1, 4, 58]. For
example, the procedure of computing dot products between
Attention query and keys, Softmax on the dot products, and
weighted average of Attention values are fused into a single
CUDA kernel for the Attention operator. In addition, we go
one step further and fuse the kernels of the split Attention
operators by simply concatenating all thread blocks of the
kernels for different requests. Although this fusion makes the
thread blocks within a kernel have different characteristics and
lifetimes (which is often discouraged by CUDA programming
practice) because they process tensors of different shapes, we
find this fusion to be beneficial by improving GPU utilization
and reducing the kernel launch overhead [34, 39].

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 529

6 Evaluation

In this section, we present evaluation results to show the
efficiency of ORCA.

Environment. We run our evaluation on Azure ND96asr
A100 v4 VMs, each equipped with 8 NVIDIA 40-GB A100
GPUs connected over NVLink. We use at most four VMs
depending on the size of the model being tested. Each VM
has 8 Mellanox 200Gbps HDR Infiniband adapters, providing
an 1.6Tb/s of interconnect bandwidth between VMs.

Models. Throughout the experiments, we use GPT [12] as a
representative example of Transformer-based generative mod-
els. We use GPT models with various configurations, which is
listed in Table 1. The configurations for 13B and 175B models
come from the GPT-3 paper [12]. Based on these two mod-
els, we change the number of layers and hidden size to make
configurations for 101B and 341B models. All models have
a maximum sequence length of 2048, following the setting
of the original literature [12]. We use fp16-formatted model
parameters and intermediate activations for the experiments.
We also apply inter- and intra- layer parallelism strategies
described in Section 4.1, except for the 13B model that can fit
in a GPU. For example, the 175B model is partitioned over a
total of 16 GPUs by using 2 inter-layer partitions subdivided
into 8 intra-layer partitions, where the 8 GPUs in the same
VM belongs to the same inter-layer partition.

Baseline system. We compare with FasterTransformer [4],
an inference engine that supports large scale Transformer
models via distributed execution. While there exist other
systems with the support for distributed execution such as
Megatron-LM [3] and DeepSpeed [1], these systems are pri-
marily designed and optimized for training workloads, which
makes them show relatively lower performance compared to
the inference-optimized systems.

Scenarios. We use two different scenarios to drive our eval-
uation. First, we design a microbenchmark to solely assess the
performance of the ORCA engine without being affected by
the iteration-level scheduling. In particular, we do not run the
ORCA scheduler in this scenario. Instead, given a batch of re-
quests, the testing script repeats injecting the same batch into
the ORCA engine until all requests in the batch finishes, mim-
icking the behavior of the canonical request-level scheduling.
We also assume that all requests in the batch have the same
number of input tokens and generate the same number of
output tokens. We report the time taken for processing the
batch (not individual requests) and compare the result with
FasterTransformer [4].

The second scenario tests the end-to-end performance of
ORCA by emulating a workload. We synthesize a trace of

client requests because there is no publicly-available request
trace for generative language models. Each request in the syn-
thesized trace is randomly generated by sampling the number
of input tokens and a max_gen_tokens attribute, where the
number of input tokens plus max_gen_tokens equals to the
max_tokens attribute described in Section 4.2. We assume
that all requests continue generation until the number of gen-
erated tokens reaches max_gen_tokens. In other words, we
make the model never emit the “<EOS>” token. This is be-
cause we have neither the actual model checkpoint nor the
actual input text so we do not have any information to guess
the right timing of the “<EOS>” token generation. Once the
requests are generated, we synthesize the trace by setting the
request arrival time based on the Poisson process. To assess
ORCA’s behavior under varying load, we change the Poisson
parameter (i.e., arrival rate) and adjust the request arrival time
accordingly. We report latency and throughput using mul-
tiple traces generated from different distributions for better
comparison and understanding of the behavior of ORCA and
FasterTransformer.

6.1 Engine Microbenchmark

We first compare the performance of FasterTransformer and
the ORCA engine using the first scenario. We set all requests
in the batch to have the same number of input tokens (32 or
128) and generate 32 tokens. That is, in this set of experiments,
all requests within the batch start and finish processing at the
same time. We conduct experiments using three different
models: 13B, 101B, and 175B. For each model, we use the
corresponding parallelization strategy shown in Table 1.

Figure 9 shows the performance of FasterTransformer and
the ORCA engine for processing a batch composed of the same
requests. In Figure 9a, the ORCA engine shows a similar (or
slightly worse) performance compared to FasterTransformer
across all configurations. This is because ORCA does not
apply batching to the Attention operations, while FasterTrans-
former apply batching to all operations. Still, the performance
difference is relatively small. Despite not batching the Atten-
tion operation, the absence of model parameters in Attention
makes this decision has little impact on efficiency as there
is no benefit of reusing model parameters across multiple
requests.

Figure 9b presents similar results for the 101B model that
uses all of the 8 GPUs in a single VM. From these results, we
can say that the ORCA engine and FasterTransformer have
comparable efficiencies in the implementations of CUDA
kernels and the communication between intra-layer partitions.
Note that FasterTransformer cannot use a batch size of 8 or
larger with the 13B model (16 or larger with the 101B model)
because of the fixed amount of memory pre-allocation for
each request’s Attention keys and values, which grows in
proportion to the max sequence length of the model (2048
for this case). In contrast, ORCA avoids redundant memory

530 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 2 4 8 16 32
Batch Size

0

500

1000

1500

Ex
ec

uti
on

 T
im

e (
ms

) ft(32)
orca(32)

ft(128)
orca(128)

(a) 13B model, 1 GPU.

1 2 4 8 16 32
Batch Size

0

1000

2000

Ex
ec

uti
on

 T
im

e (
ms

) ft(32)
orca(32)

ft(128)
orca(128)

(b) 101B model, 8 GPUs.

1 2 4 8 16 32
Batch Size

0

1000

2000

3000

Ex
ec

uti
on

 T
im

e (
ms

) ft(32)
orca(32)

ft(128)
orca(128)

(c) 175B model, 16 GPUs.

Figure 9: Execution time of a batch of requests using FasterTransformer and the ORCA engine without the scheduling component.
Label “ft(n)” represents results from FasterTransformer processing requests with n input tokens. Configurations that incurs out of
memory error are represented as missing entries (e.g., ft(32) for the 101B model with a batch size of 16).

0 2 4 6
Throughput (req/s)

102

103

No
rm

 L
ate

nc
y (

ms
/to

ke
n)

ft(1, 1)
ft(8, 8)

orca(1)
orca(8)

orca(16)
orca(32)

(a) 101B model, 8 GPU.

0 2 4 6
Throughput (req/s)

102

103

No
rm

 L
ate

nc
y (

ms
/to

ke
n)

ft(1, 1)
ft(8, 8)

orca(1)
orca(8)

orca(16)
orca(32)

(b) 175B model, 16 GPUs.

0 2 4 6
Throughput (req/s)

102

103

No
rm

 L
ate

nc
y (

ms
/to

ke
n)

ft(1, 1)
ft(8, 8)

orca(1)
orca(8)

orca(16)
orca(32)

(c) 341B model, 32 GPUs.

Figure 10: Median end-to-end latency normalized by the number of generated tokens and throughput. Label “orca(max_bs)” rep-
resents results from ORCA with a max batch size of max_bs. Label “ft(max_bs, mbs)” represents results from FasterTransformer
with a max batch size of max_bs and a microbatch size of mbs.

allocation by setting the size of buffers for the keys and values
separately for each request based on the max_tokens attribute.

Next, we go one step further and experiment with the 175B
model, which splits the layers into two inter-layer partitions.
In this case, for better comparison, we disable pipelined execu-
tion of the inter-layer partitions for both systems. For Faster-
Transformer, we set the size of a microbatch to be equal to the
batch size to disable pipelining. As shown in Figure 9c, the
ORCA engine outperforms FasterTransformer by up to 47%.
We attribute this performance improvement to the control-
data plane separation described in Section 4.1. We omit the
341B model as it has similar results compared to the 175B
model.

6.2 End-to-end Performance
Now we assess the end-to-end performance of ORCA by
measuring the latency and throughput with the synthesized
request trace under varying load. When synthesizing the
trace, we sample each request’s number of input tokens from
U(32,512), a uniform distribution ranging from 32 to 512
(inclusive). The max_gen_tokens attributed is sampled from
U(1,128), which means that the least and the most time-
consuming requests require 1 and 128 iterations of the model
for processing, respectively.

Unlike the microbenchmark shown in Section 6.1, to mea-
sure the end-to-end performance, we test the entire ORCA
software stack including the ORCA scheduler. Client requests
arrive to the ORCA scheduler following the synthesized trace
described above. We report results from various max batch
size configurations. For FasterTransformer that does not have
its own scheduler, we implement a custom scheduler that re-
ceives client requests, creates batches, and injects the batches
to an instance of FasterTransformer. We make the custom
scheduler create batches dynamically by taking at most max
batch size requests from the request queue, which is the most
common scheduling algorithm used by existing serving sys-
tems like Triton [7] and TensorFlow Serving [42]. Again,
we report results from various max batch size configurations,
along with varying microbatch sizes, an additional knob in
FasterTransformer that governs the pipelining behavior (see
Section 4.2).

Figure 10 shows median end-to-end latency and throughput.
Since each request in the trace requires different processing
time, which is (roughly) in proportion to the number of gener-
ated tokens, we report median latency normalized by the num-
ber of generated tokens of each request. From the figure, we
can see that ORCA provides significantly higher throughput
and lower latency than FasterTransformer. The only excep-
tion is the 101B model under low load (Figure 10a). In this

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 531

0 5 10 15 20
Throughput (req/s)

103

104

La
ten

cy
 (m

s)

ft(1, 1)
ft(8, 8)

orca(1)
orca(8)

orca(16)
orca(32)

(a) (# in, # gen) = (32, 32)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Throughput (req/s)

104

105

La
ten

cy
 (m

s)

ft(1, 1)
ft(8, 8)

orca(1)
orca(8)

orca(16)
orca(32)

(b) (# in, # gen) = (256, 256)

Figure 11: Median end-to-end latency and throughput, using
the 175B model with traces composed of homogeneous re-
quests. We do not normalize the latency since all requests
have the same characteristic.

case, both ORCA and FasterTransformer do not have enough
number of requests to process in a batch. That is, the latency
will mostly depend on the engine’s performance, which is
shown in Figure 9b. As the load becomes heavier, ORCA
provides higher throughput with a relatively small increase
in latency, because the ORCA scheduler makes late-arrived
requests hitch a ride with the current ongoing batch. In con-
trast, FasterTransformer fails to efficiently handle multiple
requests that (1) arrive at different times; (2) require differ-
ent number of iterations to finish; or (3) start with different
number of input tokens, resulting in a peak throughput of 0.49
req/s and much higher latency. If we use the 175B or 341B
model (Figures 10b and 10c) that employs more than one
inter-layer partitions, ORCA outperforms FasterTransformer
under every level of load in terms of both latency and through-
put, resulting in an order of magnitude higher throughput
when we compare results at a similar level of latency. For
example, to match a median normalized latency of 190ms for
the 175B model, which is a double of the normalized execu-
tion time (by the number of generated tokens) of “orca(128)”
shown in Figure 9c, FasterTransformer provides a throughput
of 0.185 req/s whereas ORCA provides a throughput of 6.81
req/s, which is a 36.9× speedup.

Varying batch size configurations. Figure 10 shows that
the increase of the max batch size of ORCA results in a higher
throughput without affecting the latency. This is because the
iteration-level scheduling of ORCA resolves the problem of
early-finished and late-joining requests. Nevertheless, there is
no guarantee that increasing the batch size will not negatively
affect the latency, for arbitrary hardware settings, models, and
workloads. As mentioned in Section 4.2, the max batch size

must be set carefully by considering both the required latency
and throughput requirements.

Interestingly, larger max batch size in FasterTransformer
does not necessarily help improving throughput. By testing
all possible combinations of max batch size (max_bs) and
microbatch size (mbs) on all models under varying load, we
find that (max_bs, mbs) = (1, 1) or (8, 8) are the best op-
tions. Per our discussion in Section 4.1, FasterTransformer’s
microbatch-based pipelining can be less efficient because the
engine is going to process at most mbs number of requests
in the batched manner, which explains why the configura-
tions with the maximum possible mbs (which is the same
as max_bs) have better performance than others. In addition,
while increasing max_bs can improve performance due to the
increased batch size, at the same time, this also increases the
likelihood of batching requests with large difference in the
number of input tokens or the number of generated tokens. In
such cases, FasterTransformer cannot efficiently handle the
batch because (1) for the first iteration of the batch, Faster-
Transformer processes requests as if they all had the same
input length as the shortest one; and (2) early-finished requests
cannot immediately return to the clients.

Trace of homogeneous requests. We test the behavior of
ORCA and FasterTransformer when using a trace of homoge-
neous requests, i.e., all requests in a trace have the same num-
ber of input tokens and the same max_gen_tokens attribute.
Since all requests require the same number of iterations to
finish processing, the problem of early-leaving requests does
not occur for this trace. As a result, now the increase of the
max_bs has a noticeable positive impact on the performance
of FasterTransformer, as shown in Figure 11. Still, ORCA out-
performs FasterTransformer (max_bs=8) except for the case
using a max batch size of 1, where ORCA degenerates into a
simple pipeline of the ORCA workers that does not perform
batching.

7 Related Work and Discussion

Fine-grained batching for recurrent models. We would
like to highlight BatchMaker [23] as one of the most relevant
previous works. BatchMaker is a serving system for RNNs
that performs scheduling and batching at the granularity of
RNN cells, motivated by the unique RNN characteristic of re-
peating the same computation. Once a request arrives, Batch-
Maker breaks the dataflow graph for processing the request
into RNN cells, schedules execution at the granularity of cells
(instead of the entire graph), and batches the execution of iden-
tical cells (if any). Since each RNN cell always performs the
exact same computation, BatchMaker can execute multiple
RNN cells in a batched manner regardless of the position (i.e.,
token index) of the cell. By doing so, BatchMaker allows a
newly arrived request for RNN to join (or a finished request

532 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

to leave) the current executing batch without waiting for the
batch to completely finish.

However, BatchMaker cannot make batches of cells for
Transformer models because there are too many distinct cells
(a subgraph that encapsulates the computation for processing
a token; Figure 1c) in the graph. Each cell at a different to-
ken index t must use a different set of Attention Keys/Values.
As the cell for each t is different, the graph comprises L dif-
ferent cells (L denotes the number of input and generated
tokens), significantly lowering the likelihood of cells of the
same computation being present at a given moment (e.g., in
Figure 10, L ranges from 33 = 32+ 1 to 640 = 512+ 128).
Thus execution of the cells will be mostly serialized, making
BatchMaker fall back to non-batched execution. BatchMaker
also lacks support for large models that require model and
pipeline parallelism.

While BatchMaker is geared towards detecting and aligning
batch-able RNN cells, our key principle in designing ORCA is
to perform as much computation as possible per each round of
model parameter read. This is based on the insight that reading
parameters from GPU global memory is a major bottleneck
in terms of end-to-end execution time, for large-scale models.
Adhering to this principle, we apply iteration-level scheduling
and selective batching to process all “ready” tokens in a single
round of parameter read, regardless of whether the processing
of tokens can be batched (non-Attention ops) or not (Attention
ops).

Specialized execution engines for Transformer models.
The outstanding performance of Transformer-based models
encourages the development of inference systems specialized
for them. FasterTransformer [4], LightSeq [61], TurboTrans-
formers [22] and EET [36] are such examples. Each of these
systems behave as an backend execution engine of existing
serving systems like Triton Inference Server [7] and Tensor-
Flow Serving [42]. That is, these systems delegate the role
of scheduling to the serving system layer, adhering to the
canonical request-level scheduling. Instead, ORCA suggests
to schedule executions at a finer granularity, which is not pos-
sible in current systems without changing the mechanism for
coordination between the scheduler and the execution engine.
Note that among these systems, FasterTransformer is the only
one with the support for distributed execution. While systems
like Megatron-LM [3] and DeepSpeed [1] can also be used for
distributed execution, these systems are primarily optimized
for large-scale training rather than inference serving.

Interface between serving systems and execution engines.
Current general-purpose serving systems such as Triton In-
ference Server [7] and Clipper [16] serve as an abstraction
for handling client requests and scheduling executions of the
underlying execution engines. This approach is found to be
beneficial by separating the design and implementation of
the serving layer and the execution layer. However, we find

that the prevalent interface between the two layers is too re-
stricted for handling models like GPT [12], which has the
multi-iteration characteristic. Instead, we design ORCA to
tightly integrate the scheduler and the engine, simplifying the
application of the two proposed techniques: iteration-level
scheduling and selective batching. While in this paper we
do not study a general interface design that supports the two
techniques without losing the separation of abstractions, it
can be an interesting topic to explore such possibility; we
leave this issue to future work.

8 Conclusion

We present iteration-level scheduling with selective batch-
ing, a novel approach that achieves low latency and high
throughput for serving Transformer-based generative mod-
els. Iteration-level scheduling makes the scheduler interact
with the execution engine at the granularity of iteration in-
stead of request, while selective batching enables batching
arbitrary requests processing tokens at different positions,
which is crucial for applying batching with iteration-level
scheduling. Based on these techniques, we have designed
and implemented a distributed serving system named ORCA.
Experiments show the effectiveness of our approach: ORCA
provides an order of magnitude higher throughput than current
state-of-the-art systems at the same level of latency.

Acknowledgments

We thank our shepherd Amar Phanishayee and the anony-
mous reviewers for their insightful comments. This work was
supported by FriendliAI Inc.

References

[1] DeepSpeed. Retrieved Dec 13, 2021 from https://
github.com/microsoft/DeepSpeed.

[2] gRPC. Retrieved Dec 13, 2021 from https://grpc.
io.

[3] Megatron-LM. Retrieved Dec 13, 2021 from https:
//github.com/NVIDIA/Megatron-LM.

[4] NVIDIA FasterTransformer. Retrieved Dec
13, 2021 from https://github.com/NVIDIA/
FasterTransformer.

[5] NVIDIA NCCL. Retrieved Dec 13, 2021 from https:
//github.com/NVIDIA/nccl.

[6] NVIDIA TensorRT. Retrieved Dec 13, 2021 from
https://developer.nvidia.com/tensorrt.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 533

https://github.com/microsoft/DeepSpeed
https://github.com/microsoft/DeepSpeed
https://grpc.io
https://grpc.io
https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/nccl
https://github.com/NVIDIA/nccl
https://developer.nvidia.com/tensorrt

[7] NVIDIA Triton Inference Server. Retrieved Dec
13, 2021 from https://developer.nvidia.com/
nvidia-triton-inference-server.

[8] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. TensorFlow: A System for Large-
Scale Machine Learning. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and
Implementation, pages 265–283, 2016.

[9] Daniel Adiwardana, Minh-Thang Luong, David R So,
Jamie Hall, Noah Fiedel, Romal Thoppilan, Zi Yang,
Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu, et al.
Towards a Human-like Open-Domain Chatbot. arXiv
preprint arXiv:2001.09977, 2020.

[10] Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Xi Victoria Lin, Jingfei
Du, Srinivasan Iyer, Ramakanth Pasunuru, Giri Anan-
tharaman, Xian Li, Shuohui Chen, Halil Akin, Man-
deep Baines, Louis Martin, Xing Zhou, Punit Singh
Koura, Brian O’Horo, Jeff Wang, Luke Zettlemoyer,
Mona Diab, Zornitsa Kozareva, and Ves Stoyanov. Effi-
cient Large Scale Language Modeling with Mixtures of
Experts. arXiv preprint arXiv:2112.10684, 2021.

[11] Peter F. Brown, John Cocke, Stephen A. Della Pietra,
Vincent J. Della Pietra, Fredrick Jelinek, John D. Laf-
ferty, Robert L. Mercer, and Paul S. Roossin. A Statisti-
cal Approach to Machine Translation. Computational
Linguistics, 16(2):79–85, 1990.

[12] Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language Models are Few-Shot Learn-
ers. Advances in Neural Information Processing Sys-
tems, 2020.

[13] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri-
son Edwards, Yuri Burda, Nicholas Joseph, Greg Brock-
man, Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov,

Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such,
Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang,
Igor Babuschkin, Suchir Balaji, Shantanu Jain, William
Saunders, Christopher Hesse, Andrew N. Carr, Jan
Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira
Murati, Katie Mayer, Peter Welinder, Bob McGrew,
Dario Amodei, Sam McCandlish, Ilya Sutskever, and
Wojciech Zaremba. Evaluating Large Language Mod-
els Trained on Code. arXiv preprint arXiv:2107.03374,
2021.

[14] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Meghan Cowan, Haichen Shen,
Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. TVM: An Automated End-
to-End Optimizing Compiler for Deep Learning. In
Proceedings of the 13th USENIX Conference on Operat-
ing Systems Design and Implementation, pages 579–594,
2018.

[15] Aakanksha Chowdhery, Sharan Narang, Jacob De-
vlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, Parker Schuh, Kensen Shi, Sasha
Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker
Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prab-
hakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner
Pope, James Bradbury, Jacob Austin, Michael Isard, Guy
Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya,
Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski,
Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fe-
dus, Denny Zhou, Daphne Ippolito, David Luan, Hyeon-
taek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sep-
assi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Re-
won Child, Oleksandr Polozov, Katherine Lee, Zong-
wei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz,
Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-
Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and
Noah Fiedel. PaLM: Scaling Language Modeling with
Pathways. arXiv preprint arXiv:2204.02311, 2022.

[16] Daniel Crankshaw, Xin Wang, Giulio Zhou, Michael J.
Franklin, Joseph E. Gonzalez, and Ion Stoica. Clipper: A
Low-Latency Online Prediction Serving System. In Pro-
ceedings of the 14th USENIX Symposium on Networked
Systems Design and Implementation, pages 613–627,
2017.

534 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://developer.nvidia.com/nvidia-triton-inference-server
https://developer.nvidia.com/nvidia-triton-inference-server

[17] Raj Dabre, Chenhui Chu, and Anoop Kunchukuttan.
A Survey of Multilingual Neural Machine Translation.
ACM Computing Surveys, 53(5), 2020.

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of Deep Bidi-
rectional Transformers for Language Understanding.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171–4186, 2019.

[19] Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng,
Chang Zhou, Da Yin, Junyang Lin, Xu Zou, Zhou Shao,
Hongxia Yang, and Jie Tang. CogView: Mastering Text-
to-Image Generation via Transformers. Advances in
Neural Information Processing Systems, 2021.

[20] Lucas Dixon, John Li, Jeffrey Sorensen, Nithum Thain,
and Lucy Vasserman. Measuring and Mitigating Unin-
tended Bias in Text Classification. In Proceedings of the
2018 AAAI/ACM Conference on AI, Ethics, and Society,
pages 67–73, 2018.

[21] Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong,
Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun, Yanqi
Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam
Fedus, Maarten Bosma, Zongwei Zhou, Tao Wang,
Yu Emma Wang, Kellie Webster, Marie Pellat, Kevin
Robinson, Kathy Meier-Hellstern, Toju Duke, Lucas
Dixon, Kun Zhang, Quoc V Le, Yonghui Wu, Zhifeng
Chen, and Claire Cui. GLaM: Efficient Scaling of Lan-
guage Models with Mixture-of-Experts. arXiv preprint
arXiv:2112.06905, 2021.

[22] Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou.
TurboTransformers: An Efficient GPU Serving System
for Transformer Models. In Proceedings of the 26th
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 389–402, 2021.

[23] Pin Gao, Lingfan Yu, Yongwei Wu, and Jinyang Li. Low
Latency RNN Inference with Cellular Batching. In Pro-
ceedings of the Thirteenth EuroSys Conference, 2018.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep Residual Learning for Image Recognition. In
Proceedings of the 2016 IEEE Conference on Computer
Vision and Pattern Recognition, pages 770–778, 2016.

[25] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-
Term Memory. Neural Computation, 9(8):1735–1780,
1997.

[26] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego
de Las Casas, Lisa Anne Hendricks, Johannes Welbl,

Aidan Clark, Tom Hennigan, Eric Noland, Katie Milli-
can, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karen Simonyan, Erich Elsen,
Jack W. Rae, Oriol Vinyals, and Laurent Sifre. Train-
ing Compute-Optimal Large Language Models. arXiv
preprint arXiv:2203.15556, 2022.

[27] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik,
Shivaram Venkataraman, Paramvir Bahl, Matthai Phili-
pose, Phillip B. Gibbons, and Onur Mutlu. Focus: Query-
ing Large Video Datasets with Low Latency and Low
Cost. In Proceedings of the 13th USENIX Conference on
Operating Systems Design and Implementation, pages
269–286, 2018.

[28] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan
Ngiam, Quoc V Le, Yonghui Wu, et al. GPipe: Efficient
Training of Giant Neural Networks Using Pipeline Par-
allelism. Advances in Neural Information Processing
Systems, 2019.

[29] Angela H. Jiang, Daniel L.-K. Wong, Christopher Canel,
Lilia Tang, Ishan Misra, Michael Kaminsky, Michael A.
Kozuch, Padmanabhan Pillai, David G. Andersen, and
Gregory R. Ganger. Mainstream: Dynamic Stem-
Sharing for Multi-Tenant Video Processing. In Proceed-
ings of the 2018 USENIX Annual Technical Conference,
pages 29–42, 2018.

[30] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis,
and Matei Zaharia. NoScope: Optimizing Neural Net-
work Queries over Video at Scale. Proceedings of the
VLDB Endowment, 10(11):1586–1597, 2017.

[31] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec
Radford, Jeffrey Wu, and Dario Amodei. Scaling
Laws for Neural Language Models. arXiv preprint
arXiv:2001.08361, 2020.

[32] Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sab-
harwal, Oyvind Tafjord, Peter Clark, and Hannaneh Ha-
jishirzi. UNIFIEDQA: Crossing Format Boundaries
with a Single QA System. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 1896–1907, 2020.

[33] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton
Lee, et al. Natural Questions: a Benchmark for Question
Answering Research. Transactions of the Association
for Computational Linguistics, 7:452–466, 2019.

[34] Woosuk Kwon, Gyeong-In Yu, Eunji Jeong, and Byung-
Gon Chun. Nimble: Lightweight and Parallel GPU Task

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 535

Scheduling for Deep Learning. Advances in Neural
Information Processing Systems, 2020.

[35] Yunseong Lee, Alberto Scolari, Byung-Gon Chun,
Marco Domenico Santambrogio, Markus Weimer, and
Matteo Interlandi. PRETZEL: Opening the Black Box
of Machine Learning Prediction Serving Systems. In
Proceedings of the 13th USENIX Symposium on Operat-
ing Systems Design and Implementation, pages 611–626,
2018.

[36] Gongzheng Li, Yadong Xi, Jingzhen Ding, Duan Wang,
Bai Liu, Changjie Fan, Xiaoxi Mao, and Zeng Zhao.
Easy and Efficient Transformer: Scalable Inference
Solution For large NLP model. arXiv preprint
arXiv:2104.12470, 2021.

[37] Opher Lieber, Or Sharir, Barak Lenz, and Yoav Shoham.
Jurassic-1: Technical details and evaluation. 2021.

[38] Xudong Lin, Gedas Bertasius, Jue Wang, Shih-Fu
Chang, Devi Parikh, and Lorenzo Torresani. Vx2text:
End-to-end learning of video-based text generation from
multimodal inputs. In Proceedings of the 2021 IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 7005–7015, 2021.

[39] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue,
Youshan Miao, Wei Cui, Wenxiang Hu, Fan Yang, Lin-
tao Zhang, and Lidong Zhou. Rammer: Enabling Holis-
tic Deep Learning Compiler Optimizations with rTasks,
pages 881–897. 2020.

[40] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. Can a Suit of Armor Conduct Electricity?
A New Dataset for Open Book Question Answering.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 2381–
2391, 2018.

[41] Ramesh Nallapati, Bowen Zhou, Cícero Nogueira dos
Santos, Çaglar Gülçehre, and Bing Xiang. Abstractive
Text Summarization using Sequence-to-sequence RNNs
and Beyond. In Proceedings of the 20th SIGNLL Con-
ference on Computational Natural Language Learning,
pages 280–290, 2016.

[42] Christopher Olston, Noah Fiedel, Kiril Gorovoy,
Jeremiah Harmsen, Li Lao, Fangwei Li, Vinu
Rajashekhar, Sukriti Ramesh, and Jordan Soyke.
TensorFlow-Serving: Flexible, High-Performance ML
Serving. Workshop on Machine Learning Systems at
NIPS 2017, 2017.

[43] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. fairseq: A Fast, Extensible Toolkit for Sequence

Modeling. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Com-
putational Linguistics (Demonstrations), pages 48–53,
2019.

[44] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. Advances in Neu-
ral Information Processing Systems, 2019.

[45] Romain Paulus, Caiming Xiong, and Richard Socher. A
Deep Reinforced Model for Abstractive Summarization.
In Proceedings of the 6th International Conference on
Learning Representations, 2018.

[46] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Perrot,
and Édouard Duchesnay. Scikit-Learn: Machine Learn-
ing in Python. Journal of Machine Learning Research,
12(85):2825–2830, 2011.

[47] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language Models are Un-
supervised Multitask Learners. 2019.

[48] Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Mil-
lican, Jordan Hoffmann, Francis Song, John Aslanides,
Sarah Henderson, Roman Ring, Susannah Young, Eliza
Rutherford, Tom Hennigan, Jacob Menick, Albin Cas-
sirer, Richard Powell, George van den Driessche,
Lisa Anne Hendricks, Maribeth Rauh, Po-Sen Huang,
Amelia Glaese, Johannes Welbl, Sumanth Dathathri, Saf-
fron Huang, Jonathan Uesato, John Mellor, Irina Hig-
gins, Antonia Creswell, Nat McAleese, Amy Wu, Erich
Elsen, Siddhant Jayakumar, Elena Buchatskaya, David
Budden, Esme Sutherland, Karen Simonyan, Michela
Paganini, Laurent Sifre, Lena Martens, Xiang Lorraine
Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena Gri-
bovskaya, Domenic Donato, Angeliki Lazaridou, Arthur
Mensch, Jean-Baptiste Lespiau, Maria Tsimpoukelli,
Nikolai Grigorev, Doug Fritz, Thibault Sottiaux, Mantas
Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama,
Cyprien de Masson d’Autume, Yujia Li, Tayfun Terzi,
Vladimir Mikulik, Igor Babuschkin, Aidan Clark, Diego
de Las Casas, Aurelia Guy, Chris Jones, James Bradbury,
Matthew Johnson, Blake Hechtman, Laura Weidinger,
Iason Gabriel, William Isaac, Ed Lockhart, Simon Osin-
dero, Laura Rimell, Chris Dyer, Oriol Vinyals, Kareem

536 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Ayoub, Jeff Stanway, Lorrayne Bennett, Demis Hass-
abis, Koray Kavukcuoglu, and Geoffrey Irving. Scaling
Language Models: Methods, Analysis & Insights from
Training Gopher. arXiv preprint arXiv:2112.11446,
2021.

[49] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J. Liu. Exploring the Limits of Trans-
fer Learning with a Unified Text-to-Text Transformer.
Journal of Machine Learning Research, 21(140):1–67,
2020.

[50] Samyam Rajbhandari, Conglong Li, Zhewei Yao, Min-
jia Zhang, Reza Yazdani Aminabadi, Ammar Ahmad
Awan, Jeff Rasley, and Yuxiong He. DeepSpeed-MoE:
Advancing Mixture-of-Experts Inference and Training
to Power Next-Generation AI Scale. arXiv preprint
arXiv:2201.05596, 2022.

[51] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott
Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya
Sutskever. Zero-Shot Text-to-Image Generation. In
Proceedings of the 38th International Conference on
Machine Learning, pages 8821–8831, 2021.

[52] Stephen Roller, Emily Dinan, Naman Goyal, Da Ju,
Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott,
Eric Michael Smith, Y-Lan Boureau, and Jason Weston.
Recipes for Building an Open-Domain Chatbot. In Pro-
ceedings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 300–325, 2021.

[53] Timo Schick and Hinrich Schütze. Exploiting Cloze-
Questions for Few-Shot Text Classification and Natural
Language Inference. In Proceedings of the 16th Con-
ference of the European Chapter of the Association for
Computational Linguistics: Main Volume, pages 255–
269, 2021.

[54] Abigail See, Peter J. Liu, and Christopher D. Man-
ning. Get To The Point: Summarization with Pointer-
Generator Networks. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 1073–1083, 2017.

[55] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin
Tran, Ashish Vaswani, Penporn Koanantakool, Peter
Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff
Young, Ryan Sepassi, and Blake Hechtman. Mesh-
TensorFlow: Deep Learning for Supercomputers. Ad-
vances in Neural Information Processing Systems, 2018.

[56] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao,
Bingyu Kong, Matthai Philipose, Arvind Krishnamurthy,
and Ravi Sundaram. Nexus: A GPU Cluster Engine for

Accelerating DNN-Based Video Analysis. In Proceed-
ings of the 27th ACM Symposium on Operating Systems
Principles, pages 322–337, 2019.

[57] Haichen Shen, Seungyeop Han, Matthai Philipose, and
Arvind Krishnamurthy. Fast Video Classification via
Adaptive Cascading of Deep Models. In Proceedings
of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition, pages 3646–3654, 2017.

[58] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-LM: Training Multi-Billion Parameter Lan-
guage Models Using Model Parallelism. arXiv preprint
arXiv:1909.08053, 2019.

[59] Shaden Smith, Mostofa Patwary, Brandon Norick,
Patrick LeGresley, Samyam Rajbhandari, Jared Casper,
Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vi-
jay Korthikanti, Elton Zhang, Rewon Child, Reza Yaz-
dani Aminabadi, Julie Bernauer, Xia Song, Moham-
mad Shoeybi, Yuxiong He, Michael Houston, Saurabh
Tiwary, and Bryan Catanzaro. Using DeepSpeed
and Megatron to Train Megatron-Turing NLG 530B,
A Large-Scale Generative Language Model. arXiv
preprint arXiv:2201.11990, 2022.

[60] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is All you Need. Ad-
vances in Neural Information Processing Systems, 2017.

[61] Xiaohui Wang, Ying Xiong, Yang Wei, Mingxuan Wang,
and Lei Li. LightSeq: A High Performance Inference
Library for Transformers. In Proceedings of the 2021
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies: Industry Papers, pages 113–120, 2021.

[62] Zihao Wang, Wei Liu, Qian He, Xinglong Wu, and Zili
Yi. Clip-gen: Language-free training of a text-to-image
generator with clip. arXiv preprint arXiv:2203.00386,
2022.

[63] Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai,
and Quoc V Le. Finetuned Language Models are Zero-
Shot Learners. In Proceedings of the 10th International
Conference on Learning Representations, 2022.

[64] Ronald J. Williams and David Zipser. A Learning Algo-
rithm for Continually Running Fully Recurrent Neural
Networks. Neural Computation, 1(2):270–280, 1989.

[65] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel, and
Yoshua Bengio. Show, Attend and Tell: Neural Image

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 537

Caption Generation with Visual Attention. In Proceed-
ings of the 32nd International Conference on Machine
Learning, pages 2048–2057, 2015.

[66] Zhilin Yang, Ye Yuan, Yuexin Wu, William W. Cohen,
and Ruslan R. Salakhutdinov. Review Networks for
Caption Generation. Advances in Neural Information
Processing Systems, 2016.

[67] Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan,
Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov,
Myle Ott, Sam Shleifer, Kurt Shuster, Daniel Simig,
Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and
Luke Zettlemoyer. OPT: Open Pre-trained Transformer
Language Models. arXiv preprint arXiv:2205.01068,
2022.

538 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

	Introduction
	Background
	Challenges and Proposed Solutions
	Orca Design
	Distributed Architecture
	Scheduling Algorithm

	Implementation
	Evaluation
	Engine Microbenchmark
	End-to-end Performance

	Related Work and Discussion
	Conclusion

