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“Computing Sound” Pofi

« Physical Modeling Synthesis (WG/WDF/FEM)
Synthesis from Hybrid Time/Freq. Models (Modal)

Physically-Inspired/Controlled Sonic Models
(PhISM)

Physically-Inspired Stochastic Event Models
(PhISEM)

Physically-Oriented Library of
Interactive Sound Effects (PhOLISE)

Bill's GaitLab: walking analysis/synthesis
Examples, Controllers!!!, Demos, Movies
(some on Voices, Speech, and Singing too)
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PLOrk: Non-Specific
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Modal Synthesis: The Missing Link

—Time/Frequency (Adrien, Vanden Doel, Cook ...)

—Impulse (or noise,

Impulse

other) generator Generator
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Modal: “Identity” Analysis
and Resynthesis (“parametric sampling”)

Struck coffee mug

|dentify modes
Model with filters

(or sine oscs)

Remove

Modes |
N

Can re-excite
modal filters

modes

| for “identity

to yield

“residue”

resynthesis”

Physics
Intuition Excita
Arbitrary! gl

(or modify!)

Pseudo- Resonant
physical filters

model e

tion

: Ra

One

Pole

Brightness

Filter

4+-»1 Reson. r(t)
Rules as Freq. f(t)
function
of strike Amp.  a(t)
position,'_)' Reson. r(t)
re-strike, Freq. f(t)
damping,
etc.

Stone tile

7




The Wave Equation

Tension 2
Plucked String

df =(T sin ) x+dx " (Tsin )X (for each dx of string)

f(x+dx) = f(x) + of/ox dx + ... (Taylor’ s series in space)
assume sin 6= 0 (for small 6)
F = ma = p dx d?y/dt? (p = mass/length)

Solution:

The wave equation
(c?=T/p)

Traveling Wave __Modal Solution
String Solution(s)

Even (forbiddei "\)5

modes __— 5 ——

D’ Alembert Solution of Tt
2nd order wave equation /X
(left and right going waves) g(ct + x)=M

— Bi-directional Simple Plucked String
delay lines Physical Model Block Diagram

— Filters —
Excitatio Y

for loss,
radiation, Soneraton Lo;op

other Filter

Plucked, Mandolin




Physical/Spatial Mesh/Modal Solutions

Modes of Plates are inharmonic

Center strike Edge strike Rectangular Plate Modes
round = Bessel function roots = sqrt(i,j) factors

Modes problematic in higher dimensions
and also for odd (non-analytical) shapes

(impossible analytically except in very simple cases)
Mesh2D'"

Finite Element Meshes
(SIGGRAPH 01 with O’ Brien and Essl)

“Synthesizing Sounds from
Physically-Based Motion”
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Open or closed at either end
Wave equation solution same as strings

Modes always harmonic because speed
of sound is constant with frequency

Solutions: (et - %)
Waveguide g(ct + <N

or Modal

Open + Closed: odd 1/4 wavelengths

Clar/Flute 13

Tubes and Air Chambers

W d t b Simple clarinet model
e oy [ PSR
(with non-linear “reed”)
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Data Driven, Physics-based Sound:
“Music for Unprepared Piano”

SIGGRAPH 98

(with Bargar, Choi, Betts
(NCSA))

The “Score”
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Physical Models: Non-linearity
in Solids (Scott VanDuyne)

Add spring(s) with position dependent constant

(one spring for positive displacement, another for negative)

Also for
Meshes

Acts to spread spectral components
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« friction “curve” m=f(Av)
« stick/slip based on Av

Haptic Textures
Minsky: functional surface forces
Siira and Pai

Fritz and Barner: Stochastic
Haptic Texture
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Haptic stick/slip springs

GameTrak
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Physical Models: Particles

Whistle: Single particle influences
physical (or other) oscillator

EES Homeraca: Many

particles trigger
parametric synthesis
(or launch PCM) (pcm

Blowing
pressure

Also good for “flock-
like” sounds: applause,

Whistle Demo (sMeLT) rain, birds, etc. 19

Stochastic Event Synthesis:
Building a synthesis model

Run model w/ Collect statistics -> Poisson

lots of particles Probability
of Collision

Time Since
Last Coll.

System energy decays exponentially.

Particle collision causes decaying |
burst of filtered noise u,u_




PhISEM Algorithm

« Exponentially decaying system energy

Particle sound energy is exponentially (fast) decaying
white noise. Sum of exponentially decaying noises is an
exponentially decaying noise.

Each time step, compute likelihood (based on #of particles)
of new sound-producing event
If so, add to net particle sound envelope energy

Filter result with system resonances/modes,
with reallocation if needed

PhISEM Code Example

#define SOUND_DECAY 0.95
#define SYSTEM_DECAY 0.999

EACH SAMPLE:

shakeEnergy *= SYSTEM_DECAY:; // Exponential system decay
if (random(1024) < num_beans) /I If collision

sndLevel += gain * shakeEnergy;// add energy
input = sndLevel * noise_tick(); /I Actual Sound is Random
sndLevel *= SOUND_DECAY; /l Exponential Sound decay
input -= output[0]*coeffs[0]; /I Do simple
input -= output[1]*coeffs[1]; I/l system resonance
output[1] = output[0]; 1 filter
output[0] = input; I calculations
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PhISEM: Stochastic
Modal Synthesis

Filters at system
resonances
> Resonl
J»4 Reson
System Noise Freq(t)

energy
Control decay decay Rules
Amp(t)

enVE|0p_9)|m|_/._) Onle X ltafbolres _D Reson(t)
ﬂb‘—'&» pole pole resonance Frea®
es|

Y distribution,
gains,
Poisson |No! Nlishe etc.” >
collision?

Stochastic Amp(t)
excitation > > '}iﬁg’(‘t‘)‘)

Stochastic resonances

OSC Shaker Demos23

Stochastic resonances
Modal PhISEM examples

v" Allow resonances to vary randomly (or not) on each excitation
v' Each resonance can have own distribution
v" Can reallocate one, two, ..., all each collision

Tambourine

Sleighbells

Bamboo Wind Chimes Coin(s)inaCup  Socket Wrench

24
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Related techniques

m Wavelets (background sounds) (Miner)

m Independent Components Analysis (Casey)
m Stochastic Multi-Pulse LPC (Zhu & Wyse)

m Sampled Wavelet Trees (Dubnov, Misra)

m My interest: things that we directly excite/control,
and how to control them

m Interactive Digital Foley:

Analyze walking sounds for
higher-level structure/parameters

Interactive Digital Foley -
PhOLISE: “Real-world” PhISEM

3

Physically Oriented
Library of Interactive
Sound Effects

Interaction sounds,
including

Walking!
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Modeling Bill’ s Gait (aeso2)

Bill's GaitLab

Bill's GaitLab
‘?‘ | by Perry Cook
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Data Driven Sound (PhISM):
“Seen in Shadow”

SIGGRAPH 2000 .

with Grady Klein,
Adam Finkelstein,
Petrovic, Fujito

Music:
Trueman, Mugan

MOVIE

15



Resources, References, Code

Take it for Granite

Synthesis ToolKit in C++ (STK)

* STK: a set of classes in C++ for rapid Book on interactive
experimentation with sound synthesis. sound synthesis
Available for free (source, multi-platform)

¢ http://www-ccrma.stanford.edu/software/stk _
. . . Real Sound Synthesis
e Based on “Unit Generators,” the classical fr Interactive Applications

computer music/sound building blocks: -
o Oscillators, Filters, Delay Lines, etc. \ii(/
——

¢ Build your own algorithms from these .
Many examples, figures,

soundfiles, and
« ChucK: On-the-fly Programming Language  ©Pen-source code!

OTHERS: Sounding Object, DAFX, some SIGGRAPH, other

More Resources and References

Everybody

o ] i i . Hack ChuckK
ChucK: on-the-fly Programming Language Tonight!!

e Open source
On-the-fly (VM)
o Extensible

- .
¢ Fun -/

¢ Not efficient!!

ChucK Book!!

¢ Contains STK and lots more
(sensors, MIDI, OSC, HID, networking)

» Based on “Unit Generators,” the classical
computer music/sound building blocks:

o Oscillators, Filters, Delay Lines, etc.
Many examples, figures,

and open-source code!
32

¢ Build your own algorithms from these
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Upcoming Voice/Tech Book:

www.vocebella.org
La Bella Voce

et la Macchina

(the beautiful voice and the machine)

A History of Technology
and the Expressive Voice

Technology: Any human-fashioned
tool, technique, method, law,
notation, enhancement, etc.

Expressive Voice: Singing, acting, [
preaching, rapping, praying, etc. B .
Steamo

A NOte (or2) ON VOI ces J—

* Rich history of
speaking machines

* And controllers for

vocal models (von
Kempelen 1791, Faber 1840,
Dudley 1939 ++)

e Concatenative PCM




A Note ©r2) on Voices (2)
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nnnnn d Freq. =1(t)

Ampy=f(t)

Ampy= f(t)

Freq.p = 1(t)

Ampg=f(t)

Freq.3 =f(t)

Resonant (bandpass) Filters
at Voice Formants

* Physical Articulatory

(acoustic tube, Kelly/Lochbaum,

f1/f2

Mathews 1960, Cook 1989, ++)
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Controlling electronic voice synth:
Dudley’ s Voder

« 1939 World’ s Fair

» Operators (female)
manipulate console

Fig. 8—Schematic circuit of the voder.

Voder: Source/Filter Model

Noise/Pulse (wrist bar)

Pitch control (foot pedal)
Resonances (10 finger sliders)
Consonant/Stop Presets (thumb buttons)

Loud speaker

Resonance control Amplifier

Ly

energy switch
—Wrisf bar,

19



GloveTalk (Fels and Hinton, 1990+)

» Data gloves and 3D position to
control speech synthesizer

« Left Hand “Macros” for Consonants

« Pitch height
» Vowel Space

Articulatory (physical) Voice Synth (SPASM)

» Real time, control is possible
 BUT... many, many parameters

» Not a natural “fit Cook (Shiela ‘89)

60+ parameters!

20



Articulatory (physical) Voice Synth (SPASM)

Anplitude

Anp. Env

Singing Curve for Interpolation and Articulation

N
I

Control ’—T
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( =
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or 2D

controls
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Random
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I
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4
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Filter

4000

8
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2000 4

3
8
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60+ parameters!

23 (=)
24 i)
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26 (=]
‘ Normal View

Exit

Tether LX 0.6383 Tether RX 0.9402
Tether =
Tether LY 0.7814 Foot TetherRY 0.4501
Switch
NI
Tether LZ 0.00757 TetherRZ 0.02515

Click to add notes
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SqueezeVoxX (with Colby Leider 2001)

Maggie
 Voice Control Issues: .

Pitch Lisa
Breathing
Articulation
etc.

Fix: Accordiae?

Physical Models in Performance

Interface: Dan Trueman, Curtis Bahn, Tomie Hahn, Perry Cook, Others

« Tomie Hahn: Streams
B Pikapika (Tomie Hahn)

£
O
Qn; .

- : .

* ShakerS/Bame)o + Shakers + “Blotar” (non-linear
vocal formant filters feedback waveguide flute)

22



(PL)Orkestra(s) of the Future!

23
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The End:

Consider parametric,
physically-motivated sound
SUESE

Lots of public domain
(unpatented or patents expired)
open source code is available

www.chucku.org

’ I
It" s Fun!! (www.vocebella.org)
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