Computing Sound: Physics-Based Parametric Sound Synthesis

Perry R. Cook, PhD
Professor Emeritus, Princeton CS & Music
also IP Wrangler, SMule
and Artist/Lecturer/Researcher,
CalArts, ASU, CCRMA

GameSoundCon, 2014

“Computing Sound”

• Physical Modeling Synthesis \((WG/WDF/FEM)\)
• Synthesis from Hybrid Time/Freq. Models \((Modal)\)
• Physically-Inspired/Controlled Sonic Models \((PhISM)\)
• Physically-Inspired Stochastic Event Models \((PhiSEM)\)
• Physically-Oriented Library of Interactive Sound Effects \((PhOLISE)\)
 Bill’s GaitLab: walking analysis/synthesis
• Examples, Controllers!!!, Demos, Movies
• (some on Voices, Speech, and Singing too)
Physical Modeling
(1 slide!)

Sound is Made…
• Striking, whacking, collisions
• Blowing, wind, flow, turbulence
• Bowing, rubbing, scraping
• Shaking, rattling, crunching

Sound is Perceived
• Auditory periphery
• Tonotopic mapping
• Rate/place (pitch)
• Spectral view

PLOrk: Non-Specific
Gamelan Taiko Fusion
PCM
Sound is Made…
- Striking, whacking, collisions
- Blowing, wind, flow, turbulence
- Bowing, rubbing, scraping
- Shaking, rattling, crunching

Sound is Perceived
- Auditory periphery
- Tonotopic mapping
- Rate/place (pitch)
- Spectral view

Modal Synthesis: The Missing Link
(Adrien, Vanden Doel, Cook …)
- Time/Frequency
- Impulse (or noise, other) generator excites filters
- Filters shape spectrum, model eigenmodes
- Filter parameters can be time-varying

\[y[n] = g*x[n]; \]
\[y[n] += b_1*y[n-1]; \]
\[y[n] += b_2*y[n-2]; \]
\[n++; \]
Modal: “Identity” Analysis and Resynthesis (“parametric sampling”)

Struck coffee mug

Identify modes
Model with filters (or sine oscs)

Remove modes to yield “residue”

Can re-excite modal filters for “identity resynthesis” (or modify!)

Parametric Modal Synthesis

- Physics
- Intuition
- Arbitrary!
- Random!

WiiDemo
The Wave Equation

\[df = (T \sin \theta) x dx - (T \sin \theta) x \]
(for each dx of string)

\[f(x + dx) = f(x) + \delta f/\delta x dx + \ldots \]
(Taylor’s series in space)

\[\text{assume } \sin \theta = \theta \]
(for small \(\theta \))

\[F = ma = \rho dx \frac{d^2 y}{dt^2} \]
(\(\rho = \text{mass/length} \))

Solution:
The wave equation
\[(c^2 = T / \rho) \]

\[\frac{d^2 y}{dx^2} = \frac{1}{c^2} \frac{d^2 y}{dt^2} \]

Traveling Wave String Solution(s)

D’ Alembert Solution of 2nd order wave equation (left and right going waves)

“Digital Waveguide Filter” Model (Smith)

- Bi-directional delay lines
- Filters for loss, radiation, other
Physical/Spatial Mesh/Modal Solutions

Modes of Plates are inharmonic

Modes problematic in higher dimensions and also for odd (non-analytical) shapes (impossible analytically except in very simple cases)

Finite Element Meshes
(SIGGRAPH 01 with O’ Brien and Essl)

“Synthesizing Sounds from Physically-Based Motion”
Tubes

- Open or closed at either end
- Wave equation solution same as strings
- Modes always harmonic because speed of sound is constant with frequency
- Solutions: Waveguide or Modal

Open + Closed: odd 1/4 wavelengths

Tubes and Air Chambers

Waveguide tube (with non-linear “reed”)

- Bulk Helmholtz Resonator with non-linear “reed”

Wang: Zelda

Simple clarinet model

Player breath pressure P_b
Non-linear reed model
"Bore" delay line
Reflection filter

Demo (SMELT)

Blown bottle

Demo (SMELT)
Data Driven, Physics-based Sound: “Music for Unprepared Piano”

SIGGRAPH 98
(with Bargar, Choi, Betts (NCSA))

The “Score”

Physical Models: Non-linearity in Solids (Scott VanDuyne)

Add spring(s) with position dependent constant
(one spring for positive displacement, another for negative)

Acts to spread spectral components
D’Alembert (Waveguide) (+ Stiffness)

All-pass waveguide (Smith & Jaffe)
- Acoustics View: Frequency dependent propagation c(f)
- Filter View: Stretch comb filter harmonics

Banded waveguides (Essl)
- Physical Acoustics: Wave train closures
- Filter View: Comb filters with one modal resonance each

Frictional Interactions
- Bow/String Models
 - friction “curve” \(m = f(\Delta v) \)
 - stick/slip based on \(\Delta v \)

Haptic Textures
- Minsky: functional surface forces
- Siira and Pai
- Fritz and Barner: Stochastic Haptic Textures
- Hayward and Armstrong: Haptic stick/slip springs

GameTrak Demo

Structured Friction (regular)
Physical Models: Particles

Whistle: Single particle influences physical (or other) oscillator

Homeraca: Many particles trigger parametric synthesis (or launch PCM)

Also good for “flock-like” sounds: applause, rain, birds, etc.

Stochastic Event Synthesis: Building a synthesis model

Run model w/ lots of particles

Collect statistics -> Poisson

System energy decays exponentially.
Particle collision causes decaying burst of filtered noise
PhISEM Algorithm

- Exponentially decaying system energy

- Particle sound energy is exponentially (fast) decaying white noise. Sum of exponentially decaying noises is an exponentially decaying noise.

- Each time step, compute likelihood (based on #of particles) of new sound-producing event
 - If so, add to net particle sound envelope energy

- Filter result with system resonances/modes, with reallocation if needed

PhISEM Code Example

```c
#define SOUND_DECAY 0.95
#define SYSTEM_DECAY 0.999

EACH SAMPLE:

shakeEnergy *= SYSTEM_DECAY; // Exponential system decay
if (random(1024) < num_beans) // If collision
    sndLevel += gain * shakeEnergy; // add energy
input = sndLevel * noise_tick(); // Actual Sound is Random
sndLevel *= SOUND_DECAY; // Exponential Sound decay
input -= output[0]*coeffs[0]; // Do simple
input -= output[1]*coeffs[1]; // system resonance
output[1] = output[0]; // filter
output[0] = input; // calculations
```
PhISEM: Stochastic Modal Synthesis

Stochastic resonances
Modal PhISEM examples

- Allow resonances to vary randomly (or not) on each excitation
- Each resonance can have own distribution
- Can reallocate one, two, ..., all each collision

Tambourine
Sleighbells
Bamboo Wind Chimes
Coin(s) in a Cup
Socket Wrench
Related techniques

- Wavelets (background sounds) (Miner)
- Independent Components Analysis (Casey)
- Stochastic Multi-Pulse LPC (Zhu & Wyse)
- Sampled Wavelet Trees (Dubnov, Misra)

- My interest: things that we directly excite/control, and how to control them

- Interactive Digital Foley:
 Analyze walking sounds for higher-level structure/parameters

Interactive Digital Foley → PhOLISE: “Real-world” PhISEM

Physically Oriented Library of Interactive Sound Effects

Interaction sounds, including

Walking!
Modeling Bill’s Gait (AES02)

- Segment sound files
- Extract temporal structure & features
- Do PhISEM analysis
- Resynthesize
- Parametric Synthesis
- ClapLab, Flox, … Analysis(SysID)?
Data Driven Sound (PhISM): “Seen in Shadow”

SIGGRAPH 2000
with Grady Klein,
Adam Finkelstein,
Petrovic, Fujito

Music:
Trueman, Mugan

PhISM Controllers

PhOLIEMat

Picos

TapShoe
Synthesis ToolKit in C++ (STK)

- STK: a set of classes in C++ for rapid experimentation with sound synthesis. Available for free (source, multi-platform)
 - http://www.cs.princeton.edu/~prc
 - http://www-ccrma.stanford.edu/software/stk
- Based on “Unit Generators,” the classical computer music/sound building blocks:
- Oscillators, Filters, Delay Lines, etc.
- Build your own algorithms from these

ChucK: On-the-fly Programming Language

- Open source
- On-the-fly (VM)
- Extensible
- Fun
- Not efficient!!

Book on interactive sound synthesis

- Many examples, figures, soundfiles, and open-source code!

OTHERS: Sounding Object, DAFX, some SIGGRAPH, other

More Resources and References

- **ChucK**: On-the-fly Programming Language
 - Open source
 - On-the-fly (VM)
 - Extensible
 - Fun
 - Not efficient!!
 - Contains STK and lots more
 (sensors, MIDI, OSC, HID, networking)
 - Based on “Unit Generators,” the classical computer music/sound building blocks:
 - Oscillators, Filters, Delay Lines, etc.
 - Build your own algorithms from these

ChucK Book!!

- Many examples, figures, and open-source code!
Upcoming Voice/Tech Book:

La Bella Voce et la Macchina
(the beautiful voice and the machine)

A History of Technology
and the Expressive Voice

Technology: Any human-fashioned
tool, technique, method, law,
notation, enhancement, etc.

Expressive Voice: Singing, acting,
preaching, rapping, praying, etc.

“Steamo”

A Note (or 2) on Voices

• Rich history of speaking machines
• And controllers for vocal models (Von Kempelen 1791, Faber 1840, Dudley 1939 ++)
• Concatenative PCM
A Note (or 2) on Voices (2)

- Rich history of speaking machines
- And controllers for vocal models (Von Kempelen 1791, Faber 1840, Dudley 1939 ++)

• Formant Source/Filter

A Note (or 2) on Voices (3)

- Rich history of speaking machines
- And controllers for vocal models (Von Kempelen 1791, Faber 1840, Dudley 1939 ++)

• Formant Source/Filter
• Physical Articulatory (acoustic tube, Kelly/Lochbaum, Mathews 1960, Cook 1989, ++)
Controlling electronic voice synth: Dudley’s Voder

- 1939 World’s Fair
- Operators (female) manipulate console

Voder: Source/Filter Model

- Noise/Pulse (wrist bar)
- Pitch control (foot pedal)
- Resonances (10 finger sliders)
- Consonant/Stop Presets (thumb buttons)
GloveTalk (Fels and Hinton, 1990+)

- Data gloves and 3D position to control speech synthesizer
- Left Hand “Macros” for Consonants
- Pitch height
- Vowel Space

Articulatory (physical) Voice Synth (SPASM)

- Real time, control is possible
- BUT... many, many parameters
- Not a natural “fit”

Uh....

Huh?

60+ parameters!
Articulatory (physical) Voice Synth (SPASM)

- Real time, control is possible
- BUT... many, many parameters
- Not a natural “fit”

SCurvIA (2011)

1D or 2D controls

60+ parameters!

GameTrak DEMO
SqueezeVox (with Colby Leider 2001)

- Voice Control Issues:
 - Pitch
 - Breathing
 - Articulation
 - etc.
- Fix: Accordiae?

Physical Models in Performance

Interface: Dan Trueman, Curtis Bahn, Tomie Hahn, Perry Cook, Others

- Tomie Hahn: Streams
 - Pikapika (Tomie Hahn)
- Shakers/Bamboo + vocal formant filters
 - Shakers + "Blotar" (non-linear feedback waveguide flute)
(PL)Orkestra(s) of the Future!

Whew!!!!
ACKs

National Science Foundation
Princeton SEAS (Maria Klawe**)
Princeton Freshman Seminar Fund
Princeton Sophomore Initiative
Guggenheim Foundation
MacArthur Foundation
Ariel Foundation
David A. Gardner ’69 Magic Fund
(Princeton Humanities Council)
Kimberly and Frank H. Moss ’71 Research Innovation Fund
(Princeton SEAS).

Props

NIME, PLOrk, TeQWire,
LAP, Colby Leider, Dan Trueman, Ajay Kapur, Ben Knapp, Curtis Bahn, Ge Wang, Rebecca Fiebrink,
Princeton Undergrads, CS and Music Grad Students.

Some others in this space:

• Julius Smith (Stanford/CCRMA): Waveguides++
• Stefan Bilbao (Edinburgh): Wave Digital Filters
• Dinesh Pai (Rutgers), and Kees van den Doel (UBC)
• IRCAM: Rodet, Depalle (McGill), many others
• McGill: Scavone, others
• Sounding Object (SOB, EU consortium):
 – Rocchesso, Avanzini, Bresin, Serafin, Rath, Bernardini,
 Borin, Fontana, Ottaviani
• Marsailles: Korland-Martinet, Ystad, Guillemain
• Andy Farnell: “Procedural Audio” (PD to Wwise plugins)
• Doug James (Cornell) James O’Brien (Berkley)
• Valimaki, Karjalainen, others (Helsinki U T)

Conferences: DAFX,ICMC,ASA,WASPAA,NIME,AES,SIGGRAPH,ISMIR
References: Waveguide & FE Modeling

References: Friction

References: Confined Turbulence

References: LPC and Subtractive

References: Modal Synthesis

References: Sinusoidal Models

Dudley, H. 1939, "The Vocoder," Bell Laboratories Record, December.
SMS Web site. URL: http://www.iua.upf.es/~sms

Refs: PhISEM, Wavelets, Grains

The End:

Consider parametric, physically-motivated sound synthesis

Lots of public domain (unpatented or patents expired) open source code is available

It’s Fun!!

www.chucku.org
(www.vocebella.org)