DSP for Digital Artists

by Perry R. Cook, PhD

a 3-Day CalArts Intersession Short Course, January 14-18, 2019

Day 1: Basics, Definitions, FIR Filters, LTI Systems, Convolution, Sine Waves

Digital Signal Processing

Sampled/quantized signals At regular intervals, hold signal, convert to digital number.

Values (pressure, voltage, etc.) that change as function of time Continuous: x(t) t = timeDigital (discrete): x(n) = sample #

Do various math on sampled digital signal. y(n) = F(x(n))Gain, Filter, Analysis

Delays (t, x, θ) Sinusoids (sine, cosine, exp)

Acoustics, speed of sound Causality (and non-causality) Solution of $\delta^2 x / \delta^2 t$ (block and hop sizes)

Fundamental in nature "Eigenfunctions of LTI Systems" Parameters (Gain, θ) Gains, Weights, phases, (SRate), time delays, block (window) and hop sizes

PsvchoAcoustics: Definition Physical Correlate(s) How to compute it

(a branch of PsychoPhysics)

Square of signal (RMS) $\sum_{n} x^{2}(n)$ Loudness Percept, Intensity Power Pitch Cycles per second (spectral peak) Percept, Low <-> High Frequency

Log Perception and non-linear Scales

Timbre Difference Spectrum+ Many factors, centroid, peaks, time

Time & Timing, Tempo vs. Pitch, Resolvability of events (the 30ms boundary)

The Just Noticeable Difference (JND) Smallest perceived (better than guessing) change

Filters: **Operations on Digital Signals** y(n) = F(x(n))

Popular Simple Filters: y(n) = g x(n)**Linear Gain:** where g = some constant

> y(n) = 0.5x(n) + 0.5x(n-1)**Moving Average:** (low-pass) High-Pass Cousin: y(n) = x(n) - x(n-1)(digital differentiator)

Also called OneZero Filter, Averaging more samples: More Zeroes!!

Finite Impulse Response (FIR) Filter Also type of

Sinusoids (Sine Waves) Mass/Spring Damper, Pendulum, Rotations (Trig!), RLC Circuits

Code and Demos:

0-SamplingNMore In Processing, Demonstrates Sampling, Quantization Pendulum MassSpring RotateSine Processing Code for Physical Systems 0c-Quantize.ck Ob-PhoneBandwidth.ck Quantization and SRate Demos ZeroX P rocessing Code to demonstrate zerocrossings 5-ZCNative.ck 6-ZCUGs.ck 7-ZCPitch.ck Zeroes2.ck ZeroXing "Pitch" Demos 1-PeakNative.ck 1b-PeaksGUI.ck Track (and display) waveform peaks OneZero.ck FIRNthOrder.ck FIR Filters 2-SparsePower.ck 3-RMSPowerNative.ck Sum of Squares Power

Assignment: 1) Some PsychoAcoustic Metric: Measure something about you. Use JND Paradigm.

DSP for Digital Artists

a 3-Day Short Course, by Perry R. Cook, PhD CalArts Intersession January 14-18, 2019

Day 2: More Filters, Feedback Filters, More Sine Waves, Spectrum Analysis, Modal Synthesis

Some More Time-Domain "Pitch" Detection:

AMDF: pick m that minimizes: **Autocorrelation:** pick m that maximizes:

 $y(n) = \sum_{n} |x(n) - x(n-m)|$ $y(n) = \sum_{n} x(n) * x(n-m)$

Impulse Response:

Transfer Function:

h(n) = y(n), in response to input $x(n) = \delta(n)$ H(f) = Y(f), for every $x(t) = \sin(2\pi ft)$

 δ (n) = 1 if n==0, 0 otherwise Digital: H(n) = Y(n), for x(n) = $\sin(2\pi f n/SR)$

Linear, Time Invariant (LTI) Systems

Linearity: Homogeneity ($\alpha x \rightarrow \alpha y$) and Superposition ($x_1 + x_2 \rightarrow y_1 + y_2$)

Time Invariance: $x(\tau + t) \rightarrow y(\tau + t)$ for all τ

OnePole: $(1^{st} \text{ Order feedback}) \quad y(n) = gx(n) + ry(n-1) \quad \text{NOTE: } r \le 1.0 \quad !!!$

Set r and g exactly 1.0 yields "Digital Integrator" Set 0.0 < r < 1.0 and g = (1.0 - r) Low-pass filter High-pass Cousin: set -1.0 < r < 0.0 High-pass filter

Convolution $y(n) = \sum_{m} x(n-m) h(m)$ implement Impulse Response as FIR filter

<u>Filters:</u> y(n) = F(x(n)) Operations on Digital Signals

Popular Simple Filters: Linear Gain: y(n) = g x(n) where g = some constant

Moving Average: y(n) = 0.5x(n) + 0.5x(n-1) (low-pass) High-Pass Cousin: y(n) = x(n) - x(n-1) (digital differentiator)

Also called **OneZero Filter**, Averaging more samples: More Zeroes!!

Also type of Finite Impulse Response (FIR) Filter

Recursive Filters: Feedback, Auto Regressive, IIR, Pole(s)

OnePole Filter: y(n) = g x(n) + r y(n-1) NOTE: | r | < 1.0

NPole Filter: $y(n) = g x(n) + \sum_{m=1 \text{toN}} -b_m y(n-1)$

Super Special Filter, 2-Pole "Resonator" $y(n) = g x(n) + 2r cos(2\pi f/SR) y(n-1) - r^2 y(n-2)$

Modal Synthesis: Modes = natural resonances of system. Excite those and let them ring!

Code and Demos: See Day2.zip

Assignment: Impulse Responses & Modes: Look around, listen, find some systems. Find/Record Modal sound. Use FFTFindModes to analyze it. If you're brave, use FFTResynth (Noise and/or Residue) to recreate it.

DSP for Digital Artists

by Perry R. Cook, PhD

DSP for Digital Artists

a 3-Day Short Course, by Perry R. Cook, PhD CalArts Intersession January 14-18, 2019

Day 3: Physics, Delays, Strings, Winds, Statistical Models

Room Acoustics:

Modes??? = natural resonances of system, but too many of them. Impulse Response??? Sure, but pretty long, and lots of CPU Delay Lines!! Speed of sound is about 1125 feet per second

Ideal String: $c^2 d^2y / dx^2 = d^2y / dt^2$ c = Speed of Sound (on string)

Curvature Acceleration

Solutions: Harmonic Sum of Modes (Fourier) $y(x,t) = \sum_{m} a_m \sin(m\pi x/L) \cos(m\pi ct/L)$

L = string length

Traveling Waves (D'Alembert) $y(x,t) = y_L(t+x/c) + y_R(t-x/c)$

Left-going Right-going

Instruments: Basic Karplus/Strong Plucked String, Full Commuted Model with Pick position

Ideal Tube: SAME Equations and Solutions!! (but different conditions at ends)

Instruments: Clarinet, Brass, Flute

Voice: Modes (Formants), excited by source(s)

OR: Same traveling wave, but tube changes shape continuously

Particles, Statistical Models:

Whistle: 1 particle, Helmholtz (sine) resonator/oscillator

Maraca: Many particles, single shared resonance

Code and Demos:

- A. 1 Delay, add feedback
- B. 2 Delay (stereo), add mod, feedback, change sign
- C. 3 Feedback delays, reverb
- C2. Another simple Reverb Model
- C3. Add One-Pole Low-pass filters
- D. Feedback Delay, Shorten until pitch
- E. KarplusStrong (Comb Filter)
- E2. CombFilter (karplus resonator)
- E3. DAlembertString
- F. 3 Feedback Delay, make chord (1/400,1/500,1/600)
- G. Commuted Synthesis, Body Knock => string
- G2. ChucKMandolin (full commuted synthesis, pluck position, damp, etc.)
- H. Clarinet
- J. Flute
- K. Brass
- L. PhysicalGUI Lots of Physical Wind Models
- M. Whistle
- N. Shakers