
On the Expansion of Graphs

Pedro Paredes

CMU-CS-22-136

August 2022

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Ryan O’Donnell, Chair

Anupam Gupta
Pravesh Kothari

Luca Trevisan, Bocconi University
Nikhil Srivastava, UC Berkeley

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2022 Pedro Paredes

This research was sponsored by the National Science Foundation under award numbers CCF-171606 and CCF-
1909310, and the U.S. Army Research Office under award number W911NF2110001.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or
any other entity.

Keywords: Spectral Graph Theory, Expander graphs, Pseudorandomness

To my mother (Emı́lia) and my little brother (Jibu)

iv

Abstract
A popular way of analyzing a graph is through spectral properties of its associ-

ated matrices, such as the adjacency matrix or the Laplacian matrix. This type of
analysis has produced several insights with practical applications in diverse areas,
including internet search, clustering and segmentation of data and many more. From
a theoretical perspective, spectral graph theory is such a fundamental tool that its
applications span virtually the whole field of theoretical computer science.

One of the many successes of this area is the notion of graph expansion. A graph
is expanding if it is simultaneously sparse and highly connected (meaning that we
need to remove a lot of edges to disconnect a large part of the graph.) Since being
defined in the ’70s, expander graphs have spawned a lot of research with many
applications in mathematics, computer science and even physics.

This thesis attempts to further the study of these objects by focusing on three
fundamental questions:

• How can we construct explicit (i.e. deterministically and efficiently) ex-
panding graphs? We devised an explicit construction of nearly optimal ex-
panding regular graphs of all degrees. We also showed how to use this result to
obtain nearly optimal expanding graphs with high girth (i.e. that do not contain
small cycles).

• What is the expansion of random graphs drawn from different distribu-
tions? We analyzed the expansion of several types of different random graph
distributions based on graphs products, like random additive lifts and random
abelian lifts.

• How can we leverage expansion in other domains? We showed how to an-
alyze the SDP value of a family of random constraint satisfaction problems
(CSPs) and also how to construct explicit nearly linear distance quantum low
density parity check (LDPC) and quasi-cyclic LDPC error correcting codes in
polynomial time.

vi

Acknowledgments
If you are reading this then you either expect to see your name on this list or you

are someone I meet in the future that is curious to see what I wrote. For the former, I
really want to thank you for everything and I apologize if you don’t find your name
on the following list. For the latter, hello! I can’t wait to meet you in the future.

When I joined CMU in 2017 to start my PhD I knew I wanted to do something
theoretical and “mathy”, but I was completely unprepared to do so. I lacked the
knowledge of most basic concepts in theoretical computer science that most of the
CMU undergrads interested in the area knew well (as I painfully found out when I
took my first class). As I was learning what the professors here were working on I
got really interested in the work that my now advisor Ryan O’Donnell was doing. To
this day I still wonder why he decided to take me, a clueless first year, as his student,
but I am deeply grateful that he did so. Ryan tolerated my ineptitude and guided
me to finding an area of research that I really enjoy and am able to do work on. I
learned so much more than I thought possible thanks to Ryan. I am also so thankful
for all the support and motivation, I am proud to call Ryan my friend and I hope we
go back to Heinz Field (my favorite place in Pittsburgh) to watch the Steelers.

Like any good PhD student, I thought about quitting multiple times. My work
was never going well and I didn’t think I was good enough to be a researcher. I was
lucky to have many collaborators that made the process of failing tolerable and the
successes fun. I have to especially thank Sidhanth Mohanty, without whom I don’t
think I would have been able to publish my first paper, which made me believe I
could do it again. I am also really grateful to Ainesh Bakshi, who gave me so much
advice, heard me whine about grad school multiple times and so much more. He was
probably the most important person not named Ryan to my academic career. I also
want to thank all of the amazing people that were my collaborators during my PhD:
Ainesh Bakshi, Timothy Chu, Fernando Granha Jeronimo, Theo McKenzie, Tushant
Mittal, Sidhanth Mohanty, Ryan O’Donnell, Kevin Pratt, Rocco Servedio, Li-Yang
Tan, Luca Trevisan, Madhur Tulsiani and Xinyu Wu. Additionally, I am thankful
to all the other people that gave me academic advice and supported me: Anupam
Gupta, Bernhard Haeupler, Pravesh Kothari, Danny Sleator, Nikhil Srivastava and
Goran Žužić. I also owe a lot to the CS Department at CMU — faculty, fellow
students and administration (especially Deb and Catherine!).

Before I started my PhD I had a very different life back in my home country
of Portugal. I wouldn’t be here if it weren’t for the people I met there. I want to
especially thank Pedro Ribeiro, my advisor throughout high school and my under-
graduate, who introduced me to computer science and the world of research. I am
also grateful to all the professors and teachers that taught me so much even though
I was an arrogant student most of the time. And a big thank you to all my friends,
I can’t name you all but I want to name a few of you: Laura, Pedro Teles, Michel,
David, Francisco, Rodrigo, Ramos, Pires, Filipe, Duarte, Patrick, Alberto, Claúdia,
Ricardo, Castanheira, Miguel and Kevin.

I was so so lucky to have had such amazing friends during my time in Pittsburgh.
Once again I can’t name you all but I’ll try to name a few: Ainesh Bakshi, Michaela
Barry, David Bernal, Rodrigo Bernardo, Vijay Bhattiprolu, Emily Black, Calyl, Tim
Chu, Marina DiMarco, Magdalen Dobson, Aymeric Fromherz, Sydney Gibson, El-
lis Hershkowitz, Raj Jayaram ♥, Kai Jayaram, Ryan Kavanagh, Greg Kehne, Klas
Leino, Roie Levin, Jason Li, Peter Manohar, Sidhanth Mohanty, Luı́s Oliveira, Filipe
Peres, Kevin Pratt, Nic Resch, João Ribeiro, Elena Salas, David Wajc, Maya Shen,
Rui Silva, Alex Wang, Sam Westrick, Xinyu Wu, Sofia Gómez, Jeff Xu, Goran
Žužić. You all made me enjoy life and grow immensely as person. I am who I am
because of you. I also want to especially thank Emily Black and Laura Sobral, who
helped me survive the toughest days of the COVID-19 pandemic and have been my
support network for a long time.

I could never forget to thank my family, who I had to abandon to start a new life
in a new continent. My mother Emı́lia and my brother Gonçalo (to whom I dedicate
this thesis), my aunt Bina, my grandma Celina, my uncle Paulo and my aunt Nani,
my cousins Paula, Zé e Inês, my aunt Nelita and uncle António, my cousins Inês
and Rodrigo and all the kids, my “second mom” Cristina and all the Simões, my
brother’s partner Viktoriya. I also want to mention my grandpa Paredes, who passed
away before I started college, and my grandma Mia, who passed away while I was
doing my PhD, I’ll never forget you. I further have to thank my “American family”,
the Wellners: Linda, Pierre, Jules, Tristan, Emily and Lucie, Magdeleine and Marcel.

Finally, I thank the two most important people in my life: Horace, the best kitty
in the world, who laid next to me while I wrote most of this thesis and helped me
proofread it; and my partner Zoe Wellner, who showed me happiness exists and
supported me immensely through so much.

Thank you all.

viii

Contents

1 Introduction 1
1.1 A (formal) journey through the world of expanders 2

1.1.1 Constructing expanding graphs . 4
1.1.2 The expansion of random graphs . 7
1.1.3 Applications of expanders . 8

1.2 Outline of this thesis . 9

2 A Self-Contained Proof of the Main Technical Tool 11
2.1 Statement of the theorem . 12
2.2 Setting up the proof . 13
2.3 The random part . 17
2.4 The deterministic part . 19

2.4.1 Encoding the hike graph . 20
2.4.2 Encoding the walk . 22
2.4.3 Full encoding . 24

2.5 The final countdown . 24

3 Background 27
3.1 Graphs and linear algebra . 27
3.2 The trace method, non-backtracking walks and the Ihara–Bass formula 28
3.3 Random models of regular graphs . 30
3.4 Standard derandomization tools . 31
3.5 A primer on coding theory . 33

4 2-Lifts and Explicit Near-Ramanujan Graphs 35
4.1 Overview of main results . 35

4.1.1 On Bordenave’s theorem with random edge-signs 36
4.1.2 Explicit near-Ramanujan graphs via repeated 2-lifts 37

4.2 On bicycle-freeness . 38
4.3 On random edge-signings of fixed bicycle-free base graphs 40
4.4 Weakly derandomizing Bordenave’s theorem for random lifts 44

4.4.1 Derandomizing Bicycle-freeness . 45
4.4.2 Bound on the modified trace . 46

4.5 Explicit near-Ramanujan graphs . 47

ix

4.6 The probabilistically strongly explicit construction 49

5 Additive Lifts, CSPs and Two-Eigenvalue Graphs 51
5.1 Background . 51

5.1.1 Our results . 54
5.1.2 Sketch of our techniques . 55

5.2 Preliminaries . 59
5.2.1 2XOR optimization problems and their relaxations 59
5.2.2 Quantum games, and some quantum-relevant constraints 60
5.2.3 2XOR graphs with only 2 distinct eigenvalues 62
5.2.4 Random constraint graphs, instance graphs, and additive products 62
5.2.5 Nomadic walks operators . 65
5.2.6 Operator theory . 66

5.3 An Ihara–Bass formula for additive lifts of 2-eigenvalue atoms 66
5.4 Connecting the adjacency and nomadic spectrum 72
5.5 Additive products of 2-eigenvalue atoms . 74

5.5.1 Enclosing the spectrum . 76
5.5.2 Construction of Witness Vectors . 78
5.5.3 SDP solution for random additive lifts 81

5.6 Friedman/Bordenave for additive lifts . 83
5.6.1 Trace Method setup, and getting rid of tangles 84
5.6.2 Eliminating singletons, and reduction to counting 87
5.6.3 Tangle-free, singleton-free linkages are nearly duplicative 89
5.6.4 The final countdown . 90

5.7 The SDP value for random two-eigenvalue CSPs 95

6 Girth and Ramanujan Graphs 97
6.1 Regular graphs and short cycles . 97

6.1.1 Our results . 98
6.2 Short cycles removal . 100

6.2.1 Analyzing the girth of fix(G) . 103
6.2.2 Bounding λ(fix(G)) . 104

6.3 A near-Ramanujan graph distribution of girth Ω(logd−1N) 107
6.3.1 Counting near-Ramanujan graphs with high girth 108

6.4 Explicit near-Ramanujan graphs of girth Ω(
√

log n) 109
6.4.1 Derandomizing the number of short cycles 110

7 Abelian Lifts and Applications to Coding Theory 113
7.1 Symmetries and codes . 113

7.1.1 Our results and techniques . 115
7.1.2 Derandomized quantum and classical codes 117

7.2 Non-backtracking walks and the Ihara–Bass formula for group lifts 117
7.2.1 Diagonalizing the non-backtracking operator 118
7.2.2 An Ihara–Bass formula for signed graphs 119

x

7.3 Proof strategy . 120
7.4 A new encoding for special walks . 123

7.4.1 Graph encoding . 124
7.4.2 Bounding special walks . 127

7.5 Explicit expanding abelian lifts . 128
7.5.1 Generalizing the trace power nethod . 128
7.5.2 Combining all the ingredients . 130

7.6 Explicit quantum and classical codes . 131

8 Open Problems and Closing Remarks 133

Bibliography 137

xi

xii

Chapter 1

Introduction

The subject of this thesis is the expansion of graphs. To motivate this concept, image that some
company has a big data center with n servers that need to compute something and transmit
data between themselves. To do so, the company wants to connect the different servers (e.g.
with physical wires) so that every pair of servers can communicate, potentially by transmitting
information through other servers. At the same time, it is important that the network of servers is
robust, which for our purposes means that if any small percentage of the wires are disconnected,
most of the servers will still be able to communicate.

An immediate answer to this problem is to just connect every single pair of servers, it is
impossible to do better since these are all the possible connections we can place. However, each
wire we place is expensive, so what if we want to minimize the number of connections in this
network of servers? To summarize, we want a network that is simultaneously sparse and highly
connected. This is exactly what an expander graph is, i.e. a graph with good expansion

Let us now consider a different more abstract problem. Suppose we want to build an undi-
rected graph on n vertices. After we build this graph we are going to take a random walk on
it, that is, we start at an arbitrary vertex and then pick one of its neighbors uniformly at random
and walk to it. We then pick another neighbor uniformly at random and we repeat this procedure
until we have visited the whole graph. Our goal is to pick a graph that minimizes the expected
number of steps we have to take before we visit all of the vertices of the graph.

It is not as immediate as before, but we can show that again the complete graph is the best
graph. But, again, what if we want a small number of edges (i.e. a sparse graph)? Intuitively
we want a sparse graph where we never get “stuck”, meaning that the probability of revisiting
a vertex is as small as possible as we keep walking. One can show that this is related to being
highly connected and so (perhaps surprisingly) the solution to this second problem is again an
expander graph.

These two examples show two applications of expander graphs, but they also illustrate how
diverse they can be. Our first example is a purely combinatorial problem that concerns connect-
edness in graphs. The second example is a probabilities problem on the expectation of a random
variable. This versatility of expanders explains why they are so ubiquitous, since they can find
applications in so many domains. Furthermore, it also let us approach problems in expanders
from different perspectives and we are free to pick whichever one makes the problem easier to
tackle.

1

The history of the study of expansion started in the ’70s, when they were first defined and
their existence was showed. Since the, there has been an extraordinary amount of research that
continues to this day and new applications continue to be found in not only computer science,
but mathematics and physics.

In this thesis we will further the study of expander graphs by proposing new constructions
of expander graphs, by analyzing the expansion of random graphs and by giving applications of
these to theoretical computer science.

1.1 A (formal) journey through the world of expanders

Consider an undirected n-vertex multigraph (self loops and multiple edges are allowed) G =
(V (G), E(G)), |V (G)| = n and for v ∈ V (G) let’s denote by N(v) the set of neighbors of v.
We say that G is a d-regular graph if all vertices have degree exactly d, meaning that for all
v ∈ V (G) we have |N(v)| = d. For sets of vertices S, T ⊆ V we denote by E(S, T) the set of
edges that have one endpoint in S and one endpoint in T , formally E(S, T) = {(u, v)|u ∈ S, v ∈
T, (u, v) ∈ E(G)}. We also denote by S = V (G) \ S the complement of S. The edge boundary
of a set S, denoted ∂S, is defined as the set of edges with one endpoint in S and one endpoint
outside of S, or formally ∂S = E(S, S). Here is one formal way to define expansion:
Definition 1.1.1 (Edge Expansion Ratio). The edge expansion ratio of G, denoted h(G), is
defined as:

h(G) = min
S∈V (G)
|S|6n

2

|∂S|
|S| .

Note that a disconnected graph has edge expansion ratio of 0, since if we take S to be the
smallest connected component of the graph (which must contain at most half the vertices) the
boundary of such set is empty. It is also easy to see that if a graph has maximum degree ∆ then
the edge expansion ratio is at most ∆, since for a set of vertices S the maximum number of edges
with one endpoint in S is at most ∆ · |S|.

We can study the edge expansion ratio of any graph, but as we will see later, it is especially
interesting to look at the case of sparse graphs. To do so we will consider d-regular graphs,
since if we think of d as a constant but n going to infinity, then the resulting family of graphs
is sparse. We choose to fix the degree of all vertices because on one hand this will introduce
extra constraints to the problems we study (and thus, it will only make them harder to solve), but
on the other hand it is nicer to analyze the regular case. Additionally, there are many theoret-
ical applications where fixing the degree is actually important. So this motivates the following
definition:
Definition 1.1.2 (Family of Edge Expander Graphs). An infinite sequence of d-regular graphs
{Gi}i∈N of vertex set size increasing with i is said to be a family of edge expander graphs if there
is a constant ε > 0 such that h(Gi) > ε for all i.

This definition is motivated by our initial informal description of expanders as “sparse and
highly connected”. The sparseness comes from our use of d-regular graphs. As for being highly

2

connected, notice that if we want to disconnect a set S of vertices from the rest of the graph we
need to remove at least ε|S| edges.

Let’s now consider a different way of characterizing expansion, through spectral properties
of graphs. The adjacency matrix AG of G is the matrix with rows and columns indexed by the
vertices of G, where for u, v ∈ V (G), (AG)uv is equal to the number of occurrences of the edge
{u, v} in E(G). Since we are assuming that G is undirected, AG is a real symmetric matrix and
thus the spectral theorem tells us that there are n real eigenvalues with corresponding orthogonal
eigenvectors. We order the eigenvalues and denote them by λ1 > λ2 > . . . > λn. The largest
eigenvalue λ1 is known as the trivial eigenvalue, which is always equal do d for regular graphs.
Definition 1.1.3 (Spectral Expansion). The spectral expansion of G, denoted λ(G), is defined
as:

λ(G) = max{λ2, |λn|}.
And, as we did before, we can define a family of spectral expander graphs.
Definition 1.1.4 (Family of Spectral Expander Graphs). An infinite sequence of d-regular graphs
{Gi}i∈N of vertex set size increasing with i is said to be a family of spectral expander graphs if
there is a constant δ > 0 such that h(Gi) 6 (1− δ)d for all i.

The aforementioned properties of AG imply that λ(G) is a real number between 0 and d. If
the graph G is disconnected then it is known that λ2 = d, which means λ(G) = d. Conversely, if
G is a complete graph then all eigenvalues except λ1 are−1, so λ(G) = 1. This suggests a similar
behavior to the edge expansion ratio, where if a graph is disconnected then λ(G) is large (and
h(G) is small) and if a graph is highly connected then λ(G) is small (and h(G) is large), hence
why λ(G) is known as spectral expansion. This connection can be made quantitative through
what is known as Cheeger’s Inequality, which was originally proved by Dodziuk [Dod84] and
independently by Alon and Milman [AM85].
Theorem 1.1.5 (Cheeger’s Inequality).

d− λ2

2
6 h(G) 6

√
2d(d− λ2).

Another way to interpret how λ(G) governs the expansion of a graph is through the Expander
Mixing Lemma, which was first proved by Alon and Chung [AC88].
Lemma 1.1.6 (Expander Mixing Lemma). For all S, T ⊆ V ’:∣∣∣∣|E(S, T)| − d|S||T |

n

∣∣∣∣ 6 λ(G)
√
|S||T |.

We can interpret this lemma in two ways. First, by considering T = S we recover another
connection between λ(G) and h(G). Second, the quantity d|S||T |/n is the expected number of
edges between S and T in a random graph of density d/n. So this lemma tells us that in a spectral
expanding graph all pairs of sets of vertices have a number of crossing edges close to what is
expected in a random graph. This property motivates calling expander graphs pseudorandom and
indeed the Expander Mixing Lemma finds many applications in the theory of pseudorandomness.

A natural question that follows from the above is: how small can λ(G) be? This funda-
mentally asks what is the optimal spectral expander. The answer is given by the well-known
Alon-Boppana bound, which was shown in a series of works [Alo86, Nil91, Fri93], that says:

3

Theorem 1.1.7 (Alon-Boppana Bound).

λ2 > 2
√
d− 1−O

(
1

log2 n

)
.

This shows that 2
√
d− 1 is essentially a lower bound to the spectral expansion and hence it

leads to the following definition of optimal spectral expanders:
Definition 1.1.8 (Ramanujan Graphs). A d-regular (multi)graphG is called (two-sided) Ramanu-
jan whenever λ(G) 6 2

√
d− 1. When we merely have λ2 6 2

√
d− 1, we call G one-sided

Ramanujan.
Now the question of the existence of explicit constructions of such graphs arises. By explicit

we mean that there is a deterministic and efficient algorithm to generate such a graph. However,
we can define efficiency in different ways.
Definition 1.1.9 (Explicit Constructions). We define the following three notions of explicitness:

• An algorithm is weakly explicit if given integers n and d, it generates an n-vertex d-regular
Ramanujan graph in time polynomial in n.

• An algorithm is strongly explicit if given integers n and d, it generates a representation
A of an n-vertex d-regular Ramanujan graph such that: when given as input a vertex
v ∈ {1, . . . , n} and a neighbor i ∈ {1, . . . , d}, there is an algorithm that computes the ith
neighbor of v in polylog(n) time.

• An algorithm is probabilistically strongly explicit if given integers n and d and a seed
s ∈ {0, 1}O(logn), it generates a representation A of an n-vertex d-regular graph that is
Ramanujan with high probability over the choice of seed s and such that: when given as
input a vertex v ∈ {1, . . . , n} and a neighbor i ∈ {1, . . . , d}, there is an algorithm that
computes the ith neighbor of v in polylog(n) time.

Our discussion so far justifies the first fundamental question that this thesis is centered
around:
Question 1. How can we construct explicit expanding graphs?

1.1.1 Constructing expanding graphs

Margulis [Mar73] was the first to provide an explicit expander family; a slight variant of it, which
is 8-regular, was shown [GG81] to have λ 6 5

√
2 ≈ 7.1 (see [HLW06]).

When d − 1 is an odd prime, Ihara [Iha66] (implicitly, cf. [Cla06]) and Lubotzky–Phillips–
Sarnak [LPS88] and Margulis [Mar88] (independently) showed how to explcititly construct Ra-
manujan graphs. The d− 1 = 2 case was construced by Chiu [Chi92]. The general prime power
case mentioned below is due to Morgenstern [Mor94]. For extensions to general d where the
eigenvalue bound depends on the number of distinct prime divisors of d− 1, see [Piz90, Cla06].
Theorem 1.1.10. ([Mor94].) For any d > 3 with d−1 a prime power, there is a strongly explicit
family of d-regular Ramanujan graphs.

For all other values of d — e.g., for d = 7 — it is unknown if infinite families of d-regular
Ramanujan graphs exist (but see Theorem 1.1.15 below for the one-sided bipartite case).

4

A natural question then is whether, for every d, one can achieve explicit graph families that are
“ε-near-Ramanujan”, meaning families that have λ(G) 6 2

√
d− 1 + ε. In their work introduc-

ing the zig-zag product, Reingold–Vadhan–Wigderson [RVW02] asked whether explicit families
could at least reach a bound of O(

√
d); towards this, their work gave strongly explicit families

with λ(G) 6 O(d2/3). By extending their approach, Ben-Aroya and Ta-Shma reached d1/2+o(1):
Theorem 1.1.11. ([RVW02, BT11].) There are strongly explicit families of d-regular multi-
graphs G satisfying the bound λ(G) 6

√
d · 2O(

√
log d).

Bilu and Linial [BL06] got even closer to O(
√
d), using a new approach based on random

lifts that will prove important to us. Their graph families are not strongly explicit, although
Bilu–Linial point out they are at least probabilistically strongly explicit.
Theorem 1.1.12. ([BL06].) There are explicit families of d-regular multigraphs G satisfying the
bound λ(G) 6

√
d ·O(log1.5 d).

Due to their asymptotic-in-d nature, neither of Theorems 1.1.11 and 1.1.12 gives much help
for specific small values of d not covered by Morgenstern, such as d = 7. In such cases, one
can use a simple idea due to Cioabă and Murty [CM08] (cf. [dlHM06]): take a prime (or prime
power) q < d− 1, form a (q + 1)-regular Ramanujan graph, and then add in d− q − 1 arbitrary
perfect matchings. It is shown in [CM08] that each perfect matching increases λ(G) by at most 1.
Hence:
Theorem 1.1.13. ([CM08].) For any d > 3, there is a strongly explicit family of d-regular
multigraphs with λ(G) 6 2

√
d− 1 + gap(d), where gap(d) denotes the least value g such that

d − 1 − g is a prime (power). One can bound gap(d) by O(log2 d) under Cramér’s conjecture,
by O(

√
d log d) under the Riemann Hypothesis, or by O(d.525) unconditionally.

For example, this gives strongly explicit 7-regular multigraphs with λ(G) 6 2
√

5 + 1 < 5.5. For
comparison, the Ramanujan bound is 2

√
6 < 4.9.

A similar simple idea was pointed out to us by Noga Alon, who first mentioned it in several
lecture notes in the 90s. Given two n-vertex graphs G1 and G2 respectively d1-regular and d2-
regular, which satisfy λ(G1) 6 λ1 and λ(G2) 6 λ2, the edge disjoint union of the two forms an
n-vertex graph which is d1 + d2-regular and has λ 6 λ1 + λ2. With this in mind, let d1 = d
and take the largest prime p1 with p1 + 1 6 d1, such that there are Ramanujan graphs with
degree p1 (as given by [LPS88]). Now, put d2 = d1 − p1 − 1 and find the largest prime p2 with
p2 + 1 6 d2, such that there are Ramanujan graphs with degree p2. Repeat this procedure several
times and take the edge-disjoint union of each produced graph. This results in a d-regular graph
with λ 6 (2+od(1))

√
d. This recently appeared in print in [Alo21]. Note that this is not strongly

explicit since it requires finding large primes, Alon addressed this issue in [Alo21] to obtain the
following:
Theorem 1.1.14. ([Alo21].) For any d > 3, there is a strongly explicit family of d-regular graphs
with λ(G) 6 (2 + od(1))

√
d.

Finally, Marcus–Spielman–Srivastava [MSS15a, MSS15b] recently introduced the Interlac-
ing Polynomials Method and used it to show that one-sided bipartite Ramanujan graphs exist for
all d > 3 and all even n. Their proof was merely existential, but Cohen [Coh16] was able to
make it explicit (though not strongly so):
Theorem 1.1.15. ([MSS15a, MSS15b, Coh16].) For any d > 3, there is an explicit family of
one-sided bipartite, d-regular, Ramanujan multigraphs.

5

As mentioned, this theorem gives an n-vertex graph for every even n, which is slightly better
than all other results mentioned in this section, which merely give graphs for a dense sequence
of n’s (typically, a sequence nj with nj+1 − nj = o(nj)). Also, as pointed out to us by Nikhil
Srivastava, pairing left and right vertices in the construction from Theorem 1.1.15 and merging
them gives “twice-Ramanujan” graphs of every even degree; i.e., 2d-regular graphs for all d > 3

with λ(G) 6 4
√
d− 1. We include a short proof here: let Ã =

[
0 A
AT 0

]
be the adjacency

matrix of a d-regular bipartite Ramanujan graph. Then A + AT is the adjacency matrix of the

merged graph. For any x orthogonal to ~1, (A + AT)x =
[
1 1

]
Ã

[
x
x

]
. Thus

∥∥(A+ AT)x
∥∥ 6

√
2 ·
∥∥∥∥Ã [xx

]∥∥∥∥, where ~1 is the all-ones vector and 1 the identity matrix. Since
[
x
x

]
is orthogonal

to both
[
~1
~1

]
and

[
~1

−~1

]
, we have

∥∥∥∥Ã [xx
]∥∥∥∥ 6 2

√
d− 1

√
2‖x‖. One can then conclude that

‖(A+ AT)x‖ 6 4
√
d− 1‖x‖.

One can then obtain (2d+1)-regular graphs with λ(G) 6 4
√
d− 1+1 by adding an arbitrary

perfect matching via the result of [CM08].
We summarize all these results in Section 1.1.1.

Table 1.1: Summary of expander construction prior to this thesis.

Who? Which d?
Eigenvalue

bound
2-sided?

Strongly

explicit?

Always

simple?

vertices

given n

[Iha66, LPS88, Mar88, Chi92, Mor94] prime power + 1 2
√
d− 1 3 3 3 n(1 + o(1))

[Piz90, Cla06] any d 2om(d−1)
√
d− 1 ∗ 3 3 7 n(1 + o(1))

[RVW02, BT11] any d
√
d · 2O(

√
log d) 3 3 7 Θ(n)

[dlHM06, CM08] any d

2
√
d− 1 +O(log2 d) †

√
d ·O(log d) ‡

O(d.525)

3 3 3§ n(1 + o(1))

[BL06] any d
√
d ·O(log1.5 d) 3 7¶ 3 n(1 + o(1))

[Alo21] any d (2 + od(1))
√
d 3 3 3 n(1 + o(1))

[MSS15a, MSS15b, Coh16] any d 2
√
d− 1 7 7 7 2dn/2e

∗ In the this entry we have written om(d− 1) for the number of distinct prime divisors of d− 1. Thus [Cla06] generalizes the preceding “prime

power + 1” entry of [Mor94]. Also, 2om(d−1) is at most 2O(log d/ log log d) = do(1) for all d, and is (2 + o(1))ln ln d = O(log0.7 d) for

“most” d.
† Assuming Cramér’s conjecture. ‡ Assuming the Riemann Hypothesis.
§ The construction can be made simple at the expense of making it not strongly explicit.
¶ The construction is probabilistically strongly explicit.

One of the main contributions of this thesis is a probabilistically strongly explicit construction
of nearly optimal expanding regular graphs. In particular, we construct near-Ramanujan graphs
(i.e. graphs that satisfy λ(G) 6 2

√
d− 1 + ε, for positive constant ε) of arbitrary degree. To

establish this result, we showed how to find expanding two-lifts. These are a type of graph
product that doubles the number of vertices of a regular graph while preserving its regularity.
Additionally, it “mildly” scrambles the edges of the original graph, so that a random application

6

of this graph product retains the spectral properties of the base graph with high probability. The
implication of this to the construction of near-Ramanujan graphs is that we can do so by starting
with a small base graph with nice spectral properties and then repeatedly lift it until we obtain a
large expanding graph.

Besides constructing expanding graphs, it is also of interest to construct expanding graphs
that additionally have some other property. Let us consider the girth of a graph, that is the length
of the shortest cycle of a graph. Expanding graphs that also have high girth, meaning that do not
contain any short cycles, have many applications in different areas. One example of such is in
coding theory, where expander graphs with high-girth help constructing certain error corrector
codes that can be efficiently decoded. Motivated by the previous, another contribution of this
thesis is the construction of near-Ramanujan graphs that also have high girth.

An additional property that is interesting to combining with expansion is the existence of
certain symmetries. Informally, we say that G has symmetries of H if H ⊆ Aut(G), where
Aut(G) denotes the group of all graph isomorphisms to itself. As we will see in Chapter 7,
constructing expander graphs with given symmetries has many applications. With this motivation
in mind, in we study a generalization of the two-lift graph product based on groups and we
describe explicit constructions of expanders obtained via abelian lifts.

Throughout this thesis as we prove these results we will see that we apply similar ideas to
show that the graph products of interest are expanding. This “core proof template” was intro-
duced and then refined and repeatedly applied. To ease the reading of the main technical sections,
we provide in Chapter 2 a mostly self-contained proof of the simplest application of this proof
template, using ideas from all the pretty much all chapters of this thesis.

A natural follow up to the question of this section is to ask how is expansion distributed over
random graphs of different distributions. This is exactly what this thesis’ second fundamental
question asks.
Question 2. What is the spectral expansion of random graphs drawn from different distributions?

1.1.2 The expansion of random graphs

The most well-known result of this nature is related to the behavior of uniformly random reg-
ular graphs. Alon [Alo86] conjectured that a random n-vertex d-regular graph G has λ(G) 6
2
√
d− 1+on(1) with high probability, and this was proven two decades later by Friedman [Fri08]

and later a simpler proof was given by Bordenave [Bor19].
Theorem 1.1.16 ([Fri08].). Fix any d > 3 and ε > 0 and letG be a uniformly random d-regular
graph. Then

Pr
[
λ(G) 6 2

√
d− 1 + ε

]
> 1− on(1).

In fact [Bor19],G achieves the subconstant ε = Õ(1/ log2 n) with probability at least 1− 1/n.99.
We will see in this thesis how to achieve similar results to graphs drawn from very differ-

ent looking distributions. In fact, most of the construction results mentioned in the previous
subsection were obtained by showing that random graphs drawn from a certain distribution are
expanding with high probability and then we show how to derandomize those results. So to find
expanding two-lifts we first show that uniformly random two-lifts of a graph are expanding and

7

then we show how to find one by derandomizing this result. The same applies to the result on
abelian lifts.

We also show a generalization of Theorem 1.1.16 to the case of additive lifts. These are
yet another generalization of two-lifts that have applications in the theory of random constraint
satisfaction problems.

Given all of the above, the final fundamental question is:
Question 3. How can we leverage expansion in other domains?

1.1.3 Applications of expanders

It would be impossible to summarize all of the applications of expander graphs. We recommend
the surveys of Hoory-Linial-Wigderson [HLW06] and Kowalski [Kow19] for a comprehensive
list of applications and connections of Ramanujan graphs and expanders to computer science and
mathematics.

Our contributions focused on two areas: random constraint satisfaction problems and coding
theory.

Random constraint satisfaction problems Refutation of constraint satisfaction problems (CSPs)
is a fundamental problem in complexity theory. Given a CSP formula, refutation is the task of
providing a proof that no assignment achieves some larger value. In the theory of algorithms and
complexity, the most difficult instances of a given CSPs are arguably random (sparse) instances.
Indeed, the assumed intractability of random CSPs underlies, for example, various cryptographic
proposals for one-way functions [Gol00, JP00].

Given, say, a random Max-Cut instance of average degree d, its optimum value is (whp)
concentrated around 1

2
+ f(d), where f is a certain function of d. However, the most efficient al-

gorithms we know can only find (whp) cuts of value approximately 1
2

+ .83f(d) the optimal one.
This suggests an “information-computation” gap. One way to study this is through the behav-
ior of semidefinite programming (SDP) relaxations, which are the most popular and successful
approaches to refuting CSPs. Given an instance of a CSP, we call the exact threshold result for
when the natural SDP algorithm is able to certify unsatisfiability the SDP value of the instance.

In this thesis we determined the SDP value of random instances of certain kinds of constraint
satisfaction problems, which are known as “two-eigenvalue 2CSPs”. These are CSPs where each
clause can be described by a graph where each vertex represents a variable and each edge is an
XOR constraint between two variables, and such that the spectrum of the adjacency matrix of the
graph only contains two distinct eigenvalues. This includes multiple famous CSPs families like
the NAE-3SAT, the SORT4 and the Forrelationk CSPs.

Coding theory and expansion The connections between graphs and error correcting codes
have a rich history. Low-density parity check (LDPC) codes were first introduced by Gallager
[Gal62] in the ’60s and are one of the most popular classes of classical error-correcting codes,
both in theory and in practice. These are linear codes that are defined through bipartite graphs,
where one set of vertices represents bits and the other set of vertices represents constraints. The

8

use of expansion in analyzing these codes was first described by Sipser and Spielman [SS96],
who defined expander codes.

In the quantum world the role of error correcting codes is even more important. Quantum
systems are very fragile and prone to decoherence, so it is important to be able to detect and
correct errors.

In this thesis we show how to obtain a family of explicit quantum code of almost linear
distance (and also in a wide range of parameters). As a corollary, we also obtain efficient con-
structions of a different family of classical codes. These constructions are achieved using the
aforementioned generalization of lifts based on groups.

1.2 Outline of this thesis

Throughout this thesis we will attempt to answer the three fundamental questions in different
ways. Here is a summary of our contributions:

• To answer Question 1, we devise an explicit construction of nearly optimal expanding
regular graphs of all degrees. We also show how to use this result to obtain nearly optimal
expanding graphs with high girth (i.e. that do not contain small cycles).

• To answer Question 2, we analyze the expansion of several types of different random graph
distributions based on graphs products, like random additive lifts and random abelian lifts.

• To answer Question 3, we show how to analyze the SDP value of a family of random
constraint satisfaction problems (CSPs) and also show how to construct explicit nearly
linear distance quantum low density parity check (LDPC) and good quasi-cyclic LDPC
error correcting codes in polynomial time.

Before we delve into all the details of this thesis, we provide in Chapter 2 a mostly self-
contained proof of a simplification of a core technical tool that will be refined throughout this
thesis. This proof illustrates a lot of the ideas that will show up in the following chapters.

In Chapter 3 we describe some of the background of this thesis, including techniques and
tools that will be used repeatedly.

Chapter 4 is based on the results of [MOP20a]. We show how to construct near-Ramanujan
graphs in a probabillistically strongly explicit way. We also develop some of the main ideas that
are generalized and used in the following chapters.

Chapter 6 is based on the results of [MOP20b]. We precisely determined the SDP value of
large random instances of certain kinds of constraint satisfaction problems. To establish this,
we analyze the spectral expansion of a distribution of graphs that generalizes uniformly random
regular graphs.

Chapter 5 is based on the results of [Par21]. We describe a new method to remove short
cycles on regular graphs while maintaining spectral bounds as long as the graphs have certain
combinatorial properties. Using this method we were able to show two results involving high
girth spectral expander graphs.

Chapter 7 is based on the results of [JMO+22]. We study a generalization of lifts based on
groups and we describe explicit constructions of expanders obtained via abelian lifts. We use

9

this to obtain explicit quantum lifted product codes of almost linear distance. As a corollary, we
also obtain good quasi-cyclic LDPC codes with any circulant size up to nearly linear.

Finally in Chapter 8 we discuss some open problems related to this thesis and present some
closing remarks.

10

Chapter 2

A Self-Contained Proof of the Main
Technical Tool

In this chapter we will show a mostly self-contained proof of a simplification of the main tool
we refine and repeatedly use throughout this thesis. In the process, we will also discuss all the
background on the tools and ideas that went into the proof. It is perhaps the main technical
contribution of this thesis and so to a reader interested in some of the technical aspects of this
thesis but that does not want to go through the whole document, we recommend reading just this
chapter.

Before we keep going, let us set the stage. Our general goal is to build expanding graphs so
suppose we are given an integer n, an integer d and a positive constant real ε and we want to build
a graph G with around n vertices, say Θ(n), that is d-regular and is also ε-near-Ramanujan, that
is, such that λ(G) 6 2

√
d− 1 + ε. By build we mean we want a weakly explicit construction,

which recall means we want a polynomial time (in n) algorithm that produces such a graph.
Our strategy to do the above can be summarized as follows. Let us suppose that we have an

efficient tool to increase the size of a graph while keeping its regularity and spectral expansion.
Then, we can start by producing a small base graph that is a good expander and then we can
apply this tool multiple times to obtain a graph with Θ(n) vertices. For example, we could start
with the complete d-regular graph 1, which is a graph with d + 1 vertices which has optimal
spectral expansion.

The magical operation that grows the size of a graph we will use is called a 2-lift. To 2-lift
a graph G = (V,E) we start by creating a single copy of each vertex in V . Then, for each edge
e = {u, v} ∈ E we will place two edges in the lifted graph. Let u′, v′ be the copies of u, v, we
can either “parallel connect” them by placing the edges u ∼ v and u′ ∼ v′, or we “cross connect”
them by placing the edges u ∼ v′ and u′ ∼ v.

A uniformly random 2-lift of G is a graph where the parallel/cross choice for each edge is
uniformly random and independent. We will see soon that uniformly random 2-lifts of “good”
graphs are really good expanders, but first we need one more definition to be able to specify what
“good” means in this context.

1As we will see, we cannot actually use the complete d-regular graph as our base graph, because we require
some extra properties it does not have. We will discuss this further later in this thesis.

11

Figure 2.1: Illustrations of the 2-lift operation

A bicycle-free graph is a graph that contains at most one cycle. A graph G = (V,E) is
bicycle-free at radius r if for all vertices v ∈ V , the neighborhood of radius r around v, meaning
the set of vertices at a distance of at most r from v, is bicycle-free.

Figure 2.2: A bicycle-free graph at radius r

Notice that this definition can be interpreted as “almost” having girth 2r since having girth
2r is equivalent to having the property that for all vertices v ∈ V the neighborhood of radius r
around v is cycle-free.

2.1 Statement of the theorem
We can finally state the theorem we will prove in this section.
Theorem 2.1.1. Let G0 be an n-vertex d-regular graph such that:

• G0 is ε-near Ramanujan.
• G0 is bicycle-free at radius r = Θ(logd−1 n).

Let G be a uniformly random 2-lift of G0. Then,

λ(G) 6
5

2

√
d− 1 · (1 + ε)

with probability at least 1− exp(−nΘε,d(1)).
In Chapter 4 we generalize and improve on this theorem by reducing the 5

2
to the optimal

constant 2 and by derandomizing it. The generalized proof is more technical and has some extra

12

steps, but it is pretty similar to the one we describe here. As we go to the proof in this chapter
we will point out what steps of the proof require some extra ingredients to obtain the generalized
proof. Additionally, in Chapter 7 we further generalize this proof to a larger class of lifts called
abelian lifts.

Why do we assume bicycle-freeness instead of “cycle-freeness” or “tricycle-freeness”? When
applying this core tool we will need to start with a base graph that satisfies all the assumptions.
It turns out that constructing regular graphs that are cycle-free at high radius is really hard, how-
ever a uniformly random d-regular graph is bicycle-free at radius Θ(logd−1 n) with high prob-
ability. Interestingly, it will not be too hard to see that our proof still applies (with some small
modifications) if the base graph is “constant-cycle-free” at high radius, i.e. if there is a value
r = Θ(logd−1 n) for which all neighborhoods of radius r have a number of cycles bounded by
some constant. We will justify the spectral assumption of this theorem as we go through the
proof.

We divide the exposition into three parts. We first massage the theorem statement by applying
some known facts about 2-lifts and bounding eigenvalues of matrices. Once we obtain a more
managable statement, its proof will have two parts: a random part and a deterministic part. In
the random part we use the probabilistic properties of uniformly random 2-lifts to reduce the
proof to solving a deterministic combinatorial problem. In the deterministic part we solve this
combinatorial problem.

2.2 Setting up the proof
The spectrum of 2-lifts Let us start by describing an equivalent definition of 2-lefts of a graph
G = (V,E). Consider an edge-signing w : E → {±1} of G. This edge-signing uniquely defines
a 2-lift G = (V ,E) of G, which we can describe in the following way:

V = V × {±1}, E =
{
{(u, σ), (v, σ · w(u, v))} : (u, v) ∈ E, σ ∈ {±1}

}
.

This shows there is a bijection between edge-signs and 2-lifts. For example, we can redefine
a uniformly random 2-lift as a 2-lift given by a uniformly random edge-signing, that is an edge-
signing where the sign of each edge is ±1 with probability 1/2 and independent of other signs.
This bijection is very useful because it helps us characterize the spectrum of G. Let Spec(M)
be the set of eigenvalues of a matrix M . Let A be the adjacency matrix of G, A the adjacency
matrix of the lifted graph G and finally Aw the adjacency matrix of the graph G signed by w.
Formally, (Aw)uv = w(u, v) for all edges {u, v} ∈ E and 0 otherwise. Notice that A and Aw are
n by n matrices, but A is a 2n by 2n matrix. We can now show the following lemma:
Lemma 2.2.1. We have:

Spec(A) = Spec(A) ∪ Spec(Aw).

Proof. LetA+ be the positive adjacency matrix, meaning the adjacency matrix that only contains
the edges inE with positivew sign, and similarly defineA−. Formally, (A±)uv = 1 if {u, v} ∈ E
and w(u, v) = ±. Note that A = A+ + A− and Aw = A+ − A−. We can write the adjacency

13

matrix of A in the following block form, where we index first the original vertices and then the
copies:

A =

[
A+ A−
A− A+

]
.

Suppose ν is an eigenvector of A with eigenvalue λ, then let ν = (ν ν) and observe that
Aν = (A+ν + A−ν,A+ν + A−ν) = (Aν,Aν) = (λν, λν) = λν, so ν is an eigenvector of A
with eigenvalue λ.

Now suppose ν is an eigenvector of Aw with eigenvalue λ, then let ν = (ν − ν) and observe
that Aν = (A+ν − A−ν,−A+ν + A−ν) = (Awν,−Awν) = (λν,−λν) = λν, so ν is an
eigenvector of A with eigenvalue λ.

Notice that all of these vectors are orthogonal and there are 2n of them, so this completely
describes the spectrum of A.

Notice that this lemma tells us that the eigenvalues of a 2-lift of a graph are the original
eigenvalues as well as the eigenvalues given by the signed adjacency matrix, using the edge-
signing that corresponds to the 2-lift. Hence, if we are 2-lifting a base graph that is a good
expander we only need to worry about the “new” eigenvalues induced by the signed adjacency
matrix. Using this idea, we can simplify the theorem statement we want to prove. Let ρ(M) 2 be
the largest eigenvalue of M .
Theorem 2.2.2 (Implies Theorem 2.1.1). Let G0 be an n-vertex d-regular graph such that:

• G0 is bicycle-free at radius r = Θ(logd−1 n).

Let w be a uniformly random edge-signing of G0. Then,

ρ(Aw) 6
5

2

√
d− 1 · (1 + ε)

with probability at least 1− exp(−nΘε,d(1)).
We highlighted the differences from the original statement. Notice that we also dropped

the requirement that G0 is ε-near-Ramanujan. This does not mean we do not need this for the
original theorem, but observe that since a 2-lift keeps the eigenvalues of the base graph, if we
want our lifted graph to be expanding we need the base graph to be ε-near-Ramanujan 3. But in
this rewritten statement we only analyze the “new” eigenvalues given by the signed graph. Thus,
the correctness of this statement implies the correctness of the original statement.

Bounding eigenvalues Our task now is to bound the largest eigenvalue of a certain matrix Aw.
There are many ways of analyzing the largest eigenvalue of symmetric real matrices, but we are
going to use one that is known as the trace method, also known as the Füredi-Komlós Trace
Method [FK81]. Before we do so let us recall two important properties of the eigenvalues of
symmetric matrices.

2Later in this thesis we use ρ to represent the spectral radius of an operator, but for symmetric real matrices this
is just the largest eigenvalue so we simplified the notation here.

3Actually, in the version of this result that we are proving we only need λ(G0) 6 5
2

√
d− 1 + ε, but we kept the

ε-near-Ramanujan since we will need it in the later chapters when we look at the more general cases.

14

Let M be a n × n symmetric real matrix and denote its eigenvalues by λ1 > . . . > λn. It
is easy to show (take the trace of the eigendecomposition of M) that the trace of M is equal to
the sum of the eigenvalues, that is tr(M) =

∑
i λi, this is known as the trace identity. Now, for

a non-negative integer k consider the kth power of M . The set of eigenvalues of Mk (which we
denote by Spec(Mk)) is exactly the set {λk1, . . . , λkn} (the proof a simple induction argument),
this is known as the power identity.

We can now apply these two identities to Aw. Let k be a positive even integer, then we have
the following:

ρ(Akw) = λk1 6
∑
i

λki = tr(Akw).

Using this fact we can bound ρ(Aw) by bounding (tr(Akw))1/k for a choice of even positive
k. To see how powerful this statement is, consider the kth power of the adjacency matrix of G,
so Ak. It is easy to see that this matrix represents all the walks of length k, that is the entry
(Ak)uv for u, v ∈ V is equal to the number of walks of length k that start in u and end in v (this
is another simple induction argument). Similarly, Akw represents w-signed walks of length k, or
more formally (Akw)uv =

∑
γ

∏
iw(ei), where ei ∈ E and γ = (e1, . . . , ek) is a walk of length

k such that e1 = (u, ·) and ek = (·, v). Finally the trace of Akw is the sum of the signed closed
walks of length k, i.e. walks that start and end at the same vertex.

So to bound the largest eigenvalue of Aw all we have to do is to know the sum of the closed
w-signed walks of a chosen length in G. This is a purely combinatorial problem and much easier
to reason about than the algebraic notions of eigenvalues. This is the power of the trace method.

Counting closed walks We have made great strides in our search for an eigenvalue bound,
however it turns out that counting closed walks in graphs is still a hard task. To address this we
can try to instead count non-backtracking walks. These are walks that never backtrack, that is,
we never take the same edge twice in a row (but we might repeat it later in the walk).

Figure 2.3: An illustration of non-backtrackness and two example walks: a non-backtracking
walk and a walk that backtracks.

Why would one count non-backtracking walks instead of the usual walks? To illustrate how
easy counting these walks is, consider a tree graph and suppose we want to count how many
non-backtracking walks are there between two given vertices. It is easy to see that there is only

15

one unique walk. However, the number of (possibly backtracking) walks between two vertices
on a tree is much harder to count.

Figure 2.4: A non-backtracking walk on a tree

We now know that (at least intuitively) counting non-backtracking walks is easier, but our
original task is to count normal walks. As it turns out, we can relate the number of closed walks
to the number of non-backtracking walks. To do so, we will need to use a matrix analogous
to the adjacency matrix called the non-backtracking matrix. For ease of reading, we will delay
formally defining this until the later chapters and instead we will give an informal definition.

The non-backtracking matrix of the graph G, which we shall denote by B, is a 2|E| by 2|E|
matrix indexed by the directed edges of G. The directed edges of G are obtained by taking each
undirected edge e = {u, v} ∈ E and replacing it with two directed edges in each direction,
namely (u, v) and (v, u). We define B as the matrix that has the property that for any positive
integer k and pair of directed edges ~e and ~e′, the entry (Bk)~e~e′ is equal to the number of length
k non-backtracking walks that take ~e as the first step and ~e′ as the final step. Similarly, we
define Bw as the w-signed non-backtracking matrix, where we consider w-signed walks instead.
Slightly more formally we have:

(Bk)~e~e′ =
∑

~e= ~e1,..., ~ek=~e′ non-backtracking

k∏
i=2

w(ei).

Notice that the product term goes from 2 to k, this is due to a technical reason related to the
definition of B that is not very important. In the next few chapters we will address this in more
detail when we define B more formally.

Perhaps surprisingly, the Ihara–Bass formula gives us a map to translate between eigenvalues
of A (or Aw) and the eigenvalues of B (or Bw). Formally it says the following:
Theorem 2.2.3. (Ihara–Bass formula.) Let λ 6= 0,±1 be a number such that λ + (d − 1)/λ is
an eigenvalue of A (respectively Aw). Then λ is an eigenvalue of B (respectively Bw).

This is the only statement we will not prove in this section. We will further discuss it and
show a short proof of this in Chapter 3. By applying this formula it is easy to conclude the
following corollary:
Corollary 2.2.4. If A has an eigenvalue of magnitude 5

2

√
d− 1 + ε (for ε > 0) then B has an

eigenvalue of magnitude 2
√
d− 1 + Θd(ε).

After all of this work, we can apply this to our original question and rewrite it one last time
into the following:

16

Theorem 2.2.5 (Implies Theorem 2.1.1). Let G0 be an n-vertex d-regular graph such that:

• G0 is bicycle-free at radius r = Θ(logd−1 n).

Let w be a uniformly random edge-signing of G0. Then,

ρ(Bw) 6 2
√
d− 1 · (1 + ε)

with probability at least 1− exp(−nΘε,d(1)).
Before we go on, it is important to note that to apply the trace method to Bw we have to be

a bit more careful than before because Bw is not a symmetric matrix and it might have complex
eigenvalues. However, we can use the following version of the trace method. Let M be a square
real matrix.

tr(M2k) = tr(Mk(MT)k) = ‖Mk‖2
F =

∑
i

|λki |2 > ρ(M)2k,

where ‖M‖F =
√∑

i,jM
2
ij is the Frobenius norm of M .

We will now focus on proving the above theorem statement that implies Theorem 2.1.1.

2.3 The random part
After the discussion of the previous section it should be no surprise that our first step will be to
apply the trace method to Bw. So let k be a positive integer which we will pick later. We have

ρ(Bw)2k 6 tr(Bk
w(BT

w)k)

=
∑

~e0,··· , ~e2k= ~e0∈ ~E0

(Bw) ~e0, ~e1 · · · (Bw) ~ek−1, ~ek(Bw)T~ek, ~ek+1
· · · (Bw)T ~e2k−1, ~e2k

=
∑

~e0,··· , ~e2k= ~e0∈ ~E0

(Bw) ~e0, ~e1 · · · (Bw) ~ek−1, ~ek(Bw) ~ek+1, ~ek · · · (Bw) ~e2k, ~e2k−1
,

where ~E0 is the set of directed edges of G0.
Careful observation of the formula above shows that we need to look at walks that non-

backtrack for k steps, then they take the reverse of the kth step, followed by k more steps. To
capture this idea we make some definitions.
Definition 2.3.1 (Hikes). For ` ∈ N, we define an `-hikeH to be a closed walk inG0 of exactly 2`
steps (directed edges) which is non-backtracking except possibly between the `th and (` + 1)th
step. Given an edge-signing w : E → {±1} we write w(H) for the product of the edge-signs
thatH traverses, counted with multiplicity.

Finally, we call a (`+ 1)-hike special if the (`+ 1)th step is the reverse of its (`+ 2)th step,
and the last step is the reverse of the first step.

So we now simplify the above into:

17

ρ(Bw)2k 6
∑

special (k+1)−hikesH in G0

w(H).

Eventually we want to bound this random variable with high probability. Let T = tr(Bk
w(BT

w)k),
which is a random non-negative variable (since it is equivalent to ‖(Bw)k‖2

F) and an upper bound
to ρ(Bk

w). To bound this random variable we will use a very standard technique where we first
compute the expected value of T and then we apply Markov’s inequality. So we will spend
most of our time upper bounding the expectation of this random variable. Using linearity of
expectation and the above we can write (we write w in the subscript below to highlight that the
expectation is over the randomness of w):

Ew[T] =
∑

special (k+1)−hikesH in G0

Ew[w(H)].

Now comes the crucial observation that makes this computation possible. Consider some
special k-hike H and suppose there is some (undirected) edge e that is traversed (in either di-
rection) by H exactly once. When computing Ew[w(H)] notice that the contribution of w(e) is
independent of the rest of the walk, so we can write that expectation as Ew[w(e) · w(H′)] =
Ew[w(e)] · Ew[w(H′)], where H′ is a walk that does not traverse e. But now observe that
Ew[w(e)] = Ex∼{±1}[x] = 0. We conclude that actually H does not contribute anything to
the expectation of T . To account for this we make one more definition.
Definition 2.3.2 (Singleton-free hikes). We call a hike singleton-free if each undirected edge
traversed byH is traversed at least twice.

Note that for singleton-free hikes H we have that Ew[w(H)] 6 1, since this is a product of
±1. And so we can write:

Ew[T] 6 |{special, singleton-free (k + 1)− hikesH in G0}|.
Finally, every singleton-free special (k + 1)-hike H can be formed from an singleton-free

(k − 1)-hike H′ by: (i) attaching a step and its reverse to the beginning/end of H; (ii) attaching
a step and its reverse to the midpoint of H. As there are at most (d − 1)2 6 d2 choices for how
to perform (i) and (ii), this shows the following proposition:
Proposition 2.3.3.

Ew[T] 6 d2|{singleton-free (k − 1)− hikesH in G0}|.

Detour: Pseudorandomness

To obtain the derandomized version of Theorem 2.1.1 this step will be slightly different.
Instead of using perfectly uniformly random edge-signings, we will use a standard deran-
domization tool called (δ, k)-wise uniform bits. These define a distribution over {±1}n
that we can sample from very efficiently and that is δ-close to the uniform distribution
when restricted to k coordinates.
Using these, the expectation Ew[w(H)] will not be 0, but instead it will be small enough
to not affect the overall bound.

18

The work we just did allowed us to go from counting hikes to counting singleton-free hikes.
This is a seemingly innocent, but crucial step in our proof of the original statement. Let us forget
about hikes for just a second and consider counting non-backtracking walks of length 2k in G0,
a d-regular graph. A trivial upper bound on the number of such walks is (d− 1)2k.

Recall that to apply the trace method we are trying to bound ρ(Bw)2k in high probability, so
if we use the bound we just discussed on the number of non-backtracking walks of length 2k and
then we take 2kth roots we get that ρ(Bw) 6 d− 1. This is a trivial bound, since after applying
the Ihara—Bass formula we get that ρ(Aw) 6 d, which is the trivial upper bound that gives no
expansion.

Now, consider “singleton-free” non-backtracking walks of length 2k. Since we have to tra-
verse each undirected edge at least twice, intuitively we are only really taking k unique new steps.
Consider the infinite d-regular tree like the one in Figure 2.5 and suppose we want to count how
many non-backtracking walks of length 2k where we can backtrack on step k there are starting at
a given vertex. The first k steps have (d−1)k possibilities, but the remaining k steps are fully de-
termined since we need to traverse each edge twice, so in total there are (d− 1)k possible walks.
When we factor this into the trace method calculation we get that ρ(Bw) 6

√
d− 1, which when

applying the Ihara—Bass formula gives us the Ramanujan bound of ρ(Aw) 6 2
√
d− 1.

The finite case is not as nice as the infinite case, but the intuition is the same: if we only take
about k unique steps out of the total 2k, then asymptotically the total number of walks grows like
(d − 1)k and the trace method gives us a bound of close to

√
d− 1. In this chapter we will not

obtain this optimal bound, but something slightly worse, that is reserved for the later chapters.

Figure 2.5: An infinite 3-regular tree.

We have reduced our problem to the problem of counting singleton-free (k− 1)-hikes in G0.
This is a purely deterministic combinatorial problem that we will tackle in the next section.

2.4 The deterministic part
Counting walks in our graph G0 is now our only focus. We will use an encoding argument to do
so, but first let us briefly see what that means.

Suppose you want to count how many objects are in some set S. Consider some injective
function C : S → Σ?, where Σ is a set of symbols (e.g. binary digits, so Σ = {0, 1}), meaning

19

we have some way to encode each element of S into a string, such that any two elements have a
different encoding. Another way of saying this is to say that C is reversible, given some encoded
string c there is one unique element s such that C(s) = c. Now, suppose we can show that for
all elements s ∈ S the length of its encoding |C(s)| is at most some value `. Then, we conclude
that |S| is at most |Σ|`. This is the basic idea of what we will do in this section.

Now, let us go back to the problem of counting singleton-free hikes. LetH be some singleton-
free (k − 1)-hike in G0. We will encode H in two steps: first we will encode what we call the
hike graph, which we will define shortly; then, given the hike graph, we encodeH.

2.4.1 Encoding the hike graph
The hike graph ofH, written as GH = (V (H), E(H)), is the undirected graph induced byH, so
the union of the undirected edges thatH traverses along with their endpoints. We want to encode
GH, so we want some reversible function that maps GH into a string.

Figure 2.6: The hike graph

We will do this by encoding the Depth-First Search (DFS) traversal of it from a given start
vertex. So let us suppose we pick some arbitrary vertex v ∈ V (H) from which we start a DFS
traversal. As in the typical DFS algorithm, we recursively process each vertex by first checking
whether we have visited it. If we have not, we iterate through all of its neighbors but its “parent”,
the vertex from which we came (except for the very first vertex, since it is the first one we are
processing). We process each neighbor recursively one by one. If we have visited the current
vertex we simply return/backtrack to the previous vertex. Each time we make a recursive call
to process a new vertex we call it a recursive step and each time we finish processing a vertex,
either because we looked at all its neighbors or because we had visited it before, we call it a
backtracking step.

As we traverse the graph, we will write down a “trace log” by keeping track of two types
of data before every step - (1) Is this step recursive or backtracking (2) If it is a recursive step,
then which neighbor do we recurse to. For the type of data (2) we can assume that for each
vertex v ∈ V0 we pick some arbitrary order of its d neighbors, and we use this number as the
information of which neighbor we recurse to. Note that by writing down this information we can
perform the DFS in “reverse” and reconstruct the original graph.

20

How do we encode this trace log? We have to encode three different things: the initial vertex;
for each step, whether it is recursive or backtracking; for each recursive step, the index of the
neighbor we recursed to. Note that there are 2|E(H)| total steps, two per edge, since each edge
produces a recursive and a backtracking steps. Also, there are |E(H)| recursive steps for the
same reason. Finally, there is obviously only one initial vertex.

This means we encode the initial vertex by keeping track of a number v ∈ [n] (recall that
n = |V0|). We encode the type of each step by writing a sequence of binary symbols σ ∈
{R, B}2|E(H)|. We encode the neighbor index of each recursive step by writing a sequence of
numbers (d1, . . . , d|E(H)|) ∈ [d− 1]|E(H)| 4.

In the figure below we have an example of a hike graph and the DFS tree that is produced by
traversing it: the straight edges represent vertices that we are processing for the first time and the
round edges repeated visits.

Figure 2.7: Traversing a graph using a DFS

The first few symbols of the encoding of this graph would be something like:

v

R d1

R d2

R d3

R d4

R d5

B

B

R d6

R d7

4We are cheating slightly here since the first recursive step can be one of d neighbors, but this is a minor technical
detail that will not affect the final calculation.

21

We can now use this encoding to show the following lemma:
Lemma 2.4.1. The number of connected subgraphs of G0 having at most k edges is at most

2n · (d− 1)k · 22k.

Proof. Let us first count the number of such subgraphs with exactly m edges. Using the DFS
encoding recall that we need to encode:

• v ∈ [n].
• (d1, . . . , dm) ∈ [d− 1]m.
• σ ∈ {R, B}2m.

And so we conclude that an upper bound on the number of subgraphs with exactly m edges
is n · (d − 1)m · 22m. To get the result we desire we have to sum over all integer 1 6 m 6 k,
since this is a geometric sum we get the lemma.

Note that we only need to count hike graphs with at most k edges because we are looking
at singleton-free hikes that take at most 2k steps, so half of the steps we take have to traverse
edges we have seen before, which does not add to the number of edges in the hike graph. As we
discussed before, this is crucial to obtain a non-trivial bound.

Detour: Improving the spectral bound through a better encoding

It is not clear why yet, but this is where we need to improve our encoding in order to obtain
a bound of 2

√
d− 1 instead of the 5

2

√
d− 1 we are working towards in this chapter.

We did not use any information about hike graphs other than the fact that they are sub-
graphs of d-regular graphs with at most k edges. In fact, these graphs have a lot of struc-
ture that we can use to make our encoding more efficient and hence obtain a better upper
bound. The main insight, which is not obvious without first making a few observations, is
that hike graphs are really sparse and will often have mostly vertices with degree 2. This
means when we backtrack we often backtrack multiple times in a row, so we can encode
that by writing down how many times we backtrack in a row instead of a long string of Bs.

2.4.2 Encoding the walk
We have not yet used the fact that the base graph G0 is bicycle-free at radius r. This will be a
crucial ingredient in this second part of the encoding as we finally encode our hike H assuming
it has a given graph H as its hike graph.

To simplify our job, let us first partition H into blocks of r consecutive steps (for simplicity,
the reader can assume |H| = 2(k − 1) is a multiple of r, but this assumption is not needed if we
are a bit more careful and suppose that there might be one block with less than r steps). This
results in 2k/r blocks. Since H is walking on a graph that is bicycle-free at radius r, this means
that each block induces a bicycle-free graph. We encode each block separately and then join the
resulting encodings together.

22

Figure 2.8: PartitioningH into 2k/r blocks of k steps.

So we are trying to encode a non-backtracking walk of length r on a bicycle-free graph. If
the graph we are walking on were “cycle-free” (i.e. a tree) then to encode a walk we only need to
record the first and last vertex of the walk, since there is only one possible non-backtracking walk
between any two vertices. The bicycle-free case is not that simple, but fortunately it is not much
harder. Notice that if we know the first and final vertices u, v of the walk then all possible non-
backtracking walks do the following: walk from u to the only cycle in the hike graph; traverse
this cycle in one of two possible directions some positive number c times; leave the cycle and
walk to v. We can also walk directly from u to v, which we can assume is equivalent to traversing
the cycle c = 0 times.

Figure 2.9: All possible walks between u and v in a bicycle-free graph.

We conclude that to encode one block we need to keep track of where we start the block walk,
which is an integer u ∈ [|V (H)|], where we end the block walk, which is an integer v ∈ [|V (H)|],
and some information about the walking on the cycle. We need to keep track of how many times
(at most br/2c) we traverse the cycle and which direction we did so (positive or negative), so we
can keep track of an integer c ∈ {0, . . . ,±br/2c}.

We can now use this encoding to show the following lemma:
Lemma 2.4.2. Given an r-bicycle-free hike graph H , the number of singleton-free (k− 1)-hikes
that have H as their hike graph is at most

(r|V (H)|)2k/r.

Proof. We use the encoding above and partition a hike into 2k/r bicycle-free blocks. Notice that
the final vertex of a block is the first vertex of the next block, so we need to encode:

• (v1, . . . , v2k/r) ∈ [|V (H)|]2k/r final vertices.
• (c1, . . . , c2k/r) ∈ {0, . . . ,±br/2c}2k/r cycle information.

Using this encoding we obtain the desired result.

23

2.4.3 Full encoding
We now put everything together to obtain the final bound on singleton-free hikes.
Lemma 2.4.3.

|{singleton-free (k − 1)-hikesH in G0}|
is at most (

2γ
√
d− 1

)2k

,

where γ = 1 + log(2nrk)
2k

+ log(rk)
r

Proof. Combining the two encoding lemmas and using the fact that any hike graph has at most
k vertices, we obtain the following bound:

|{singleton-free (k − 1)-hikesH in G0}| 6 2n · (d− 1)k · 22k · (rk)2k/r

6 (2nrk) · (rk)2k/r · (2
√
d− 1)2k

6
(

(2nrk)1/2k · (rk)1/r · 2
√
d− 1

)2k

We take the logarithm of both sides and we obtain the lemma.

We will work in a regime where k � log n so the term log(2nrk)
2k

is o(1).

2.5 The final countdown
After all the work we did over the last two sections we managed to prove that:

E[ρ(T)] 6 d2(2γ
√
d− 1)2k,

where γ = 1 + o(1) + log(rk)
r

and T is an upper bound on ρ(Bw)2k. So now it is finally time to
apply Markov’s inequality. Let η ∈ (0, 1) be a number to be picked later. Markov gives us that
with probability at least 1− η

ρ(Bw)2k 6 (d2/η)(2γ
√
d− 1)2k.

We can take the 2kth roots of the above, apply Bernoulli’s inequality5, rearrange and obtain

ρ(Bw) 6 2γ
′
2
√
d− 1 6 2

√
d− 1 · (1 + γ′),

where γ′ = log(d2/η)
2k

+ o(1) + log(rk)
r

.
To obtain our desired result we need to pick our parameters k and η such that γ′ 6 ε. There

are multiple possible choices of parameters that lead to interesting results. We will discuss this
in the later chapters, but here we just show one possible choice that gives us the desired theorem
statement. Let us set ε1 = log(d2/η)

2k
and ε2 = log(rk)

r
and try to choose parameters such that

εi 6 ε/2. Here is a list of our parameters and their choices:
5(1 + x)r 6 1 + rx positive x and 0 6 r 6 1

24

• r = c logd−1 n, this is given by the theorem statement.
• k = exp(εr/2) = nδ, where δ = Oε,d(1), which makes ε2 6 ε/2.
• η = exp(−nδε/2), which makes ε1 6 ε/2.

Finally, we get that with probability η = 1− exp(−nΘε,d(1))

ρ(Bw) 6 2
√
d− 1 · (1 + ε).

This concludes the proof of the main result of this chapter.

25

26

Chapter 3

Background

In this chapter we will introduce several tools and techniques that will be useful through out this
thesis. We reserve this chapter for the background that will be important for the whole thesis, and
thus some of the chapters to come will include an extra background section to introduce topics
that only pertain to that chapter.

3.1 Graphs and linear algebra
As in the previous chapter, consider an undirected n-vertex multigraph G = (V (G), E(G)). A
walk on G is a sequence of vertices (v1, v2, . . . , vn) with vi ∈ V (G) that satisfies vi ∼ vi+1 for
all 1 6 i < n, where ∼ denotes adjacency between vertices.
Definition 3.1.1 (Excess). Given a multigraph H = (V,E), its excess is exc(H) = |E| − |V |.

We can think of excess as the minimum number of edges we can remove from our graph to
obtain a tree.
Definition 3.1.2 (A/uni/bi-cyclic). A connected multigraph H with exc(H) = −1, 0, 1 (respec-
tively) is said to be acyclic, unicyclic, bicyclic (respectively). In either of the first two cases, we
call H bicycle-free (or at most unicyclic).

A non-standard definition that will be really important throughout this thesis is the definition
of bicycle-freeness.
Definition 3.1.3 (Bicycle-free at radius r). We say a multigraph is bicycle-free at radius r if
the distance-r neighborhood of every vertex is bicycle-free. Another way to say this is that a
breadth-first search of depth r, started at any vertex, encounters at most one “back-edge”.

The adjacency matrix AG of G is the matrix with rows and columns indexed by the vertices
of G, where for u, v ∈ V (G), (AG)uv is equal to the number of occurrences of the edge {u, v}
in E(G). Given a vector f : V (G) → R, we have that (AGf)v =

∑
v∼uAvufu. AG is a real

symmetric matrix and thus the spectral theorem tells us that there are n real eigenvalues with
corresponding orthogonal eigenvectors. We order the eigenvalues and denote them by λ1 >
λ2 > . . . > λn and we write Spec(AG) to describe the set of all eigenvalues.

The largest eigenvalue λ1 is known as the trivial eigenvalue. Additionally, we define the
spectral radius of AG as ρ(AG) = maxi |λi|. The eigenvalue decomposition of AG is a fac-
torization into UΛUT , where U is an orthogonal matrix (meaning UT = U−1) formed from

27

the eigenvectors of AG as columns and Λ is a diagonal matrix containing its eigenvalues, i.e.
Λii = λi.

If G is a d-regular graph, then the adjacency matrix AG has extra structure. Its largest eigen-
value λ1 is always equal to d, since the vector φ1 = 1/

√
n = (1/

√
n, . . . , 1/

√
n) satisfies

AGφ1 = dφ1. If the graph G is disconnected then λ2 = d, which means λ(G) = d. Indeed, con-
sider two connected components C1 and C2 and let v1 be the vector with ones on the elements
corresponding to vertices in C1 and v2 be the vector with ones on the elements corresponding to
vertices in C2. These two vectors are orthogonal but both satisfy AGvi = dvi. It is also known
that the smallest eigenvalue λn satisfies λ1 > −λn (this follows from the Perron-Frobenius the-
orem [Spi19]).

Let’s now briefly consider generic symmetric matrices in Rn×n with eigenvalues λ1 > λ2 >
. . . > λn. A well known identity on the trace and determinant of such matrices M says that
tr(M) =

∑
i λi and det(M) =

∏
i λi. It’s also easy to show that the set of eigenvalues of

Mk, for any non-negative integer k, is {λk1, . . . , λkn}. There is a variational interpretation of
eigenvalues that will be useful to us, which is given by the Courant-Fischer theorem that says the
following:
Theorem 3.1.4 (Courant-Fischer). Let M be a symmetric matrix with eigenvalues λ1 > . . . >
λn. Then,

λk = max
S⊆Rn

dim(S)=k

min
x∈S
x 6=0

xTMx

xTx
.

In particular, this implies that λ1 is the maximum of xTMx for all vectors x ∈ Rn with
‖x‖ = 1. A matrix is positive semi-definite (PSD) if all its eigenvalues are non-negative, which
by the above is the same as having xTMx > 0 for all x ∈ Rn. Given this definition, we can
define the Loewner ordering of symmetric matrices as a partial order � such that for symmetric
matrices A,B ∈ Rn we have A � B if A−B is PSD.

For a thorough reference on the fundamentals of spectral graph theory, including proofs of
the theorems and properties sated above, we recommend the book of Spielman [Spi19].

3.2 The trace method, non-backtracking walks and the Ihara–
Bass formula

We saw in Chapter 1 that our main focus will be to study the spectral expansion λ(G) of graphs
G. Namely, we will want to either upper bound the spectral expansion of some given (random)
graphs or construct graphs that have some upper bound on this quantity.

A common tool to bound the largest eigenvalue of a symmetric matrix is the Füredi-Komlós
Trace Method [FK81]. Let H be a n × n symmetric real matrix and denote its eigenvalues by
λ1 > . . . > λn. Then, for any non-negative integer k, we know that

∑n
i=1 λ

k
i = tr(Hk). If

k is an even integer, we have that λk1 6 tr(Hk). Suppose we can bound each element of the
diagonal of Hk by a(k). The idea of the Trace Method is to take k � log n to conclude that
λ1 6 n1/ka(k)1/k = (1 + on(1))a(k)1/k.

More generally, the following inequality is applied when using this technique:

28

tr(A2k) = tr((AT)kAk) = ‖Ak‖2
F =

∑
i

|λki |2 > ρ(A)2k,

where ‖A‖F =
√∑

i,j A
2
ij is the Frobenius norm of A.

The reason why this inequality is so powerful is because we can now study the spectrum of
A (namely its spectral radius ρ(A)) through tr(A2k). Notice that A2k is the matrix of length 2k
walks in G, that is, (A2k)ij is exactly the number of walks of length 2k from i to j in G. Hence
tr(A2k) =

∑
i(A

2k)ii is the total number of closed walks in G (walks that start and end at the
same vertex). By using this method we can analyze a spectral property of G (i.e. ρ(A)) through
purely combinatorial properties of G (i.e. the number of closed walks).

So we have seen how using the Trace Method to analyze eigenvalues of graphs involves
counting closed walks. However, it is common to instead count non-backtracking walks, since
these are much easier to count. These are walks that never backtrack, that is, we never take the
same edge twice in a row (but we might repeat it later in the walk). As it turns out, we can
relate the number of closed walks to the number of non-backtracking walks. Hence, we define
the non-backtracking matrix.
Definition 3.2.1 (Non-backtracking matrix [Has89]). Let G = (V,E) be a multigraph with
adjacency matrix A. Let ~E denote the (multi)set of all directed edges formed by replacing each
undirected edge in E with two opposing directed edges. Then G’s non-backtracking matrix B
has rows and columns indexed by ~E, with

B(u1,v1),(u2,v2) =

{
Au2,v2 if v1 = u2 and v2 6= u1,
0 otherwise.

(Note that this matrix is not symmetric in general.) In caseG is an edge-signed graph, the entry 1
above should be replaced by Au2,v2 , the sign of G on edge {u2, v2}.

Ultimately, we want a map between eigenvalues of this matrix B and the adjacency matrix
A. In a number-theoretic context, Ihara [Iha66] implicitly showed how to do so when the graph
G is regular. Serre [Ser77] and several others suggested the translation to graph theory, and
Bass [Bas92] (following [Has89]) explicitly established:
Theorem 3.2.2. (Ihara–Bass formula.) Let G be a d-regular (multi)graph and write q = d− 1.
Then

det(1− zB) = (1− z2)exc(G)−1 det((1 + qz2)1− zA),

where 1 denotes the identity matrix (of appropriate dimension).
This theorem has been given many proofs, and it can be generalized to irregular graphs, edge-

weighted graphs, and infinite graphs, see [WF09, AFH15]. We will use the following result,
which is immediate from the edge-weighted generalization [WF09] when all weights are ±1:
Theorem 3.2.3. ([WF09].) The Ihara–Bass formula holds as stated above for edge-signed
graphs.

The utility of Ihara–Bass is that it gives a direct correspondence between the spectra of A
andB. To see this, consider the zeroes of the polynomials (in z) on the left- and right-hand sides.
We have that z is a zero of the left-hand side precisely if z−1 is an eigenvalue of B. On the other

29

hand, z is a zero of the right-hand side precisely if z−1 = ±1 or if z−1 is such that z−1 + q/z−1

is an eigenvalue of A. Thus if we want to deduce, say, the eigenvalues of B from the eigenvalues
of A, we have the following:
Proposition 3.2.4. (Consequence of Ihara–Bass.) Let G = (V,E) be a (q + 1)-regular edge-
signed graph with adjacency matrix A and non-backtracking matrix B. Let λ 6= 0,±1 be a
number such that λ+ q/λ is an eigenvalue of A. Then λ is an eigenvalue of B.

In fact, Proposition 3.2.4 is the only consequence of Ihara–Bass we will need, and for the
convenience of the reader we give a self-contained proof (inspired by [AFH15]):

Proof. Let f : V → C be an eigenvector for A with eigenvalue λ + q/λ. Define g : ~E → C

by gvw = Avwfv − λfw. We claim that Bg = λg. It then follows that λ is an eigenvalue of B,
given that g 6≡ 0 (a consequence of f 6≡ 0: choose {v, w} ∈ E with fv, fw not both 0, and then
gvw = 0 = gwv is impossible because λ 6= ±1). To verify the claim, for any uv ∈ ~E we have

(Bg)uv =
∑
w∼v
w 6=u

Avwgvw =
∑
w∼v

Avw(Avwfv−λfw)−Avu(Avufv−λfu) = −λ
∑
w∼v

Avwfw+qfv+λAvufu.

But
∑

w∼v Avwfw = (Af)v = (λ + q/λ)fv. Thus (Bg)uv = −λ2fv + λAvufu = λguv, as
needed.

When G is unsigned, A has a “trivial” eigenvalue of d = q + 1, corresponding to λ = q; this
yields the “trivial” eigenvalue of q = d − 1 for B. For general edge-signed G, if λ = ±√q =

±
√
d− 1 in Proposition 3.2.4, then λ + q/λ = ±2

√
q = ±2

√
d− 1. Thus the Ramanujan

eigenvalue bound of 2
√
d− 1 for A is equivalent to the bound

√
d− 1 for B. As for the “+ε”, a

simple calculation (appearing in [Bor19], Section 2.2) shows:
Corollary 3.2.5. Let G = (V,E) be a d-regular graph (d > 3) with adjacency matrix A and
non-backtracking matrixB. IfA has an eigenvalue of magnitude 2

√
d− 1+ε (for ε > 0) thenB

has an eigenvalue of magnitude
√
d− 1 +

√
ε
√√

q + ε/4 + ε/2 (which is
√
d− 1 + Θ(d1/4

√
ε)

for fixed d and ε→ 0).

3.3 Random models of regular graphs

We will devote a lot of our time to analyze properties of random regular graphs. As such, we will
need to look at some of the classic models. We start by describing one standard way to generate
random d-regular graphs: the random lift model, see [BC78, Bol80, Bol01].
Definition 3.3.1 (Lift model). Fix a base graph G = (V ,E) on n vertices. Then for n ∈ N+,
an n-lift of G is graph G defined by a collection of permutations πuv ∈ Sn, one for each edge
(u, v) ∈ ~E, under the constraint that πuv = π−1

vu . The vertex set ofG is V ×[n], and the edges ofG
are given by all pairs (u, i), (v, j) satisfying (u, v) ∈ E and πuv(i) = j. When the permutations
πuv are independent and uniformly random, we call the associated graphG a (uniformly) random
n-lift of G. Observe that if G is a d-regular graph, then G is always a d-regular (simple) graph
on nn vertices.

30

A simple observation is that if G is a d-regular graph, then any graph lift of G is a d-regular
graph on |V (G)|n vertices. An important case of the lift model is the one of 2-lifts. An equivalent
way of defining a 2-lift is by considering an edge-signingw : E → {±1} ofG. This edge-signing
uniquely defines a 2-lift of G, which we can describe in the following way:

V = V × {±1}, E =
{
{(u, σ), (v, σ · w(u, v))} : (u, v) ∈ E, σ ∈ {±1}

}
.

The following was first observed by Bilu and Linial [BL06]:
Lemma 3.3.2. Let G be a d-regular graph, w : E → {±1} an edge-signing and G̃ the signed
version ofG (meaning the graph such that its adjacency matrix has nonzero entries w(u, v) when
{u, v} ∈ G). Then the corresponding 2-lift G satisfies:

Spec(AG) = Spec(AG) ∪ Spec(AG̃).

We can now define our second regular graph model.
Definition 3.3.3 (Configuration model). Given integers n > d > 0 with nd even, the config-
uration model produces a random n-vertex, d-regular undirected multigraph (with loops) G.
This multigraph is induced by a uniformly random matching M on the set of “half-edges”,
[n] × [d] ∼= [nd] (where (v, i) ∈ [n] × [d] is thought of as half of the ith edge emanating
from vertex v). We identify M with a symmetric matrix in {0, 1}nd×nd having 1’s precisely
in the entries corresponding to matched pairs {(v, i), (v′, i′)}. We may think of M being gen-
erated as follows: First a uniformly random permutation π ∈ Snd is chosen; then we set
Mπ(j),π(j+1) = Mπ(j+1),π(j) = 1 for each odd j ∈ [nd].

GivenM , the multigraphG is formed by “attaching” the matched half-edges. More formally,
the (v, v′)-entry ofG’s adjacency matrixA is the sum, over all i, i′ ∈ [d], ofM(v,i),(v′,i′). Hence

Av,v′ =
d∑

i,i′=1

∑
odd

j∈[nd]

(1[π(j) = (v, i)]·1[π(j+1) = (v′, i′)]+1[π(j) = (v′, i′)]·1[π(j+1) = (v, i)]).

Note thatAv,v will always be even; a self-loop is considered to contribute degree 2.
It is well known that a graphG drawn from the configuration model is simple [Wor99] — i.e.,

has no cycles of length 1 or 2 — with probability Ωd(1), this continues to hold for pseudorandom
d-regular graphs (to be defined later.) We also record the well known fact that forG drawn from
the configuration model, when G is conditioned on being simple, its conditional distribution is
uniformly random among all d-regular graphs.

It is easy to see that any n-vertex, d-regular graph that is bicycle-free at radius r must have
r . logd−1 n. On the other hand, it can be shown (see, for example, [Bor19]) that a random
d-regular graph achieves this bound up to a constant factor.

3.4 Standard derandomization tools
All of the explicit constructions we will present follow a simple recipe: first show some property
about random graphs (drawn from the appropriate distribution); then derandomize this property;

31

apply a deterministic formula to the result to obtain the desired explicit construction. As such,
we will need to use several tools from the pseudorandomness literature, which we will describe
here.
Definition 3.4.1 ((δ, k)-wise uniform bits). Let δ ∈ [0, 1] and k ∈ N+. A sequence of Boolean
random variables y = (y1, . . . ,yn) ∈ {±1}n is said to be (δ, k)-wise uniform1 if, for every
S ⊆ [n] with 0 < |S| 6 k, it holds that |E[

∏
i∈S yi]| 6 δ. When δ = 0, we simply say that

the sequence is (truly) k-wise uniform; indeed, in this case the bits are individually uniformly
distributed and are k-wise independent.

A classic result of Naor and Naor [NN93] shows that (δ, k)-wise uniform bits can be con-
structed efficiently and deterministically from a truly random seed of lengthO(log k+log log n+
log(1/δ)). Indeed, these bits can be generated “strongly explicitly” (using [Sho90]; cf. [AGHP92]):

Theorem 3.4.2. ([NN93].) There is a deterministic algorithm that, given δ, k, and N , runs in
time poly(N/δ) and outputs a multiset Y ⊆ {±1}N of cardinality S = poly(k log(N)/δ) (a
power of 2) such that, for y ∼ Y chosen uniformly at random, the sequence y is (δ, k)-wise
uniform. Indeed, if the algorithm is additionally given 1 6 s 6 S and 1 6 i 6 N (written in
binary), it can output the ith bit of the sth string in Y in deterministic time polylog(N/δ).

We will make use of the fact that the parameters in this theorem have excellent dependence
on N and k. We now discuss the analogous concept for random permutations, where it is not
known if the parameter dependence can be as strong.
Definition 3.4.3 ((δ, k)-wise uniform permutations). Let δ ∈ [0, 1] and k ∈ N+. Let [n]k de-
note the set of all sequences of k distinct indices from [n]. A random permutation π ∈ Sn
is said to be (δ, k)-wise uniform if, for every sequence (i1, . . . , ik) ∈ [n]k, the distribution of
(π(i1), . . . ,π(ik)) is δ-close in total variation distance from the uniform distribution on [n]k.
When δ = 0, we simply say that the permutation is (truly) k-wise uniform.

Kassabov [Kas07] and Kaplan–Naor–Reingold [KNR09] independently obtained a determin-
istic construction of (δ, k)-wise uniform permutations with seed length O(k log n + log(1/δ)).
Again, the construction is even “strongly explicit”:
Theorem 3.4.4. ([KNR09, Kas07].) There is a deterministic algorithm that, given δ, k, and n,
runs in time poly(nk/δ) and outputs a multiset Π ⊆ Sn (closed under inverses) of cardinality
S = poly(nk/δ) (a power of 2) such that, for π ∼ Π chosen uniformly at random, π is a
(δ, k)-wise uniform permutation. Indeed, if the algorithm is additionally given 1 6 s 6 S and
1 6 i 6 n (written in binary), it can output πs(i) and π−1

s (i) (where πs is the sth permutation
in Π) in deterministic time poly(k log(n/δ)).

We will also use a convenient theorem of Alon and Lovett [AL13]:
Theorem 3.4.5. ([AL13].) Letπ ∈ Sn be a (δ, k)-wise uniform permutation. Then one can define
a (truly) k-wise uniform permutation π′ ∈ Sn such that the total variation distance between π
and π′ is O(δn4k).

Combining the previous two results yields the following:
Corollary 3.4.6. ([KNR09, Kas07, AL13]) There is a deterministic algorithm that, given k and n,
runs in time poly(nk) and outputs a multiset Π ⊆ Sn (closed under inverses) such that, when

1Frequently called (δ, k)-wise independent in the literature.

32

π ∼ Π is chosen uniformly at random, π is n−100k-close in total variation distance to a (truly)
k-wise uniform permutation. (And the final “indeed” statement from Theorem 3.4.4 also holds.)

3.5 A primer on coding theory
Some of our applications of expanders are to the field of coding theory. We provide a (really)
short introduction to the main terms of this field. For a more comprehensive view of this field we
recommend the book [GRS12].

Suppose there are two parties that want to communicate information through some channel.
For example, the two parties can be two friends and the channel the internet. However, suppose
the channel is noisy, that is often the information being transmitted gets (partially) corrupted. We
need a way to represent data such that we can recover the original message even if part of it gets
corrupted. This is exactly what error correcting codes do.

Formally, an error correcting code C of code length n over an alphabet Σ is a subset of Σn.
Elements of C are known as codewords. We usually represent the cardinality of the code |Σ| by
q. The dimension of the code is given by logq |C|, which we usually denote by k or dim C. An
alternate way of defining an error correcting code is as an injective map Σk → Σn.

A linear code is a code for which any linear combination of codewords is also a codeword.
Consider a finite field Fq and an n-dimensional vector space Fnq over Fq. Formally, a linear
[n, k]q code is a k-dimensional subspace of Fnq . We can associate to C a full-rank n × k matrix
G, called the generator matrix, such that C is the row space of G. Using the map definition of
codes, this is equivalent to saying that the injective map Fkq → F

n
q that defines the code is given

by x 7→ Gx. Additionally, we can associate a (n − k) × n matrix H , called the parity check
matrix, such that C is the kernel of H , which means that for x ∈ C we have Hx = 0. It is not
hard to see that GHT = 0.

The dual code of a code C, denoted by C⊥, is a [n, n− k]q linear code defined as C⊥ = {x ∈
F
n
q |∀y ∈ C, 〈x, y〉 = 0}. It is easy to see that the generator matrix for C is H and the parity check

matrix is G.
The Hamming distance between two vectors x, y ∈ Fnq , denoted by d(x, y), is the number

of positions at which the corresponding symbols are different. The distance of a code C is the
minimum Hamming distance between distinct codewords, formally d(C) = min{d(x, y)|x 6=
y;x, y ∈ C}.

A low density parity check (LDPC) code is a linear code whose parity check matrix has row
and column weights bounded by a constant w. They were first introduced by Gallager [Gal62] in
the ’60s and are one of the most popular classes of classical error-correcting codes, both in theory
and in practice. This popularity comes from the fact that there are many known constructions of
classical LDPC codes that achieve linear rate and distance that can also be decoded in linear time
[RU08].

33

34

Chapter 4

2-Lifts and Explicit Near-Ramanujan
Graphs

We begin this thesis by studying the oldest and most fundamental problem in the area of ex-
panders: how to explicitly construct (near) optimal spectral expander graphs. The tools we
introduce in this chapter are used repeatedly in the remaining chapters.

We describe the results of [MOP20a], which was joint work with Sidhanth Mohanty and
Ryan O’Donnell. We showed how to construct near-Ramanujan graphs in a probabillistically
strongly explicit way.

Our proof has two parts. First, we weakly derandomize Bordenave’s proof of Theorem 1.1.16
to produce a small d-regular near Ramanujan graph, using standard derandomization tools. Addi-
tionally, we show how to make this small graph be bicycle-free at a large enough radius. Then, we
show that a random 2-lift of a graph that is bicycle-free at such a radius is also near-Ramanujan,
which we also derandomize. Finally, by iterating this procedure we are able to obtain a near-
Ramanujan graph of the desired size.

4.1 Overview of main results
Our main result of this chapter gives poly(n)-time deterministically computable n-vertex d-
regular graphs G with λ(G) 6 2

√
d− 1 + ε, for any d > 3 and ε > 0. To be more precise,

the running time of our algorithm is nf(d,ε) where f(d, ε) = O(d1/4 log(d)/
√
ε). Although our

graphs are not strongly explicit, they are at least probabilistically strongly explicit. Recall that
this means we show there exist near-Ramanujan graphs whose adjacency lists are computable in
polylog(n) time, and furthermore there is a polylog(n)-time randomized algorithm for finding
them with high probability. More precisely, the following statement holds:
Theorem 4.1.1. There is a deterministic polynomial-time algorithm with the following proper-
ties:

• It takes as input N , d > 3, and ε > 0 written as binary strings.
• It also takes as input a “seed” s ∈ {0, 1}O(logN) (theO(·) hides a factor ofO(d1/4 log(d)/

√
ε)).

• It outputs a Boolean circuit C that implements the “adjacency list” of a d-regular graphG
on N ′ ∼ N vertices in polylog(N) time. (This means that on input u ∈ [N ′] and i ∈ [d],

35

both expressed in binary, C(u, i) outputs the v ∈ [N ′] that is the ith neighbor of u in G.)
• With high probability over the choice of seed s, the resulting graph G satisfies the bound
λ(G) 6 2

√
d− 1 + ε.

Given Theorem 4.1.1, we can obtain a deterministic polynomial-time (“weakly explicit”)
construction by taking N = n, enumerating all possible poly(n) seeds s, explicitly constructing
each resulting G, and then selecting any of the many ones with λ(G) 6 2

√
d− 1 + ε. This

selection uses the following fact:
Fact 4.1.2. For any rational approximation ρ of 2

√
d− 1 + ε, one can decide in poly(n) time

whether λ(G) 6 ρ 1.
We summarize this fact about the weakly explicit construction in the following corollary:

Corollary 4.1.3. For any given constants N, d > 3, ε > 0, there is a deterministic polynomial
(nf(d,ε) where f(d, ε) = O(d1/4 log(d)/

√
ε)) time algorithm that produces a d-regular graph G

with N ′ vertices such that:
• N ′ ∼ N ,
• λ(G) 6 2

√
d− 1 + ε.

The key technical result that we prove in service of this is the following:
Theorem 4.1.4. LetG be an arbitrary d-regular n-vertex graph. Assume thatG is r-bicycle free,
where r � (log log n)2. Then a random edge-signing of G has all its eigenvalues bounded in
magnitude by 2

√
d− 1 + on(1), with high probability.

4.1.1 On Bordenave’s theorem with random edge-signs
Since our result may be viewed as a derandomization of the Friedman/Bordenave theorem (The-
orem 1.1.16), let us take some time to describe this result. Friedman’s original proof is notably
quite involved (100 pages). Bordenave’s proof is certainly simpler (more like 30 pages), al-
though it is by no means easy. However, Bordenave’s proof can become still simpler if one is
willing consider a variant: when G is not just a random d-regular graph, but rather a randomly
edge-signed random d-regular graph.

Let us say a few words about why this makes things simpler. First, it turns out that in this
case one need not worry about the “trivial eigenvalue” of d; it no longer exists, and the statement
to be proven is simply that ρ(G) 6 2

√
d− 1 + ε with high probability, where ρ(G) is the spec-

tral radius (largest eigenvalue-magnitude) of the (signed) adjacency matrix of G. Second, with
random edge-signs, each entry of G’s adjacency matrix becomes a symmetric random variable,
and it is always more pleasant in probability theory when one’s random variables naturally have
mean zero.

In fact, there are scenarios in which one might actually want to consider random edge-signed
d-regular graphs. For example when studying the Max-Cut problem, the setting of sparse random
graphs is a very natural and challenging one, and many algorithms/complexity results depend
on eigenvalue bounds for such graphs. Having random edge-signs simply means studying the
equally natural 2XOR (aka 2Lin) problem, one that has a long history in theoretical computer
science as well [Hås84].

1This is a known fact since it easily reduces to checking in polynomial time whether a given rational matrix is
PSD [GLS84, GLS93]

36

Undoubtedly experts would know that including random edge-signs should make Borde-
nave’s proof simpler, but it doesn’t appear to have been directly explored until the recent work
of Deshpande et al. [DMO+19a]. That paper proved the analogue of Friedman/Bordenave for
random edge-signings of random (c, d)-biregular graphs. The case when c = d is essentially the
same as the d-regular random graph case, but the nature of the proof simplification is perhaps ob-
scured, particularly because [DMO+19a] directly cited several lemmas from Bordenave [Bor19].

In fact, a side motivation we had was to carefully set out a self-contained proof — as simple
as possible — of “Alon’s Conjecture” for randomly edge-signed graphs. A reader not interested
in derandomization may nevertheless find our proof of the below theorem of interest, particularly
since it contains a substantial portion of Bordenave’s proof of Friedman’s theorem.
Theorem 4.1.5. Let d > 3 and ε > 0. If G is a random edge-signed d-regular n-vertex graph,
then

Pr
[
ρ(G) 6 2

√
d− 1 + ε

]
> 1− on(1).

In the course of proving this theorem, we are able to observe that in fact Theorem 4.1.4 holds.
That is, Theorem 4.1.5 does not thoroughly rely on having a random edge-signing of a random
d-regular graph. Instead, it works for a random edge-signing of any d-regular graph that has one
particular property: namely, every vertex-neighborhood of radius O((log log n)2) should have at
most one cycle. This property — called tangle-freeness by Bordenave (simplifying Friedman’s
notion of “tangles”) — is a property that random d-regular graphs have with high probability,
even for neighborhoods of the much larger radius Θ(logd−1 n).

With Theorem 4.1.4 in hand, we are in a position rather like that of Bilu–Linial, who similarly
showed [BL06, Cor. 3.1] that a random edge-signing of any sufficiently good small-set expander
has spectral radius at most

√
d · O(log1.5 d) (with high probability). As in Bilu–Linial, it is also

fairly straightforward to see that Theorem 4.1.4 can be derandomized effectively using almost-
k-wise independent binary random variables.

We next describe how this derandomized result on edge-signings leads to our main Theo-
rem 4.1.1.

4.1.2 Explicit near-Ramanujan graphs via repeated 2-lifts

Let G = (V,E) be an n-vertex d-regular graph, and let G̃ be the edge-signed version of it
associated to edge-signing w : E → {±1}. As observed by Bilu and Linial [BL06], this edge-
signing is in a sense equivalent to the “2-lift” G2 = (V2, E2) of G defined by

V2 = V × {±1}, E2 =
{
{(u, σ), (v, σ · w(u, v))} : (u, v) ∈ E

}
.

This G2 is a 2n-vertex d-regular graph, and the equivalence is that G2’s eigenvalues are precisely
the multiset-union of G’s eigenvalues and G̃’s eigenvalues. (The latter refers to the eigenvalues
of G̃’s signed adjacency matrix, whose nonzero entries are w(u, v) for each {u, v} ∈ E.) In
particular, if all the eigenvalues of G and G̃ have magnitude at most 2

√
d− 1 + ε (excluding

G’s trivial eigenvalue of d), then the same is true of G2 (excluding its trivial eigenvalue). Thus
Theorem 4.1.4 can provide us with a (derandomizable) way of doubling the number of vertices
in an ε-near-Ramanujan graph. It is not hard to see (Proposition 4.2.1) that if G is r-bicycle-free

37

then G2 will also be r-bicycle-free. Thus we may repeatedly double the number of vertices in
an ε-near-Ramanujan graph, so long as the parameter r remains ω((log log |V |)2), where |V |
is the “current” number of vertices. (Unfortunately, we do not see an obvious way to get the
parameter r to increase as we perform 2-lifts.) This is roughly the same strategy employed
in [BL06].

As a consequence, to obtain a final d-regular ε-near-Ramanujan graph with Θ(N) vertices,
all we need to get started is some d-regular ε-near-Ramanujan graph H on a smaller number of
vertices, n, which isO((log logN)2)-bicycle-free. Thanks to Friedman/Bordenave, we know that
a random d-regular n-vertex graph is (with high probability) near-Ramanujan, and it’s not hard
to show it’s Θ(log n)-bicycle-free. Thus we could get started with H being a random d-regular
graph on, say, n = 2

√
logN vertices, or even something smaller like n = quasipoly(logN).

Of course, to get a construction which is overall explicit, we need to derandomize the Fried-
man/Bordenave analysis for this base graph H . The advantage is we now have poly(N) time to
spend on constructing a graph with n� N vertices. A trivial exponential-time derandomization
won’t work, but nor do we need a polynomial-time derandomization; a quasipolynomial-time
derandomization is more than sufficient. And as we will see in Section 4.4, it is possible to
derandomize Bordenave’s proof in deterministic nO(logn) time using O(log n)-wise uniform per-
mutations. The proof of this is not completely straightforward because Bordenave’s proof uses a
twist on the Füredi-Komlós Trace Method [FK81] (since the plain Trace Method provably fails).

4.2 On bicycle-freeness
It is well known that a d-regular random graph in the random lift model is likely to have at most
one cycle in any neighborhood of radius c logd−1 n, for a certain universal c > 0. To codify this,
let us first recall the definition of bicycle-freeness:
Definition 3.1.3 (Bicycle-free at radius r). We say a multigraph is bicycle-free at radius r if
the distance-r neighborhood of every vertex is bicycle-free. Another way to say this is that a
breadth-first search of depth r, started at any vertex, encounters at most one “back-edge”.
Proposition 4.2.1. If G is bicycle-free at radius r, and G2 is a 2-lift of G, then G2 is bicycle-free
at radius r.

Proof. Let (v, i) be any vertex in G2. Let H be the distance-r neighborhood of v in G and let
H2 be the subgraph of G2 induced by V (H)× [2]. Observe that the distance-r neighborhood of
(v, i) is contained in H2, and that exc(H2) 6 0 since exc(H) 6 0. If H2 is disconnected it is
isomorphic to a disjoint union of two copies of H and thus the distance-r neighborhood of (v, i)
is then isomorphic to H . Otherwise, if H2 is connected, exc(H2) 6 0 implies that it has at most
one cycle.

It is easy to see that any n-vertex, d-regular graph that is bicycle-free at radius r must have
r . logd−1 n. On the other hand, as mentioned earlier, a random d-regular graph achieves this
bound up to a constant factor, and we will derandomize the proof of this fact, within theO(log n)-
wise uniform lift model, in Section 4.4.1.

In a graph that is bicycle-free at radius r, by definition we have exc(H) 6 0 for all sub-
graphs H contained in a single distance-r neighborhood. In fact, this property is enough to

38

guarantee that exc(H) is small for any subgraph H with at most exp(r) vertices, regardless of
whether it’s contained in a single distance-r neighborhood:
Theorem 4.2.2. Let H be a v-vertex graph that is bicycle-free at radius r. Assume r > 10 ln v.
Then exc(H) 6 ln(ev)

r
v.

The rest of this subsection is devoted to the proof of the above theorem of elementary graph
theory.
Definition 4.2.3 (Cycg(G) and girth). Given a graph G, let Cycg(G) denote the collection of all
cycles in G of length at most g. Recall that if Cycg(G) is empty then G is said to have girth
exceeding g.

The following fact is essentially immediate from the definitions:
Fact 4.2.4. SupposeG is bicycle-free at radius r. Then the cycles in Cyc2r(G) are vertex-disjoint.

Indeed, more generally:
Proposition 4.2.5. SupposeG is bicycle-free at radius r. For each C ∈ Cyc2r(G), let C+ denote
the collection of vertices within distance r− len(C)/2 of C. Then the sets {C+ : C ∈ Cyc2r(G)}
are pairwise disjoint.

Proof. If u ∈ C+
1 ∩ C+

2 , the distance-r neighborhood of u is enough to include both C1 and C2.

Next, let us now recall the “Moore bound for irregular graphs”. Suppose H is a graph with
v vertices and exc(H) = εv; hence H has average degree 2 + 2ε. If we build a breadth-first
search tree from some vertex, then after depth t we would “expect” to encounter at least (1 +
2ε)t vertices. If this exceeds v — roughly, if t > (ln v)/(2ε) — then the breadth-first search
must encounter a cycle. Thus we have a heuristic argument that girth(H) . (ln v)/ε; i.e.,
ε . (ln v)/girth(H). Indeed, Alon–Hoory–Linial have precisely established this kind of result;
we quote their theorem in a slightly simplified form:
Theorem 4.2.6. ([AHL02].) Let H be a graph with v vertices, exc(H) = εv (for ε > 0), and
girth g. Then v > (1 + 2ε)g/2−3/2.
Corollary 4.2.7. Let H be a graph with v > 3 vertices and girth g > 20 ln v. Then exc(H) 6
((2 ln v)/g)v.

Proof. Suppose for the sake of contradiction that exc(H) > ((2 ln v)/g)v. Now we apply Theo-
rem 4.2.6 and take logs to obtain:

ln v >
g − 3

2
· ln
(

1 +
4 ln v

g

)
⇒2 ln v > (g − 3) · 4(ln v)/g

1 + 4(ln v)/g

⇒1

2
(g + 4 ln v) + 3 > g

⇒20 ln v > g,

where the first implication uses the inequality ln(1 + x) > x/(x+ 1) for x > −1.

39

We can now prove Theorem 4.2.2, which replaces “girth” with “bicycle-free radius” in the
above with only a small loss in parameters.

Proof of Theorem 4.2.2. We will show the theorem assumingH is connected (the only case we’ll
need). It is an exercise to extend it to the general case by consideringH’s connected components.

Let c = |Cyc2r(H)|. By deleting at most c edges from H we can obtain a v-vertex graph H̃
with girth at least (in fact, exceeding) 2r. Applying Corollary 4.2.7 to H̃ , we conclude that
exc(H) 6 ln v

r
v + c. Thus it remains to show c 6 v/r. This is trivial if c = 0, and if c = 1 then

it can only fail if r > v — but then H is unicyclic and hence has excess 0. Assuming then that
c > 2, choose paths in H to minimally connect the c cycles of Cyc2r(H). Now for each C ∈
Cyc2r(H), if we “charge” to it the r − len(C)/2 closest path-vertices, then no vertex is charged
by multiple cycles, by virtue of Proposition 4.2.5. If we also charge the vertices of C to itself,
then for each C ∈ Cyc2r(H) we have charged a batch of at least len(C) + (r − len(C)/2) > r
vertices, and these batches are disjoint. Thus cr 6 v, i.e. c 6 v/r, as required.

4.3 On random edge-signings of fixed bicycle-free base graphs
In this section we will prove Theorem 4.1.4. In fact, we will prove the following refined version:

Theorem 4.3.1. Let G = (V,E) be an arbitrary d-regular n-vertex graph, where d 6 polylogn.
Assume that G is bicycle-free at radius r � (log log n)2. Then for G a uniformly random edge-
signing of G, except with probability at most n−100 the non-backtracking matrixB ofG satisfies
the spectral radius bound

ρ(B) 6
√
d− 1 ·

(
1 +O

(
(log log n)2

r

))
,

and hence (by Corollary 3.2.5) the signed adjacency matrixA ofG satisfies the bound

ρ(A) 6 2
√
d− 1 ·

(
1 +O

(
(log log n)4

r2

))
.

Furthermore, let C = C(n) satisfy 1 6 C 6 polylogn and suppose we merely assume that
the random edge-signs are (δ, k)-wise uniform for δ 6 n−O(C log d) and k > 2C log n. Then the
above bounds continue to hold, with an additional additive O(

√
d/C) in the ρ(B) bound and

O(
√
d/C2) in the ρ(A) bound.

As in [Fri08, Bor19], the proof of Theorem 4.3.1 will use the Trace Method. In preparation
for this, we make some definitions:
Definition 4.3.2 (Hikes). Let G = (V,E) be an undirected graph. For ` ∈ N, we define an
`-hikeH to be a closed walk in G of exactly 2` steps (directed edges) which is non-backtracking
except possibly between the `th and (` + 1)th step. Given an edge-signing w : E → {±1}
we write w(H) for the product of the edge-signs that H traverses, counted with multiplicity.
Finally, we call a hike even (respectively, singleton-free) if each undirected edge traversed by H
is traversed an even number of times (respectively, at least twice).

40

A straightforward use of the Trace Method will now imply:
Proposition 4.3.3. Let ` ∈ N+ and define T = tr

(
B`(B>)`

)
(which is an upper bound on

ρ(B)2`). Then for a uniformly random edge-signing w : E → {±1},

E[T] 6 d2 ·#{even (`− 1)-hikesH in G} 6 d2 ·#{singleton-free (`− 1)-hikesH in G}.

Furthermore, if w is merely (δ, 2`)-wise uniform, the bound holds up to an additive δnd2`+2.

Proof. We have

T =
∑

~e0,~e1,...,~e2`−1,~e2`=~e0∈ ~E

B~e0,~e1B~e1,~e2 · · ·B~e`−1,~e`B~e`+1,~e`B~e`+2,~e`+1
· · ·B~e2`,~e2`−1

. (4.1)

Recalling the definition ofB, one immediately sees that T is “something like” the sum ofw(H)
over all `-hikes in G. But being careful, one sees we precisely have the following:

T is equal to the sum of w(H) over all “special” (` + 1)-hikes in G, where we
call an (`+ 1)-hike special if its (`+ 2)th step is the reverse of its (`+ 1)th step, and
the last step is the reverse of the first step.2

Next, we employ the following easy fact:

Fact 4.3.4. Ifw : E → {±1} is a fully uniformly random edge-signing, then E[w(H)] will be 1
ifH is an even hike, and will be 0 otherwise.

Thus
Ew:E→{±1}[T] = #{even, special (`+ 1)-hikesH in G}. (4.2)

Since a special (` + 1)-hike involves at most 2` undirected edges, a crude upper bound on the
number of all special (` + 1)-hikes in G is nd2`. Thus for an edge-signing w that is merely
(δ, 2`)-wise uniform, Equation (4.2) holds up to an additive δnd2`. Finally, every even special
(`+1)-hikeH can be formed from an even (`−1)-hikeH′ by: (i) attaching a step and its reverse
to the beginning/end ofH; (ii) attaching a step and its reverse to the midpoint ofH. As there are
at most (d− 1)2 6 d2 choices for how to perform (i) and (ii), the inequality in the proposition’s
statement follows.

At this point, edge-signs are out of the way and we are reduced to counting singleton-free
hikes. In aid of this, we define the following quantities:
Definition 4.3.5. Given an (` − 1)-hike H in a graph G, we write GH = (VH, EH) for the
subgraph ofG formed by the union of the edges visited byH. We think ofGH as being “revealed”
as the 2(` − 1) steps of H are taken in order. We classify each step of H as either stale, fresh,
or boundary. If a step of H traverses a previously-explored edge in GH (in either direction), we
call the step stale; otherwise, if it steps to a previously-unvisited vertex, we call the step fresh;
otherwise, we call it boundary. For the purposes of this definition, at the beginning of H the
initial vertex is considered to be “previously visited”.

2The astute reader will note that the sign of the first/last edge in H is never counted in Equation (4.1); however
it is okay to count it twice, as w(H) does, since (±1)2 = 1.

41

We now put bounds on the different kinds of steps. For the fresh steps, we only need the
singleton-free property:
Proposition 4.3.6. In a singleton-free (` − 1)-hike, at least half of all steps must be stale. Thus
there are fewer than ` fresh steps.

For the boundary steps ofH, it is easy to see that there are exactly exc(GH) + 1 of them.
Thus we can bound them using only the bicycle-free property. Together with the simple

bound |VH| 6 2`, Theorem 4.2.2 implies
Proposition 4.3.7. If H is an (` − 1)-hike in a graph G which is bicycle-free at radius r >
10 ln(2`), thenH has at most O(log `

r
) · ` boundary steps.

Finally, to handle the stale steps we group them into “stretches”.
Proposition 4.3.8. In an (`−1)-hikeH, the stale steps may be partitioned into at mostO(log `

r
) ·`

stretches of consecutive stale steps, each stretch having length at most r, and none straddling the
“turnaround” at step `.

Proof. We begin by partitioning the stale steps into maximal contiguous stretches. It is easy to
see that each of these must be preceded inH by a boundary step (with a single possible exception
of the “turnaround” at step `). Thus Proposition 4.3.7 implies that there are at most O(log `

r
) · `

maximal stretches of stale steps. If a maximal stretch straddles the turnaround, we can split it in
two. Finally, if necessary we now subdivide the stretches into length at most r. Since there are
fewer than 2` stale steps, this subdivision can be done without increasing the number of stretches
by more than 2`/r 6 O(log `

r
) · `.

We may now make our final estimate:
Theorem 4.3.9. In a d-regular graph G that is bicycle-free at radius r > 10 ln(2`), the number
of singleton-free (`− 1)-hikesH is at most O(`3n) · (d− 1)` · (dr`)O(log `

r
)·`.

Proof. Following [Bor19], we use an encoding argument. To each H we associate a string
STRUCT(H) over the alphabet {F, B, S}, where we replace each fresh step with an F, each bound-
ary step with a B, and each stale stretch with an S. Our goal will be to show:

Claim 4.3.10. For any string σ with cf , cb, cs occurrences of F, B, S (respectively), there are no
more than 2n · (d− 1)cf+cb · (2r`)cs singleton-free (`− 1)-hikesH with STRUCT(H) = σ.

Let us complete the proof of the theorem assuming this claim. By Propositions 4.3.6 to 4.3.8, we
have the bounds

cf < `, cb, cs < m := O(log `
r

) · `.
Crudely, there are at most O(`3) possibilities for the triple (cf , cb, cs). Also, the following two
quantities are increasing in cf , cb, cs:

2n · (d− 1)cf+cb · (2r`)cs , Σcf ,cb,cs := # strings of cf F’s, cb B’s, cs S’s.

Thus we can upper-bound the number of all singleton-free (`− 1)-hikes by

O(`3n) · (d− 1)`+m · (2r`)m · Σ`,m,m 6 O(`3n) · (d− 1)` · (dr`)O(m),

as needed, where we used the simple bound Σ`,m,m 6 `O(m).

42

It remains to prove the claim. Let σ be as given. We may recover all possible associatedH, in
a vertex-by-vertex fashion, by first specifying the initial vertex (n choices) and then proceeding
through the symbols of σ in order. If we are at an F or a B symbol, we can recover the next vertex
by specifying one of d − 1 neighbors of the current vertex; there are only d − 1 possibilities,
since H is non-backtracking. (Exception: there are d choices at the very beginning of the hike;
we compensated for this with the factor 2 > d

d−1
.) To complete the proof of the claim, we need

to show that for each stale stretch, there are at most 2r` possibilities. Recall that a stale stretch
beginning from a vertex v consists of walking in non-backtracking fashion for at most r steps
over the previously seen portion K of GH. This subgraph K has at most 2` vertices, and by the
bicycle-free property, this walk is confined to a subgraph of K that is at most unicyclic. It is easy
to see this walk is determined by specifying its final vertex (at most 2` possibilities), the number
of times the cycle in v’s distance-r neighborhood (should it exist) is traversed (fewer than r/2
possibilities), and the direction in which the cycle is traversed (2 possibilities). Thus indeed each
stale stretch can be completely determined by specifying one of at most 2` · (r/2) · 2 = 2r`
possibilities.

Combining this with Proposition 4.3.3 now yields:
Corollary 4.3.11. Let G = (V,E) be an arbitrary d-regular n-vertex graph. Assume that G is
bicycle-free at radius r. Let ` ∈ N+ and 0 < η < 1 be parameters. Then for G a uniformly
random edge-signing ofG, except with probability at most η the non-backtracking matrixB ofG
has spectral radius bound

ρ(B) 6
√
d− 1 · (1 +O(ε1) +O(ε2)), (4.3)

where

ε1 :=
log(n/η)

`
, ε2 :=

log(d`) log(`)

r
,

provided ε1, ε2 6 1.
Furthermore, if the random edge-signs ofG are merely (δ, 2`)-wise uniform, the bound holds

up to an additional additive (δn/η)
1
2` ·O(d).

Proof. We have obtained that, for a uniformly random edge-signing w : E → {±1},

E[T] 6 O(d2`3n) · (d− 1)` · (dr`)O(log `
r

)·`.

Note that r . logd−1 n always holds, and hence we must have ` 6 n (else ε2 > 1). Also we must
have ` > log n (else ε1 > 1). Thus we may coarsen O(d2`3n) in the above to O(n5), and coarsen
(dr`)O(·) to (d`)O(·). Now since T is a nonnegative random variable, Markov’s inequality implies
that except with probability at most η,

T 6 O(n5/η) · (d− 1)` · (d`)O(log `
r

)·`,

and hence
ρ(B) 6 T

1
2` 6 O(n5/η)

1
2` ·
√
d− 1 · (d`)O(log `

r
),

which directly implies Equation (4.3).

43

Finally, in the (δ, 2`)-wise uniform case, we get an additional additive δnd2`+2 in the bound
on E[T]; this gets a factor of 1/η after the application of Markov, and becomes (δn/η)

1
2` · O(d)

after taking 2`th roots.

Finally, the reader may verify that Theorem 4.3.1 follows from Corollary 4.3.11 in the fully
uniform case by taking ` = Θ(r log(n)/ log log n), and in the derandomized case by taking
` = Θ(C log(n/η)).
Remark 4.3.12. Alternatively, by taking η = exp(− exp(r.49)) and ` = exp(r.49) in Corol-
lary 4.3.11, we may conclude that ρ(B) 6

√
d− 1 · (1 + or(1)) holds in the fully uniform case

except with probability at most exp(− exp(r.49)).

4.4 Weakly derandomizing Bordenave’s theorem for random
lifts

Bordenave [Bor19] also confirmed Theorem 1.1.16 in the case that G is a random n-lift of any
fixed d-regular Ramanujan base graph G. The simplest case is G = Kd+1, the complete graph on
d+1 vertices. This gives a way to randomly construct arbitrarily large d-regular near-Ramanujan
graphs that are always simple. In particular, Bordenave proves:
Theorem 4.4.1. Fix any d > 3 an ε > 0 and letG be a random n-lift of Kd+1. Then

Pr[λ(G) 6 2
√
d− 1 + ε] > 1− on(1).

In this section we give a weak derandomization of Bordenave’s proof of Theorem 4.4.1, using
“off-the-shelf” tools; the derandomization is “weak” in the sense that it yields a quasipoly(n)-
time deterministic construction. Specifically, we will show that the conclusion of Theorem 4.4.1
holds even for the “almost k-wise uniform” lift model, k = O(log n).
Definition 4.4.2 ((δ, k)-wise uniform lift model). When the permutations πuv are each not uni-
formly random but are merely (δ, k)-wise uniform, we will say thatGn is drawn from the (δ, k)-
wise uniform lift model, or equivalently,Gn is a random (δ, k)-wise uniform lift of G0.

We will not fully recap Bordenave’s proof of Theorem 4.4.1 in this work, although the reader
unfamiliar with it will get some insight knowing that our proof of Theorem 4.3.1 is modeled
on it. Bordenave employs two twists on the Trace Method to show that a random n-lift G of
Kd+1 has spectral radius at most 2

√
d− 1 + ε (when the trivial eigenvalue of d is ignored). The

less important (but still challenging) twist involves replacing the non-backtracking matrix B by
a centered variant, B, that enables one to ignore the trivial eigenvalue. The more conceptually
important twist comes from the fact, originally recognized by Friedman, that even after passing
to B, the Trace Method still fails. The reason, in brief, is as follows: A successful use of the
Trace Method would have to consider walks of length ` for ` at least a large multiple of log n,
in order to overcome the factor of n arising from the n different walk starting points (cf. the
error term ε1 just after Equation (4.3)). But for walks of this long length, one can show that the
expected trace of B`(B>)` is simply too large — much larger than the target poly(n) · (d− 1)`

needed to get the “correct” final bound.

44

However, as first demonstrated by Friedman in the case of random d-regular graphs, the
expectation is too large only because of certain low-probability events.

Bordenave’s way of handling things is to show that: (i) a random n-lift G of a d-regular
graph is, with high probability, bicycle-free at large radius r; (ii) when G is so bicycle-free,
the rth power of its non-backtracking matrix, Br, coincides with a certain “bicycle-discarding”
variant B(r); (iii) the usual Trace Method can be successfully applied to B(r); i.e., the expected
trace of powers ofB(r) is suitably small.

Thus our weak derandomization of Bordenave’s proof has two ingredients, corresponding to
(i) and (iii) above. In Section 4.4.1 we derandomize a standard proof that a random n-lift of a
d-regular graph is bicycle-free at large radius. In Section 4.4.2 we examine the key probabilistic
ingredient in Bordenave’s use of the Trace Method, [Bor19, Prop. 28], which encapsulates the
fact that for a centered version M of the configuration model matching matrix, the random
variablesM (v,i),(v′,i′) are close to k-wise independent for k �

√
dn.

4.4.1 Derandomizing Bicycle-freeness

The following relatively straightforward fact about d-regular n-lifted graphs is crucial for Borde-
nave’s proof: with high probability they are bicycle-free at radius r, provided r . c logd−1 n for
some constant c < 1/4. This fact is proved for completeness by Bordenave [Bor19, Lem. 27].
We would like a derandomized version of this fact for the k-wise uniform configuration model,
k = O(r). This motivates looking for a moments-based proof, such as the one suggested
by Wormald [Wor99, Lem. 2.7] and carried out for Erdős–Rényi G(n,m) graphs in [JŁR00,
Thm. 5.5]. The essential point will be that minimal witnesses to failure have only O(r) edges.
Definition 4.4.3 (Minimal bicycle). We say a connected multigraph is a minimal bicycle if it
is bicyclic but has no proper subgraph that is bicyclic. It is easy to see (cf. [JŁR00, Proof
of Thm. 5.5]) that any minimal bicycle is either a “handcuffs graph” (two cycles joined by a
path), a “figure-eight graph” (two cycles attached at a vertex), or a “theta graph” (a cycle with a
“diagonal”).

We now prove:
Proposition 4.4.4. Fix d > 3 and k > 1. Let G be an n-lift of Kd+1 drawn from the 2k-
wise uniform lift model. Then G is bicycle-free at radius k/4, except wth probability at most
O(k3(d + 1)k/n). In particular, when G0 is Kd+1, the failure probability is at most 1/n.99

provided k < c logd−1 n for a certain universal constant 0 < c < 1/4.
By Theorem 3.4.5, this remains true if the permutation is (δ, 2k)-wise uniform, δ 6 1/(n8k+2).

Proof. Fix a minimal bicycle H with h vertices and hence h + 1 edges, where h < k. Let the
random variable XH denote the number of times that H appears in G. This is a polynomial
of degree at most h + 1 6 k in the entries of G’s adjacency matrix and hence a polynomial of
degree at most 2k in the permutation indicators 1[πuv(j) = i]. Thus to compute E[XH] we may
assumeG is a uniformly random n-lift of G0. In this case,

E[XH] =
∑

S∈{subgraphs of K(d+1)·n isormorphic to H}
Pr[S occurs as subgraph ofG]

45

6 # of occurrences of H in K(d+1)·n ×
1

n(n− 1) · · · (n− h)

6
(n · |V0|)h

n(n− 1) · · · (n− h)

6 O

(|V0|h
n

)
Finally, it is easy to see that, up to isomorphism, the number of minimal bicycles with fewer than
k vertices is at most O(k3). Thus by Markov’s inequality we conclude that the probability of
having any minimal bicycle on fewer than k vertices is at mostO(k3(d+1)k/n). The proposition
now follows since any bicyclic radius-k/4 vertex neighborhood in G must contain a minimal
bicycle with fewer than k vertices. (The “worst case” is a figure-eight graph.)

4.4.2 Bound on the modified trace

In this section we examine the last place in Bordenave’s argument that uses randomness of the
underlying graph G; namely, [Bor19, Prop. 28], an upper bound on a certain moment arising in
his use of the Trace Method. Unfortunately, this proposition is not as self-contained as the one
covered in Section 4.4.1. Rather than trying to give a complete summary of how Bordenave’s
argument works, we will proceed in a “black-box” fashion, only giving the bare minimum needed
to verify derandomizability. We refer the reader to [Bor19] for the complete picture.

Here is the key probabilistic proposition (which can be viewed as a far more sophisticated
version of Fact 4.3.4):
Proposition 4.4.5 ([Bor19, Prop. 28]). Let G be an n-lift of Kd+1, and for e ∈ ~E(Kd+1) let
Me be the uniformly random permutation matrix corresponding to permutation πe as in the lift
model in Definition 3.3.1. Also let M e be the matrix obtained from Me by subtracting 1

n
from

each entry. Then for any length-k sequence of tuples (e1, (i1, j1)), . . . , (ek, (ik, jk)) where each
ei is a directed edge in ~E0 and (it, jt) is in [n]× [n] with 1 6 k 6

√
n, and for any 0 6 k0 6 k,

we have ∣∣∣∣∣E
[
k0∏
t=1

M et [it, jt]
k∏

t=k0+1

Met [it, jt]

]∣∣∣∣∣ 6 O
(

2b · (1
n
)a · (3k√

n
)a1

)
. (4.4)

Here a, b, and a1 on the right-hand side of Equation (4.4) are certain quantities relating to the
combinatorial properties of the sequence (e1, (i1, j1)), . . . , (ek, (ik, jk)). We omit these defini-
tions here, as they won’t be relevant for us. The relevant point of the above proposition is that
there is some anonymous quantity bounding the left hand side of Equation (4.4).

Note that when Me is formed from a random permutation πe on [n] as in Definition 3.3.1,
each entry Me[i, j] is a polynomial of degree 1 in the indicators 1[πe(i) = j]. It follows that
the quantity inside the expectation in Equation (4.4) is a polynomial of degree at most k in these
indicators. We conclude:
Corollary 4.4.6. Let G be drawn by taking a random lift of G0 using 2k-wise uniform permu-
tations, and write M for the matching matrix inducing G. Then Equation (4.4) continues to
hold.

46

With Proposition 4.4.5 in hand, Bordenave does some intricate — but entirely non-probabilistic
— path-counting to complete his use of the Trace Method. (This is like a much more sophisti-
cated version of the part of Section 4.3 beginning with Definition 4.3.2.) This part of his proof
involves considering paths of length 2`m, where “`” and “m” are parameters he selects (with `
being at least the bicycle-free radius, and m being large enough so that `m� log n). The crucial
observation for us is that Bordenave only employs Proposition 4.4.5 with its parameter “k” set
to 2`m.

Bordenave directly sets ` = Θ(logd−1(n)) and m = Θ(log(n)/ log log(n)) to obtain best
parameters, but we will work more generally, since we may be interested in minimizing k = 2`m
to save on random bits. Carefully examining [Bor19, Proofs of Prop. 29, 33], one may extract
the below proposition. The random matricesB(`) andR(`)

1 , . . . ,R
(`)
` mentioned in it are derived

from the randomness of the lift model; again, see [Bor19] for details.
Proposition 4.4.7. Assuming d, `,m satisfy `m�

√
dn and poly(d`m)m � n,

E
[
‖B(`)‖2m

]
6 n ·poly(d`m)m · (d−1)`m, E

[∑̀
i=1

‖R(`)
i ‖2m

]
6 poly(d`m)m · (d−1)2`m,

Furthermore, this only relies on Equation (4.4) with k = 2`m, and therefore by Corollary 4.4.6
it continues to hold even in the 4`m-wise uniform lift model. Thus in this model, Markov’s
inequality implies that except with probability at most n−100,

‖B(`)‖ 6 poly(n)
1

2m · (d− 1)
`
2 ,

∑̀
i=1

‖R(`)
i ‖ 6 poly(n)

1
2m · (d− 1)`.

Finally, [Bor19, Prop. 26] is the following:
Proposition 4.4.8. Suppose G drawn from the lift model is bicycle-free at radius `. Then the
largest magnitude “new” eigenvalue of the associated non-backtracking matrixB is at most(

‖B(`)‖+
1

n
·
∑̀
i=1

‖R(`)
i ‖
)1/`

.

We can now finish the proof as Bordenave does. Using the parameter settings ` = c logd−1 n
andm = (C/c) log(d−1)/

√
εwhere c andC is a large enough universal constant, and combining

Corollary 3.2.5 and Propositions 4.4.4, 4.4.7 and 4.4.8, we get the following:
Theorem 4.4.9. Fix any d > 3 and ε > 0, and let k > C log n/

√
ε. Let Gn be a random k-wise

uniform lift of Kd+1. Then except with probability at most 1/n.99, the following hold:
• Gn is bicycle-free at radius c logd−1 n;
• λ(Gn) 6 2

√
d− 1 + ε.

Finally, by Theorem 3.4.5, these statements remain true for (δ, k)-wise uniform lifts, where δ <
1/n8k+1.

4.5 Explicit near-Ramanujan graphs
With the tools developed in Section 4.3 and Section 4.4 we are now ready to establish our explicit
near-Ramanujan graph constructions. For ease of reading, in this section we will merely prove

47

a weaker version of Theorem 4.1.1, the deterministic polynomial-time (“weakly explicit”) con-
struction, with d and ε assumed to be constant. We leave the slightly more technical proof of the
“probabilistically strongly explicit” construction (Theorem 4.1.1), with worked out dependence
on d = d(n) and ε = ε(n), for Section 4.6.

Recall we want to show there is a deterministic algorithm that on input N, d > 3 and ε > 0,
outputs in poly(N)-time a d-regular graph G on N ′ ∼ N vertices with λ(G) 6 2

√
d− 1 + ε.

Before getting into the details, we recap the construction as outlined in Section 4.1.2:

1. Using Theorem 4.4.9 we construct a d-regular simple graph G0 on some “small” num-
ber of vertices n0 = n0(N), which is bicycle-free at radius Ω(log n0) and has λ(G0) 6
2
√
d− 1 + ε. The quantity n0 should satisfy

2ω((log logN)2) 6 n0 6 2O(
√

logN),

the left inequality so that G0 is sufficiently bicycle-free for Step 2 below, and the right
inequality so that G0 is constructible in deterministic poly(N) time. We have a wide range
of allowable possibilities here; for concreteness we will take n0 near the upper limit to
allow for slightly better dependence on non-constant d, ε in Section 4.6.

2. Next we repeatedly use Theorem 4.3.1 (roughly log(N/n0) ∼ logN times) to double
the number of vertices in our construction from Step 1, while keeping λ 6 2

√
d− 1 + ε

and also retaining that the graph is bicycle-free at radius Ω(log n0) (Proposition 4.2.1).
Importantly, since Theorem 4.3.1 is a high-probability result, we will be able to reuse the
seed for each of the logN pseudorandom edge-signings.

Step 1 details. Here the algorithm will select n0 to be an even integer on the order of 2Θ(
√

logN).
Theorem 4.4.9 tells us that for a sufficiently large k = O(log n0) = O(

√
logN), and for suffi-

ciently small δ = n
−Θ(k)
0 = 1/poly(N), a random d-regular n0-vertex graphG0 chosen from the

(δ, k)-wise uniform random-lift-of-Kd+1 model will with high probability satisfy:

G0 is bicycle-free at radius Ω(log n0) = Ω(
√

logN); λ(G0) 6 2
√
d− 1 + ε. (4.5)

(Recall we are treating d and ε as constant here.) G0 will also be simple with Ω(1) probability
in the configuration model case, and with probability 1 in the random lift case. In the former
case, we need a (δ, k)-wise permutation in Snd; in the latter case, we need

(
d+1

2

)
independent

(δ, k)-wise permutations in Sn. Either way, Theorem 3.4.4 tells us that a deterministic algorithm
can enumerate all possibilities for G0 in poly(N) time and pick out any fixed simple one G0

satisfying (4.5).

Step 2 details. Here the algorithm will be applying Theorem 4.3.1 some t ∼ log2N times,
starting with G0, and each time interpreting the edge-signing produced as a 2-lift as discussed in
Section 4.1.2. This produces a sequence of pseudorandom d-regular simple graphs G1, . . . ,Gt,
where Gi has n02t vertices. The parameter t is chosen to be least possible such that the final
number of vertices, N ′ = n02t, is as at least N . It is not hard to check that by adjusting n0

by a factor of at most 2, we can ensure that N ′/N = 1 + oN(1), where the oN(1) term is
O(1/n0) = 1/2Θ(

√
logN).

48

For simplicity, we will use the same values for the parameters r, k, and δ in each application
of Theorem 4.3.1; only the value of n will change (ranging from n0 up to N ′). We may take
r = Ω(

√
logN), the bicycle-free radius from Equation (4.5) (observe that the bicycle-free radius

cannot decrease for any 2-lift of a graph). Note that the failure probability of any single 2-lift
is at most 1/2Θ(

√
logN), and hence a union bound tells us that the probability of any of the 2-

lifts “failing” is low, logN

2Θ(
√

logN) . We take the parameter “k” to be Θ
(

logN√
ε

)
(the hidden constant

sufficiently large depending on d). Finally, we take δ = 1/NΘ(1/
√
ε) (again with the hidden

constant sufficiently large depending on d). By plugging these parameters into Theorem 4.3.1
we conclude that with high probability, all “new” eigenvalues arising in the 2-lifted adjacency
matricesA1, . . . ,At are at most 2

√
d− 1 + ε in magnitude, and henceGt is ε-near Ramanujan.

It remains to observe that with these parameter settings, using Theorem 3.4.2, a deterministic
algorithm can in poly(N/δ) = poly(N) time do the following: First, produce a single (δ, 2`)-
wise uniform multiset of strings Y ⊆ {±1}N ′d/4; hereN ′d/4 bits are sufficient to edge-sign/2-lift
any of the graphs Gi. Then, the algorithm can search Y for a “good” string y ∈ Y , meaning
one with the property that using (a prefix of) it to do each of the t edge-signings/2-lifts yields
graphs G1, G2, . . . , Gt all of which are ε-near Ramanujan. As argued in the previous paragraph,
a 1 − O

(
logN

2Θ(
√

logN)

)
fraction of strings in Y have this property, and by Fact 4.1.2 we can check

the goodness of any string y in poly(N) time.

This concludes the proof.

4.6 The probabilistically strongly explicit construction
We now walk through the steps of Section 4.5 giving precise parameter details along the way,
and extract a probabilistically strongly explicit construction of near-Ramanujan graphs.

Assume we are given N , 3 6 d 6 (logN)1/8

C
and ε� (log logN)4

logN
·
√
d where C is the constant

from the statement of Theorem 4.4.9.

Revisiting Step 1. Choose parameters as follows: α = 1/
√(

d+1
2

)
; n0 as the largest multiple

of d+ 1 smaller than 2α
√

logN ; k = Cα
√

logN · d1/4/
√
ε (which is ≈ log n0); and δ = 1/N8k+1.

Recall that the key result used in this step is that by Theorem 4.4.9,G0 drawn from the n0-vertex
(δ, k)-wise random-lift-of-Kd+1 model is a simple graph that with high probability satisfies:

G0 is bicycle-free at radius Ω

(
α
√

logN

log(d− 1)

)
; λ(G0) 6 2

√
d− 1 + ε. (4.6)

As an upshot of Theorem 3.4.4, G0 can be sampled using s, a uniform binary string of length
O
(

logN ·d1/4
√
ε

)
as a seed. In particular, s is divided into

(
d+1

2

)
disjoint substrings se1 , . . . , se(d+1

2)

each of length `1 = O
(
α2 logN ·d1/4

√
ε

)
indexed by edges of Kd+1; the (δ, k)-wise uniform permu-

tation πuv corresponding to edge (u, v) is taken to be the suvth permutation in the multiset of

49

permutations Π from the statement of Theorem 3.4.4. Additionally, given s and a vertex (u, i) ∈
V (G0), it is possible to return a list of its neighbors in time T1 = O

(
d · poly

(
α2 logN ·d1/4

√
ε

))
.

Revisiting Step 2. Let t =
⌈
log
(
N
n0

)⌉
; let β be a large enough constant; let k = 2βd1/4

√
ε

logN ;

and let δ = N−O(βd1/4 log d/
√
ε). The main result used in Step 2 is that from Theorem 4.3.1 the

graphs G1, . . . ,Gt where Gi is obtained via a 2-lift of Gi−1 induced by a (δ, k)-wise uniform
signing have their nontrivial eigenvalues bounded by 2

√
d− 1 + ε in magnitude, except with

probability O(t/n100
0). From Theorem 3.4.2, a (δ, k)-wise uniform signing of any Gi can be ob-

tained by first sampling a random binary string s′ of length `2 = O
(
d1/4 log d·logN√

ε

)
and choosing

the sth string in the multiset of signings Y from the theorem statement. In fact, given s′ and edge
e ∈ Gi one can also output the sign assigned to edge e in time T2 = poly

(
βd1/4 log d logN/

√
ε
)
.

Finally, the bound of O(t/n100
0) on the probability that Gt is not ε-near Ramanujan holds even

if we use (a prefix of) the same seed s to perform each of the 2-lifts. Note that t < logN and
n0 > 2(logN)1/4 and hence the failure probability is oN(1).

Probabilistically strongly explicit near-Ramanujan graphs. Given a uniform binary string
s of length `1 + `2 as a random seed, call the substring given by the first `1 bits s1 and the
substring given by the next `2 bits s2. Let G0 be sampled from s1 as described in Step 1, and
let Gt be the “final graph” obtained by the sequence of 2-lifts in Step 2 from s2. Each vertex
in Gi can be naturally identified with a tuple (v, a, x) ∈ [d] × [n0] × {0, 1}i. Let x be a string
in {0, 1}t, let x6i denote its i-bit prefix. Given a vertex (v, a, x) in Gt and seeds s1 and s2, we
describe an algorithm to output a list of its d neighbors in Õ(T1 +dT2)-time where the Õ(·) hides
factors of polylogN . From Step 1, we know that there is an T1-time algorithm to output a list of
d neighbors of (v, a, x60) inG0.

Next, given a list of neighbors of (v, a, x6i−1) in Gi−1 it is possible to output a list of neigh-
bors of (v, a, x6i) in Gi in Õ(dT2)-time in the following way. Let (w, b, y) be a neighbor of
(v, a, x6i−1). Then exactly one of (w, b, y∧ 0) and (w, b, y∧ 1) is a neighbor of (v, a, x6i) where
∧ denotes concatenation. It is possible to obtain the sign on edge {(v, a, x6i−1), (w, b, y)} in
the 2-lift from Gi−1 to Gi in T2 time from s2. If the sign is a −1, then (w, b, y ∧ (1 − xi)) is
a neighbor of (v, a, x6i); otherwise (w, b, y ∧ xi) is a neighbor. Thus, in Õ(dT2) time, we can
obtain a length-d (and hence complete) list of neighbors of (v, a, x6i).

As a result, after spending T1 time generating a list of neighbors of (v, a, x60), we can use
the above routine t times to obtain a list of neighbors of (v, a, x) in Gt in T1 + t · Õ(dT2) 6
Õ(T1 +dT2). From the upper and lower bounds on d and ε, this quantity is alwaysO(polylogN).

To summarize, we have an algorithm that takes in a random seed of length O
(
d1/4 log d·logN√

ε

)
and implements the adjacency matrix of a corresponding random graphG such that:

• Given any vertex v ofG, its list of neighbors can be generated in O(polylogN) time.
• G is ε-near Ramanujan with probability 1− oN(1).

This yields the conclusion of Theorem 4.1.1.

50

Chapter 5

Additive Lifts, CSPs and Two-Eigenvalue
Graphs

In joint work with Sidhanth Mohanty and Ryan O’Donnell [MOP20b], we precisely determined
the SDP value of large random instances of certain kinds of constraint satisfaction problems,
which are known as “two-eigenvalue 2CSPs”, which we describe in this chapter. Briefly, these
are CSPs where each clause can be described by a graph where each vertex represents a variable
and each edge is an XOR constraint between two variables, and such that the spectrum of the
adjacency matrix of the graph only contains two distinct eigenvalues. This includes multiple
famous CSPs families like the NAE-3SAT, the SORT4 and the Forrelationk CSPs.

To establish this result we analyze the spectral expansion of a distribution of graphs that
generalizes uniformly random regular graphs. To do so we generalize well known concepts like
the nonbacktracking operator, the Ihara-Bass Formula, and the Friedman/Bordenave proof of
Alon’s Conjecture.

5.1 Background

In the theory of algorithms and complexity, the most difficult instances of a given constraint satis-
faction problem (CSP) are arguably random (sparse) instances. Indeed, the assumed intractability
of random CSPs underlies various cryptographic proposals for one-way functions [Gol00, JP00],
pseudorandom generators [BFKL93], public key encryption [ABW10], and indistinguishability
obfuscation [Lin17], as well as hardness results for learning [DS16] and optimization [Fei02].
Random CSPs also provide a rich testbed for algorithmic and lower-bound techniques based on
statistical physics [MM09] and convex relaxation hierarchies [KMOW17, RRS17].

For a random, say, Max-Cut instance average degree d, its optimum value is with high prob-
ability (whp) concentrated around a certain function of d. Similarly, given a random 3SAT in-
stance where each variable participates in an average of d clauses, the satisfiability status is whp
determined by d. However explicitly working out the optimum/satisfiability as a function of d is
usually enormously difficult; see, for example, Ding–Sly–Sun’s landmark verification [DSS15]
of the kSAT threshold for sufficiently large k, or Talagrand’s proof [Tal06] of the Parisi formula
for the Sherrington–Kirkpatrick model (Max-Cut with random Gaussian edge weights). The lat-

51

ter was consequently used by Dembo–Montanari–Sen [DMS17] (see also [Sen18]) to determine
that the Max-Cut value in a random d-regular graph is a 1

2
+ P ∗√

d
(1 ± od(1)) fraction of edges

(whp), where P ∗ ≈ .7632 is an analytic constant arising from Parisi’s formula.

Computational gaps for certification. Turning to computational issues, there are two main al-
gorithmic tasks associated with an n-variable CSP: searching for an assignment achieving large
value (hopefully near to the optimum), and certifying (as, e.g., convex relaxations do) that no as-
signment achieves some larger value. Let’s take again the example of random d-regular Max-Cut,
where whp we have OPT ≈ 1

2
+ P ∗√

d
. It follows from [Lyo17] there is an efficient algorithm that

whp finds a cut of value at least 1
2

+ 2/π√
d

. One might say that this provides a 2
πP ∗

-approximation
for the search problem,1 where 2

πP ∗
≈ .83. On the other side, the Max-Cut in a d-regular graph

G is always at most 1
2

+ −λmin(G)
2d

, and Friedman’s proof of Alon’s Conjecture [Fri08] shows that
−λmin(G) 6 2

√
d− 1 + on(1) whp; thus computing the smallest eigenvalue efficiently certifies

OPT / 1
2
+ 1√

d
. One might say that this efficient spectral algorithm provides a 1

P ∗
-approximation

for the certification problem, where 1
P ∗
≈ 1.31.

It is a very interesting question whether either of these approximation algorithms can be
improved. On one hand, it would seem desirable to have efficient algorithms that come arbitrarily
close to matching the “true” answer on random inputs. On the other hand, the nonexistence of
such algorithms would be useful for cryptography and hardness-of-approximation and -learning
results.

Speaking broadly, efficient algorithms for the search problem seem to do better than efficient
algorithms for the certification problem. For example, given a random 3SAT instance with clause
density slightly below the satisfiability threshold of≈ 4.2667, there are algorithms [MPR16] that
seem to efficiently find satisfying assignments whp. On the other hand, the longstanding Feige
Hypothesis [Fei02] is that efficient algorithms cannot certify unsatisfiability at any large constant
clause density, and indeed there is no efficient algorithm that is known to work at density o(

√
n).

Similarly, for the Sherrington–Kirkpatrick model, Montanari [Mon19] has recently given an effi-
cient PTAS for the search problem2, whereas the best known efficient algorithm for the certifica-
tion problem is again only a 1/P ∗-approximation. These kinds of gaps seem to be closely related
to “information-computation gaps” and Kesten–Stigum thresholds for information recovery and
planted-CSP problems.

In this work we focus on potential computational thresholds for random CSP certification/refutation
problems in the sparse setting, and in particular how these thresholds depend on the “type” of the
CSP. For CSPs with a predicate supporting a pairwise-uniform distribution — such as kSAT or
kXOR, k > 3 — there is solid evidence that the computational threshold for efficient certification
of unsatisfiability is very far from the actual unsatisfiability threshold. Such CSPs are whp un-
satisfiable at constant constraint density, but any polynomial-time algorithm using the powerful
Sum-of-Squares (SoS) algorithm fails to refute unless the density is Ω(

√
n/ log n) [KMOW17].

But outside the pairwise-supporting case, and especially for “2XOR-like” CSPs such as Max-Cut

1Depending on one’s taste in normalization; i.e., whether one prefers the objective function avg(u,v)∈E(
1
2 −

1
2xuxv) or − avg(u,v)∈E xuxv , for x ∈ {±1}V .

2Modulo a widely believed analytic assumption.

52

and NAE-3SAT (Not-All-Equal 3SAT), the situation is much more subtle. For one, the potential
gaps are much more narrow; e.g., in random NAE-3SAT, even a simple spectral algorithm ef-
ficiently refutes satisfiability at constant constraint density. Thus one must look into the actual
constants to determine if there may be an “information-computation” gap. Another concern is
that evidence for computational hardness in the form of SoS lower bounds (degree 4 or higher)
seems very hard to come by (see, e.g., [Mon17]).

Prior work. Let us describe two prior efforts towards computational thresholds for upper-
bound-certification in “2XOR-like” random CSPs. Montanari and Sen [MS16] (see also [BKM17])
investigated the Max-Cut problem in random d-regular graphs, where the optimum value is
1
2

+ P ∗√
d

whp (ignoring 1 ± od(1) factors). Friedman’s Theorem implies that the basic eigen-
value bound efficiently certifies the value is at most 1

2
+ 1√

d
. By using a variant of the Gaus-

sian Wave [Elo09, CGHV15, HV15] construction for the infinite d-ary tree, Montanari and
Sen were able to show that even the Goemans–Williamson semidefinite programming (SDP)
relaxation [DP93, GW95] is still just 1

2
+ 1√

d
whp. This may be considered evidence that no

polynomial-time algorithm can certify upper bounds better than 1
2
+ 1√

d
, as Goemans–Williamson

has seemed to be the optimal polynomial-time Max-Cut algorithm in all previous circumstances.
Of course it would be more satisfactory to see higher-degree SoS lower bounds, but as mentioned
these seem very difficult to come by.

Recently, Deshpande et al. [DMO+19b] have given similar results for random “c-constraint-
regular” NAE-3SAT CSPs; i.e., random instances where each variable participates in exactly c
NAE-3SAT constraints.3 Random c-constraint-regular instances of NAE-3SAT are easily shown
to be unsatisfiable (whp) for c > 8. Deshpande et al. identified an exact threshold result for
when the natural SDP algorithm is able to certify unsatisfiability: it succeeds (whp) if c > 13.5
and fails (whp) if c < 13.5. Indeed, they show that for c > 14 even the basic spectral algorithm
certifies unsatisfiability, whereas for c 6 13 even the SDP augmented with “triangle inequalities”
fails to certify unsatisfiability. Again, this gives evidence for a gap between the threshold for
unsatisfiability and the threshold for computationally efficient refutation. The techniques used
by Deshpande et al. are similar to those of Montanari–Sen, except with random (b, c)-biregular
graphs replacing random c-regular graphs. (The reason is that the primal graph of a random c-
constraint-regular NAE-3SAT instance resembles the square of a random (3, c)-biregular graph.)

In fact, the Deshpande et al. result is more refined, being concerned not just with satisfiability
of random NAE-3SAT instances, but their optimal value as maximization problems. Letting
f(c) = 9

8
− 3

8
· (
√
c−1−

√
2)2

c
for c > 3, they determined that in a random c-constraint-regular

NAE-3SAT instance, the SDP value is whp f(c) ± o(1); and furthermore, this is also the basic
eigenvalue bound and the SDP-with-triangle-inequalities bound. (Note that f(13.5) = 1.) Again,
this may suggest that in these instances, computationally efficient algorithms can only certify that
at most an f(c) + o(1) fraction of constraints are simultaneously satisfiable.

3We have changed terminology to avoid a potential future confusion; we will be associating NAE-3SAT con-
straints with triangle graphs, so c-constraint-regular NAE-3SAT instances will be associated to 2c-regular graphs.

53

5.1.1 Our results

The goal of the present work is to generalize the preceding Montanari–Sen and Deshpande et al.
results to a broader class of sparse random 2CSPs and 2XOR-like optimization problems, ob-
taining precise values for their SDP values. Along the way, we need to come to a deeper un-
derstanding of the combinatorial and analytic tools used (nonbacktracking walks, Ihara–Bass
formulas, eigenvalues of random graphs and infinite graphs) and we need to extend these tools to
graphs that do not locally resemble trees (as in Montanari–Sen and Deshpande et al.). We view
this aspect of our work as a main contribution, beyond the mere statement of SDP values for
specific CSPs. We defer to Section 5.1.2 more detailed discussions of the technical conditions
under which we can obtain Ihara–Bass and Friedman-, and Gaussian Wave-type theorems. But
roughly speaking, we are able to analyze the SDP value for random regular instances of opti-
mization problems where each “constraint” (not necessarily a predicate) is an edge-signed graph
with two eigenvalues. Such constraints include: a single edge (corresponding to random regular
Max-Cut or 2XOR as in Montanari–Sen); a complete graph (studied by Deshpande et al., with the
K3 case corresponding to random regular NAE-3SAT); the Sort4 (a.k.a. CHSH) predicate; and,
Forrelationk constraints. These last two have motivation from quantum mechanics, and in fact
the SDP value of the associated CSPs is precisely their “quantum value”. We discuss quantum
connections further in Section 5.2.2.

We state here two theorems that our new techniques allow us to prove. Recall the Sort4
predicate, which is satisfied iff its 4 Boolean inputs x1, x2, x3, x4 satisfy x1 6 x2 6 x3 6
x4 or x1 > x2 > x3 > x4. We precisely define “random c-constraint-regular CSP instance”
in Section 5.2, but in brief, we work in the “random lift” model, each variable participates in
exactly c constraints, and each constraint is given random negations.4

Theorem 5.1.1. For random c-constraint-regular instances of the Sort4-CSP, the SDP-satisfiability
threshold occurs (in a sense) at c = 4 + 2

√
2 ≈ 6.83. Indeed, if c > 7 then even the basic eigen-

value bound certifies unsatisfiability (whp); and, if c 6 6 then the basic SDP relaxation fails to
certify unsatisfiability (whp).

We remark that the trivial first-moment calculation shows that a random c-constraint-regular
Sort4-CSP is already unsatisfiable whp at degree c = 4. Thus we again have evidence for a gap
between the true threshold for unsatisfiability and the efficiently-certifiable threshold.

Generalizing this, the Forrelationk constraint is a certain (quantum-inspired) map {±1}2k+2k →
[−1,+1] that measures how correlated one k-bit Boolean function is with the Fourier transform
of a second k-bit Boolean function. We give precise details in Section 5.2.2; here we just addi-
tionally remark that Forrelation1 corresponds to the “CHSH game”, and that 1

2
+ Forrelation1 is

equivalent to the Sort4 predicate.
Theorem 5.1.2. For random c-constraint-regular instances of the Forrelationk-CSP and any con-
stant ε > 0, the SDP value is whp in the range 2

√
c−1

c·2k/2 ± ε. This is also true of the eigenvalue
bound.

When considering the SDP value for 1
2
+Forrelation1, the formula above crosses the threshold

of 1 when c = 4 + 2
√

2, yielding the statement in Theorem 5.1.1 about the SDP-satisfiability

4Our result holds for either of the following two negation models: (i) each constraint is randomly negated; or,
(ii) the constraints are not negated, but each constraint is applied to random literals rather than random variables.

54

threshold of random c-constraint-regular Sort4-CSPs.

5.1.2 Sketch of our techniques
Here we sketch how our results like Theorem 5.1.1 and Theorem 5.1.2 are proven, using random
Sort4-CSPs as a running example. A key property of the Sort4 predicate is that it is essentially
equivalent to the following “2XOR” instance:

Figure 5.1: The Sort4 predicate

More precisely, suppose (x1, x2, x3, x4) ∈ {±1}4 satisfies the Sort4 predicate. Then in the
graph above, exactly 3 out of 4 edges will be “satisfied” — where an edge is considered satisfied
when the product of its endpoint-labels equals the edge’s label. Conversely, if (x1, x2, x3, x4)
doesn’t satisfy Sort4 then exactly 1 out of the 4 edges above will be satisfied. Now suppose we
choose a random n-vertex c-constraint-regular instance I of the Sort4-CSP with, say, c = 2. A
small piece of such an instance might look like the following:5

Figure 5.2: Piece of Sort4 instance

Up to a trivial affine shift in the objective function, the optimization task is now to label
the variables/vertices of I with ±1 values x1, . . . , xn so as to maximize 1

n

∑
ij Aijxixj , where

A ∈ {0,±1}n×n is the adjacency matrix of the edge-signed graph partially depicted above. The
“eigenvalue upper bound” EIG(I) arises from allowing the xi’s to be arbitrary real numbers,
subject to the constraint

∑
i x

2
i = n. The “SDP upper bound” SDP(I) (which is at least as

tight: SDP(I) 6 EIG(I)) arises from allowing the xi’s to be arbitrary unit vectors in Rn, with
the inner product 〈xi, xj〉 replacing xixj in the objective function. Our goal is to identify some
quantity f(c) (it will be 1+

√
2

2
in the c = 2 case) such that

EIG(I) . f(c) . SDP(I) (5.1)

5In fact, since we will have random negations in our instances, some 4-cycles will have three edges labeled −1
and one labeled +1, as opposed to the other way around. This is not an important issue for this proof sketch.

55

up to 1 ± o(1) factors, with high probability. This establishes that all three quantities are equal
(up to 1± o(1), whp), since SDP(I) 6 EIG(I) always.

In this section we mainly describe how to obtain the optimal inequality on the left in (5.1);
i.e., how to give a tight bound on the eigenvalues of (the edge-signed graph induced by) I. Notice
that if we were studying just random Max-Cut or 2XOR CSPs, we would have to get tight bounds
on the eigenvalues of a standard random c-regular graph.6 Excluding the top eigenvalue of c in
the case of Max-Cut, these eigenvalues are (whp) all at most 2

√
c− 1 + on(1) in magnitude.

This is thanks to Friedman’s (difficult) proof of Alon’s Conjecture [Fri08], made moderately
less difficult by Bordenave [Bor19]. The “magic number” 2

√
c− 1 is precisely the spectral

radius of the infinite c-regular tree — i.e., the infinite graph that random c-regular graphs “locally
resemble”.

Returning to random 2-constraint-regular instances of the Sort4-CSP, the (edge-signed) infi-
nite graph X that they “locally resemble” is the following:

Figure 5.3: Sort4 infinite graph

Here X := Sort4 + Sort4 is the so-called additive product of 2 copies of the Sort4 graph, a
notion introduced in [MO18], which we will formally define in Section 5.2.4. By analogy with
Alon’s Conjecture, it’s natural to guess that the spectral radius of a random 2-constraint-regular
Sort4-CSP instance is whp ρ(X) ± on(1), where ρ(X) denotes the spectral radius of X (which
can be shown to be 2

√
2). Indeed, our main effort is to prove the upper bound of ρ(X) + on(1),

thereby establishing the left inequality in (5.1) with f(c) = ρ(X). (As for the right inequality, it
can proven using the “Gaussian Wave” idea, allowing one to convert approximate eigenvectors
of the infinite graph X to matching SDP solutions on random finite graphs I. We carry this out
in Section 5.5.)

Friedman/Bordenave Theorems for two-eigenvalue additive lifts

As stated, our main task in the context of large random 2-constraint-regular Sort4-CSP instances
is to show that their spectral radius is at most ρ(X)+on(1) whp. Incidentally, the lower bound of

6More precisely, for random Max-Cut we have to lower-bound the smallest eigenvalue; for random 2XOR —
which includes randomly negating edges — we have to upper-bound the largest eigenvalue. In the Max-Cut version
with no negations, there is the usual annoyance that there is always a first “trivial” eigenvalue of c, and one essen-
tially wants to bound the second-largest (in magnitude) eigenvalue. The effect of random negations is generally to
eliminate the trivial eigenvalue, allowing one to focus simply on the spectral radius of the adjacency matrix. This
technical convenience is one reason we will always work in a model that includes random negations.

56

ρ(X)−on(1) indeed holds; it follows from a generalization of the “Alon–Boppana Bound” due to
Grigorchuk and Żuk [GZ99]. As for the upper bound, the recent work [MO18] implies the analo-
gous “Ramanujan graph” statement; namely, that there exist arbitrarily large 2-constraint-regular
Sort4-CSP instances with largest eigenvalue exactly upper-bounded by ρ(X). However we need
the analogue of Friedman/Bordenave’s Theorem. Unlike in [MO18] we are not able to prove it
for arbitrary additive products; we are able to prove it for additive products of “two-eigenvalue”
edge-signed graphs. To explain why, we first have to review the proofs of the Alon Conjecture
(that c-regular random graphs have their nontrivial eigenvalues bounded by 2

√
c− 1 + on(1)).

Both Friedman’s and Bordenave’s proof of the Alon Conjecture rely on very sophisticated
uses of the Trace Method. Roughly speaking, this means counting closed walks of a fixed
length k in random c-regular graphs, and (implicitly) comparing these counts to those in the
c-regular infinite tree. Actually, both works instead count only nonbacktracking walks. The
fact that one can relate nonbacktracking walk counts to general walk counts is thanks to an al-
gebraic tool called the Ihara–Bass Formula (more on which later); this idea was made more
explicit in Bordenave’s proof. Incidentally, use of the nonbacktracking walk operator has played
a major role in recent algorithmic breakthroughs on community detection and related results
(e.g., [KMM+13, MNS18, Mas14, BLM15]).

A reason for passing to nonbacktracking closed walks is that it greatly simplifies the counting.
Actually, in the case of the infinite c-regular tree, it oversimplifies the counting; infinite trees have
no nonbacktracking closed walks at all! However, the correct quantity to look at is “almost”
nonbacktracking walks of length k, meaning ones that are nonbacktracking for the first k/2
steps, and for the last k/2 steps, but which may backtrack once right in the middle. There are
essentially (c− 1)k/2 of these in the c-regular infinite tree (one may take k/2 arbitrary steps out,
but then one must directly walk back home), yielding a value of ((c − 1)k/2)1/k =

√
c− 1 for

the spectral radius of the nonbacktracking operator of the c-regular infinite tree. Bordenave uses
(a very tricky version of) the Trace Method to analogously show that the spectral radius of the
nonbacktracking operator of a random c-regular graph is

√
c− 1 + on(1) whp. Thanks to the

Ihara–Bass Formula, this translates into a bound of 2
√
c− 1 + on(1) for the spectral radius of

the usual adjacency operator.

Returning now to our scenario of random 2-constraint-regular Sort4-CSP instances (with their
analogous infinite edge-signed graph X), we encounter a severe difficulty. Namely, passing to
nonbacktracking walks no longer creates a drastic simplification in the counting, since there
are nonbacktracking cycles within the constraint graphs themselves (in our example, 4-cycles
graphs).7 Thus nonbacktracking closed walks in large random instances can have complicated
structures, with many internal nonbacktracking cycles.

A saving grace in the case of Sort4-CSPs, and also ones based on Forrelationk or complete-
graph constraints for example, is that the adjacency matrices of these graphs have only two
distinct eigenvalues. (We will also use that their edge weights are ±1.) For example, after

7In fact, since we have edge weights (signs), we need to look at the weight (not number) of walks, but the point
still stands.

57

rearranging the variables in the Sort4 predicate, its adjacency matrix is

A =

0 0 +1 +1
0 0 +1 −1

+1 +1 0 0
+1 −1 0 0

 , (5.2)

which has eigenvalues of ±
√

2 (with multiplicity 2 each). The two-eigenvalue property implies
thatA satisfies a quadratic equation, and hence any polynomial inA is equivalent to a polynomial
of degree at most 1. The upshot is that we can relate general walks in Sort4-CSPs (or more
generally, CSPs with two-eigenvalue constraints) to what we call nomadic walks: ones that take
at most 1 consecutive step within a single constraint. Let us make an informal definition (see
Section 5.2.4 for a formal definition):
Definition 5.1.3. Given a finite CSP graph, the nomadic walk operator B is a matrix indexed by
the directed edges in the graph. Its B[e, e′] entry is equal to the edge-weight of e′ provided:

• (e, e′) forms an oriented length-2 path; and,
• e and e′ come from different constraints.

Otherwise theB[e, e′] entry is 0. This operator generalizes the nonbacktracking walk operator for
Max-Cut/2XOR graphs in which each undirected edge is considered to be a single “constraint”.

The utility of this nomadic walk operator is twofold for us. First, for two-eigenvalue CSPs we
can relate the eigenvalues of the usual adjacency operator to those of the nomadic walk operator
through the following generalization of the Ihara–Bass Formula:
Theorem 5.1.4 (informal). Let A be the adjacency matrix and B the nomadic walk operator of a
finite c-constraint-regular CSP graph on n vertices, where each predicate has exactly 2 distinct
eigenvalues: λ1 and λ2. Define L(t) := 1−At+ (λ1 +λ2)t1+ (c−1)(−λ1λ2)t2. Then we have

(1 + λ1t)
n

cλ2
λ2−λ1

−1
(1 + λ2t)

n
cλ1

λ1−λ2
−1

detL(t) = det(1−Bt).

We prove Theorem 5.1.4 in Section 5.3. In the remaining discussion below, we let B be the
nomadic walk operator of a random c-constraint-regular CSP graph on n vertices, where the
precise random model is given in Definition 5.2.18. Further, we assume that the predicate of the
CSP has two distinct eigenvalues: λ1 and λ2.

The second utility of nomadic walks is that they provide the key simplification needed to
make closed-walk counting in non-tree-like CSPs tractable. Because of this, we are able to
establish the following modification of Bordenave’s proof of Friedman’s Theorem in Section 5.6:
Theorem 5.1.5. With high probability,

ρ(B) 6
√

(c− 1)(−λ1λ2) + on(1).

And we can use our version of Ihara–Bass, Theorem 5.1.4, to conclude bounds on the spec-
trum of the adjacency matrix A from Theorem 5.1.5, which is worked out in Section 5.4.
Theorem 5.1.6. With high probability,

Spec(A) ⊆
[
λ1 + λ2 − 2

√
(c− 1)(−λ1λ2)− o(1), λ1 + λ2 + 2

√
(c− 1)(−λ1λ2) + o(1)

]
.

58

Yet another advantage of using nomadic walks instead of closed walks is that in Theo-
rem 5.1.6 we are able to bound the left and right spectral edge of A by different values, whereas
counting closed walks would, at best, only give an upper bound on |λ|max(A).

Theorem 5.1.6 lets us conclude an upper bound on the SDP value, and we complement that
with a lower bound via the construction of an SDP solution that nearly matches the upper bound.
In particular, we prove the following in Section 5.5.
Theorem 5.1.7. For every ε > 0, whp there exists a PSD matrix M with an all-ones diagonal
such that

〈A,M〉 >
(
λ1 + λ2 + 2

√
(c− 1)(−λ1λ2)− ε

)
n.

As detailed out in Section 5.7, this lets us conclude the main theorem of this chapter:
Theorem 5.1.8. For random c-constraint-regular instances of a CSP with 2 distinct eigenvalues
λ1 and λ2, the SDP value is in the range

λ1 + λ2 + 2
√

(c− 1)(−λ1λ2)

c(−λ1λ2)
± ε

with high probability, for any ε > 0.
Theorem 5.1.2 can be viewed as a special case of Theorem 5.1.8.

5.2 Preliminaries

5.2.1 2XOR optimization problems and their relaxations
All of the CSPs studied in this work (Max-Cut, NAE-3SAT, Sort4, Forrelationk, etc.) will effec-
tively reduce to 2XOR optimization problems — equivalently, the problem maximizing a homo-
geneous degree-2 polynomial with ±1 coefficients over the Boolean hypercube.
Definition 5.2.1. (Optimization of 2XOR instances) Let G = (V,E) be an undirected graph
(possibly with parallel edges), with edge-signing wt : E → {±1}. We call the pair I = (G,wt)
an instance. The associated 2XOR optimization problem is to determine the (true) optimum value

OPT(I) = max
x:V→{±1}

avg
e={u,v}∈E

{wt(e)xuxv} ∈ [−1,+1].

The special case in which wt ≡ −1 is referred to as the Max-Cut problem on G, as in this case
1
2

+ 1
2
OPT(I) = Max-Cut(G), the maximum fraction of edges that can be cut by a bipartition

of V .
Determining OPT(I) is NP-hard in the worst case, leading to the study of computationally

tractable approximations/relaxations. Two such approximations are the eigenvalue bound and
the SDP bound, which we now recall.
Definition 5.2.2. (Adjacency matrix/operator) The adjacency matrixA of a finite weighted graph
(G,wt) has rows and columns indexed by V ; the entry A[u, v] equals the sum of wt(e) over all
edges with endpoints {u, v}. In case G is infinite we can more generally define the adjacency
operator A on `2(V) as follows:

for F ∈ `2(V), AF (u) =
∑

e=(u,v)∈E

wt(e)F (v).

59

Definition 5.2.3. (Eigenvalue bound) The eigenvalue bound EIG(I) for 2XOR instance I with
adjacency matrix A is n

2|E|λmax(A), where λmax denotes the maximum eigenvalue. We have
OPT(I) 6 EIG(I) always, as the eigenvalue bound captures the relaxation of 2XOR optimiza-
tion where we allow any x : V → R satisfying ‖x‖2 = n.

The SDP value provides an even tighter upper bound on OPT(I), and is still efficiently
computable.8 The SDP bound dates back to Lovász’s Theta Function in the context of the
IndependentSet problem [Lov79], and was proposed in the context of the Max-Cut problem
by Delorme and Poljak [DP93].
Definition 5.2.4. (SDP bound) The SDP bound SDP(I) for 2XOR instance I is

SDP(I) = max
~x:V→Sm−1

avg
e={u,v}∈E

{wt(e)〈~xu, ~xv〉} ∈ [−1,+1],

where Sm−1 refers to the set of unit vectors in Rm and the maximum is also over m (though
m = n is sufficient). The following holds for all I:

OPT(I) 6 SDP(I) 6 EIG(I).

The left inequality is obvious. One way to see the right inequality is to use the fact [DP93], based
on SDP duality, that SDP(I) is also equal to the minimum value of the eigenvalue bound applied
to A+ Y , where A is the adjacency matrix and Y ranges over all matrices of trace 0.

Goemans and Williamson [GW95] famously showed that

1
2

+ 1
2
SDP(I) 6 1.138(1

2
+ 1

2
OPT(I))

holds for every 2XOR instance, and Feige–Schechtman [FS02] showed their bound can be tight
in the worst case.9 As for directly comparing SDP(I) and OPT(I), we have the following:

• ([CW04]) SDP(I) 6 O(OPT(I) · log(1/OPT(I))) always holds.
• When G is bipartite (a special case of particular interest, see Section 5.2.2), it holds that

SDP(I) 6 K · OPT(I) for constant K. This is known as Grothendieck’s inequal-
ity [Gro53], and the constant is known [BMMN13] to satisfy K < π/(2 ln(1 +

√
2)) ≈

1.78.

5.2.2 Quantum games, and some quantum-relevant constraints
In the case when the underlying graph G is bipartite, SDP(I) has another important interpreta-
tion: it is the true quantum value of the 2-player 1-round “nonlocal game” associated to I. We
give definitions below, but let us mention that the Sort4 (equivalently, CHSH) and Forrelationk
constraints from Theorem 5.1.1 and Theorem 5.1.2 are both: (a) bipartite; (b) directly inspired
by quantum theory. Thus those two theorems can be interpreted as determining the true quantum
value of random c-constraint-regular nonlocal games based on CHSH and Forrelationk.

Let us now recall the relevant quantum facts.
8More precisely, it can be computed to within ±ε in poly(|I|, log(1/ε)) time using the Ellipsoid Algo-

rithm [GLS88, DP93].
9The case of Max-Cut on the 5-cycle — i.e., maximizing − 1

5 (x1x2 + x2x3 + x3x4 + x4x5 + x5x1) on {±1}5
— already has OPT = 3/5 and SDP = (1 +

√
5)/4, showing that 1.138 cannot be improved below 1.131.

60

Definition 5.2.5 (Nonlocal 2XOR games). Given a 2XOR instance I = (G,wt) with G =
(U, V,E) bipartite, the associated nonlocal (2XOR) game is the following. There are spatially
separated players Alice and Bob. A referee chooses e = (u, v) ∈ E uniformly at random, tells u
to Alice, and tells v to Bob. Without communicating, Alice and Bob are required to respond with
signs xu, yv ∈ {±1}. The value to the players is the expected value of wt(e)xuyv. It is easy to
see that if Alice and Bob are deterministic, or are allowed classical shared randomness, then the
optimum value they can achieve is precisely OPT(I).
Theorem 5.2.6. ([CHTW04, Tsi80].) In a nonlocal 2XOR game, if Alice and Bob are allowed
to share unlimited quantumly entangled particles, then the optimal value they can achieve is
precisely SDP(I).

The fact that there exist bipartite edge-signed I for which SDP(I) > OPT(I) is founda-
tional for the experimental verification of quantum mechanics, as the following example attests:

Example 5.2.7. Consider the 2XOR instance depicted in Figure 5.4, called CHSH after Clauser,
Horne, Shimony, and Holt [CHSH69]. It has

OPT(CHSH) = 1/2 < 1/
√

2 = SDP(CHSH).

The upper bound 4 · OPT(CHSH) 6 2 is often called Bell’s inequality [Bel64], and the higher

+1

+1
+1−1

x1 x3

x4x2

Figure 5.4: The CHSH game/CSP

lower bound 1/
√

2 6 SDP(CHSH) is from [CHSH69] (with SDP(CHSH) 6 1/
√

2 due to
Tsirelson [Tsi80]). Aspect and others [ADR82] famously experimentally realized this gap be-
tween what can be achieved with classical vs. quantum resources.

In fact, the CHSH instance is nothing more than the Sort4 predicate in disguise! More pre-
cisely (cf. (5.2)),

CHSH(x1, x2, x3, x4) = 1
4
(x1x3 + x2x3 + x1x4 − x2x4) = Sort4(x2, x3, x1, x4)− 1

2
.

Thanks to its degree-2 Fourier expansion, CSPs based on the Sort4/CHSH constraint have been
studied in a variety of contexts, including concrete complexity [Amb06, APV16, OST+14] and
fixed parameter algorithms [Wil07].

Though Sort4 is a “predicate”, in the sense that it takes 0/1 (unsat/sat) values, there’s nothing
necessary about basing a large CSP on predicates. An interesting family of constraints that can
be modeled by 2XOR optimization, originally arising in quantum complexity theory [AA15], is
the family of “Forrelation” functions. For any k ∈ N, the Forrelationk function is defined by

Forrelationk : {±1}2k×{±1}2k → [−1,+1], Forrelationk(x1, . . . , x2k , y1, . . . , y2k) = 2−2kx>Hky,

61

where Hk =

(
+1 +1
+1 −1

)⊗k
is the kth Walsh–Hadamard matrix. Note that Forrelation0 corre-

sponds to the single-(positive-)edge 2XOR CSP, and Forrelation1 is CHSH.

5.2.3 2XOR graphs with only 2 distinct eigenvalues
As mentioned, the class of constraints that we treat in this work are those that can be modeled
as 2XOR instances with 2 distinct eigenvalues. The Forrelationk constraint is a prime example;
when viewed as an edge-signed graph (i.e., ignoring the 2−2k scaling factors), its eigenvalues are
all ±2k/2. Another example is the complete graph constraint on r variables, which has eigenval-
ues of r − 1 and −1 (the latter with multiplicity r − 1). The r = 3 complete-graph case, after a
trivial affine shift, also corresponds to a Boolean predicate that is well known in the context of
CSPs: the NAE-3SAT predicate, as studied in [DMO+19b]. This is because

NAE-3SAT(x1, x2, x3) =
3

4
− 3

4
(x1x2 + x2x3 + x3x1).

Let us make some definitions we will use throughout this chapter.
Definition 5.2.8 (2-eigenvalue graphs). We call an undirected, edge-weighted simple graph I
a 2-eigenvalue graph if there are two real numbers λ1 and λ2 such that each eigenvalue of I’s
(signed) adjacency matrix A is equal to either λ1 or λ2.

See, e.g., [Ram15] for a paper studying such graphs. In this section, let us use the notation
from Definition 5.2.8 and prove some properties that will be used throughout this chapter.

First, since A is symmetric, its eigenvectors are spanning and therefore every vector can be
written as the sum of a vector in ker(A− λ11) and one in ker(A− λ21). Thus:
Proposition 5.2.9. (A− λ11)(A− λ21) = 0, where 1 denotes the identity matrix.

This proposition implies that A2 = (λ1 + λ2)A− λ1λ21. Thus we can deduce the following
two facts:
Fact 5.2.10. For any v ∈ V (G),

∑
u∈V (G)

A[u, v]2 = A2[v, v] = −λ1λ2.

Fact 5.2.11. For any pair of distinct vertices u, v ∈ V (G),∑
w∈V (G)

A[u,w]A[w, v] = A2[u, v] = (λ1 + λ2)A[u, v].

5.2.4 Random constraint graphs, instance graphs, and additive products
Definition 5.2.12 (Constraint graphs). An r-ary, c-atom constraint graph is any n-fold lift H of
the complete bipartite graph Kr,c. Each vertex on the c-regular side is called a variable vertex,
and is typically depicted by a circle. The variable vertices are partitioned into r variable groups
each of size n, called the 1st variable group, the 2nd variable group, etc. Each vertex on the r-
regular side is called a constraint (or atom) vertex, and is typically depicted by a square. Again,
the constraint vertices are partitioned into c constraint (or atom) groups of size n, called the 1st
constraint/atom group, 2nd constraint/atom group, etc. When n = 1, we callH a base constraint
graph. We also allow “n =∞”: this means we take the infinite (r, c)-biregular tree and partition

62

its variable vertices into r groups and its constraint variables into c groups in such a way that
every variable vertex in the ith group has exactly one neighbor from each of the c constraint
groups, and similarly every constraint vertex in the jth group has exactly one neighbor from
each of the r variable groups. An example of a constraint graph is shown in Figure 5.6. 10

Figure 5.5: The complete K4,3 graph

Definition 5.2.13 (Instance graphs). Let A = (A1, . . . , Ac) be a sequence of atoms, meaning
edge-weighted undirected graphs on a common vertex set [r]. (In this chapter, the edge-weights
will usually be±1.) We also think of each atom as a collection of “2XOR-constraints” on variable
set r. Now given an r-ary, c-atom constraint graph H, we can combine it with the atom speci-
fication A to form the instance graph I := A(H). This edge-weighted undirected graph I has
as its vertex set all the variable vertices of H. The edges of I are formed as follows: We iterate
through each j ∈ [c] and each constraint vertex f in the jth constraint group ofH. Given f , with
variables neighbors v1, . . . , vr inH, we place a copy of atom Aj onto these vertices in I. (I may
end up with parallel edges.) We refer to the graph obtained by placing a copy of Aj on vertices
v1, . . . , vr as Af , and for any edge e in I that came from placing Aj , we define Atom(e) := Af .
We use v ∼ Af to denote that v is one of v1, . . . , vr. For u, v ∈ {v1, . . . , vr}, Af (u, v) denotes
the edge in Af between u and v. And finally, denote the set {Af : f constraint vertex in H}
with Atoms(I). An example of an instance graph and corresponding constraint graph is shown
in Figure 5.6.
Remark 5.2.14. Forming I from H is somewhat similar to squaring H (in the graph-theoretic
sense) and then restricting to the variable vertices. With this in mind, here is an alternate way to
describe the edges of I: For each pair of distinct vertices v, v′ in I (in variable groups i and i′,
respectively) we consider all length-2 paths joining v and v′ in H. For each such path passing
through a constraint vertex in constraint group j, we add the edge (v, v′) into I with edge-weight
Aj[i, i

′] (which may be 0).
Remark 5.2.15. We treat atoms as edge-weighted, undirected, complete graphs. Thus, for a
constraint vertex f in constraint-graph H, if there is an edge between vertices u and v, and an
edge between vertices v and w in the atom Af , then there is an edge between u and w in Af .
This view is significant in light of the proof of Theorem 5.3.1.

The following notions of additive lifts and additive products were introduced in [MO18]:
Definition 5.2.16 (Random additive lifts). In the context of r-ary, c-atom constraint graphs, a
random n-lifted constraint graph simply means a usual random n-liftH (see, e.g., [BL06]) of the

10This can be done in an arbitrary “greedy” way, fixing any, say, constraint vertex to be in “group 1”, fixing its
variables neighbors to be in groups 1 . . . r in an arbitrary way, fixing their constraint neighbors to be in groups 2 . . . c
in an arbitrary way, etc.

63

Figure 5.6: The figure on the left shows an example of a 4-ary, 2-atom 3-fold lift constraint
graph, with the left bipartition color coded by constraint/atom groups. The figure on the right is
the corresponding instance graph on (C4, C4), two four-cycle graphs, where each atom is color
coded to match the figure on the left.

base constraint graph. Given atoms A = (A1, . . . , Ac), the resulting instance graph I = A(H)
is called a random additive lift of A.
Definition 5.2.17 (Additive products). If instead H is the “∞-lift” of Kr,c, the resulting infinite
instance graph I = A(H) is called the additive product of A1, . . . , Ac, denoted A1 + A2 +
· · · + Ac.

We will also extend Definition 5.2.13 to allow random additive lifts with negations. Even-
tually we will define a general notion of “1-wise uniform negations”, but let us begin with two
special cases. In the “constraint negation” model, we assign to each constraint vertex f in H
(from group j) an independent uniformly random sign ξf . Then, when the instance graph I
is formed from H, each edge engendered by the constraint f has its weight multiplied by ξf .
(Thus the edges in this copy of the atom Aj are either all left alone or they are simultaneously
negated, with equal probability.) In the “variable negation” model, for each group-j constraint
vertex f , adjacent to variable vertices v1, . . . , vr, we assign independent and uniformly random
signs (ξfi)i∈[r] to the variables. Then when the copy of Aj is added into I, the {i, i′}-edge has its
weight multiplied by ξfi ξ

f
i′ . This corresponds to the constraint being applied to random literals,

rather than variables.
Notice that in both of these negation models, every time a copy of atom Aj is placed into I,

its edges are multiplied by a collection of random signs (ξfij)i,j∈[r] which are “1-wise uniform”.
This is the only property we will require of a negation model.
Definition 5.2.18 (Random additive lifts with negations). A random additive lift with 1-wise
uniform negations is a variant of Definition 5.2.13 where, for each constraint vertex f there are
associated random signs ξ(f)

i ∈ {±1}, where i ∈ [r]. For each fixed f , the random variables
ξ

(f)
i are required to be ±1 with probability 1/2 each, but they may be arbitrarily correlated;

across different f ’s, the collections (ξ
(f)
i)i∈[r] must be independent. When the instance graph I

is formed as A(H), and a copy of Aj placed into I thanks to constraint vertex f , each new edge
{i, i′} has its weight Aj[i, i′] multiplied by ξ(f)

ii′ := ξ
(f)
i ξ

(f)
i′ .

Remark 5.2.19. For a given constraint-vertex f of an instance graph I obtained via a random

64

additive lift with negations, the matrix Adj(Af) has the same spectrum as Adj(Af) where Af
denotes the subgraph prior to applying random negations, since there is a sign diagonal matrix
D such that Adj(Af) = D · Adj(Af) ·D†.

5.2.5 Nomadic walks operators
Definition 5.2.20 (Nomadic walks). Let H be a constraint graph, A = (A1, . . . , Ac) a sequence
of atoms, and I = A(H) the associated instance graph. For initial simplicity, assume the atoms
are unweighted (i.e., all edge weights are +1). A nomadic walk in I is a walk where consecutive
steps are prohibited from “being in the same atom”. Note that if r = 2 and the atoms are single
edges, a nomadic walk in I is equivalent to a nonbacktracking walk.

To make the definition completely precise requires “remembering” the constraint graph struc-
tureH. Each step along an edge of I corresponds to taking two consecutive steps inH (starting
and ending at a variable vertex). The walk in I is said to be nomadic precisely when the associ-
ated walk inH is nonbacktracking.

Finally, in the general case when the atoms Aj have weights, each walk in I gets a weight
equal to the product of the edge-weights used along the walk.

Figure 5.7: The figure on the left shows a nonbacktracking walk on a subset of a 3-ary constraint
graph and the one on the right the same nomadic walk on the corresponding instance graph.

Definition 5.2.21 (Nomadic walk operator). In the setting of the previous definition, the nomadic
walk operator B for I is defined as follows. Each edge e = {u, v} in I is regarded as two
opposing directed edges ~e = (u, v) and ~e−1 = (v, u), each having the same edge-weight as e;
i.e., wt(~e) = wt(~e−1) = wt(e). Let ~E denote the collection of all directed edges. Now B is
defined to be the following linear operator on `2(~E):

for F ∈ `2(~E), BF (~e) =
∑
~e′

wt(~e′)F (~e′),

where the sum is over all directed edges ~e′ such that the pair (~e,~e′) forms a nomadic walk of
length-2. In the finite-graph case we also think of B as a matrix; the entry B[~e,~e′] = wt(~e′)
whenever (~e,~e′) is a length-2 nomadic walk. Again, in the case where r = 2 and all atoms are
single edges, the nomadic walk operator B coincides with the nonbacktracking walk operator.
(See, e.g., [AFH15] for more on nonbacktracking walks operators.)

65

5.2.6 Operator theory
The results in this section can be found in a standard textbook on functional analysis or operator
theory (see, for e.g. [Kub12]).

Let V be an some countable set and let T : `2(V)→ `2(V) be a bounded, self-adjoint linear
operator.
Definition 5.2.22. We refer to the spectrum of T , Spec(T), as the set of all complex λ such that
λ1− T is not invertible. Spec(T) is a nonempty, compact set.
Definition 5.2.23. We call λ an approximate eigenvalue of T if for every ε > 0, there is unit x in
X such that ‖Tx− λx‖ 6 ε. We call such an x an ε-approximate eigenvector or ε-approximate
eigenfunction.
Theorem 5.2.24. If T is a self-adjoint operator, then every λ ∈ Spec(T) is an approximate
eigenvalue.
Theorem 5.2.25. [Consequence of Proposition 4.L of [Kub12]] If λ is an isolated point in
Spec(T), then it is an eigenvalue of T , i.e., it is a 0-approximate eigenvalue.
Corollary 5.2.26. λmin := min{Spec(T)} and λmax := max{Spec(T)} are both approximate
eigenvalues of T .
Fact 5.2.27. Additionally,

λmin(T) = inf
‖x‖=1

〈x, Tx〉,

λmax(T) = sup
‖x‖=1

〈x, Tx〉.

Definition 5.2.28. The spectral radius ρ(T) is defined as maxσ∈Spec(T) |σ|.
Definition 5.2.29. The operator norm of T , denoted ‖T‖op, is defined as

sup
‖x‖=1,‖y‖=1

〈y, Tx〉 = sup
‖x‖=1

‖Tx‖.

Fact 5.2.30. ρ(T) = lim
k→∞
‖T k‖1/k

op .

5.3 An Ihara–Bass formula for additive lifts of 2-eigenvalue
atoms

Let A be a sequence of atoms such that every atom has the same pair of exactly two distinct
eigenvalues, λ1 and λ2, and let H be a constraint graph on variable set V . Let I = A(H) be the
corresponding instance graph. In this section, we use A and B to refer to the adjacency matrix
and nomadic walk matrix respectively of I. The vertex set of I is V . This section is devoted to
proving our generalization of the Ihara–Bass formula, stated below.
Theorem 5.3.1. Let L(t) := 1− At+ (λ1 + λ2)t1+ (c− 1)(−λ1λ2)t2. Then we have

(1 + λ1t)
|V | cλ2

λ2−λ1
−1

(1 + λ2t)
|V | cλ1

λ1−λ2
−1

detL(t) = det(1−Bt).

Our proof is a modification of one of the proofs of the Ihara–Bass formula from [Nor97].

66

Nomadic Polynomials. Our first step is to define the following sequence of polynomials.

p0(x) = 1

p1(x) = x

p2(x) = x2 − (λ1 + λ2)x− c(−λ1λ2)

pk(x) = xpk−1(x)− (λ1 + λ2)pk−1(x)− (c− 1)(−λ1λ2)pk−2(x) for k > 3

and introduce the key player in the proof: the matrix of generating functions F (t) defined by

F (t)u,v =
∑
k>0

pk(A)tk.

We use wt(e) to denote the weight on edge e, and define the weight of a walk W = e1e2 . . . e` as

wt(W) :=
∏̀
i=1

wt(ei).

We first establish combinatorial meaning for the polynomials pk(A).
Claim 5.3.2. pk(A)uv is equal to the total weight of nomadic walks of length k from u to v.

Proof. When k = 0 and 1, the claim is clear. We proceed by induction.
Supposing the claim is indeed true for ps(A) when s 6 k − 1, then Apk−1(A)uv is the total

weight of length-k walks from u to v whose first k − 1 steps are nomadic and whose last step is
arbitrary. Call the collection of these walksWuv. For W ∈ Wuv, let Wi denote the edge walked
on by the i-th step of W and let W(i) denote the length-i walk obtained by taking the length-i
prefix of W . We use lowercase wi to denote the vertex visited by the ith step of the walk. Each
W ∈ Wuv falls into one of the following three categories.

1. W is a nomadic walk. Call the collection of these walksW(1)
uv .

2. Wk = W−1
k−1. Call the collection of these walksW(2)

uv .
3. Wk−1 and Wk are in the same atom but Wk 6= W−1

k−1. Call the collection of these walks
W(3)

uv .

Suppose k > 3.∑
W∈W(2)

uv

wt(W) =
∑

W∈W(2)
uv

wt(Wk−1)wt(W−1
k−1)wt(W(k−2))

=
∑

W∈W(2)
uv

wt(Wk−1)2wt(W(k−2))

=
∑

W ′ (k − 2)-length nomadic walk
from u to v

wt(W ′)
∑

e/∈Atom(W ′k−2)

wt(e)2

We apply Fact 5.2.10 and get

=
∑

W ′ (k − 2)-length nomadic walk
from u to v

wt(W ′)(c− 1)(−λ1λ2)

67

= (c− 1)(−λ1λ2)pk−2(A)uv.

An identical argument shows that when k = 2,∑
W∈W(2)

uv

wt(W) = c(−λ1λ2)

We do a similar calculation for W(3)
uv for k > 2. Observe that Wk−1 and Wk have to be in

the same atom, which we denote Atom(Wk−1). Thus, there is an edge e∗ between wk−2 and v in
Atom(Wk−1) too (see Remark 5.2.15).∑
W∈W(3)

uv

wt(W) =
∑

W∈W(3)
uv

wt(Wk−1)wt(Wk)wt(W(k−2))

=
∑

W ′ length-(k − 2) nomadic walk
W ′0=u,

e∗ s.t. (e∗)1 = wk−2, (e
∗)2 = v

Atom(W ′k−2)6=Atom(e∗)

∑
e(1),e(2):

Atom(e(1))=Atom(e(2))=Atom(e∗)

(e(1))1=wk−2,(e
(1))2=(e(2))1,(e(2))2=v

wt(e(1))wt(e(2))wt(W ′)

By applying Fact 5.2.11, we get

=
∑

W ′ length-(k − 2) nomadic walk
W ′0=u,

e∗ s.t. (e∗)1 = wk−2, (e
∗)2 = v

Atom(W ′k−2)6=Atom(e∗)

(λ1 + λ2)wt(e∗)wt(W ′)

= (λ1 + λ2)
∑

W ′ length-(k − 1) nomadic walk from u to v

wt(W ′)

= (λ1 + λ2)pk−1(A)uv.

Now, we have for k > 3,∑
W∈Wuv

wt(W) =
∑

W∈W(1)
uv

wt(W) +
∑

W∈W(2)
uv

wt(W) +
∑

W∈W(3)
uv

wt(W)

Apk−1(A)uv =
∑

W∈W(1)
uv

wt(W) + (c− 1)(−λ1λ2)pk−2(A)uv + (λ1 + λ2)pk−1(A)uv

∑
W∈W(1)

uv

wt(W) = Apk−1(A)uv − ((c− 1)(−λ1λ2)pk−2(A)uv + (λ1 + λ2)pk−1(A)uv)

∑
W∈W(1)

uv

wt(W) = pk(A)uv.

For the case of k = 2, we carry out the above calculation by replacing (c − 1)(−λ1λ2) with
c(−λ1λ2), thus completing the inductive step.

68

Generic generating functions facts. Before returning to the specifics of our problem, we give
some “standard” generating function facts. These are extensions of the following simple idea:
if f(t) is a polynomial, then d

dt
log f(t) = f ′(t) · f(t)−1 is (up to minor manipulations) the

generating function for the power sum polynomials of its roots. We start with a general matrix
version of this, which is sometimes called Jacobi’s formula (after minor manipulations):
Proposition 5.3.3. Let M(t) be a square matrix polynomial of t. Then

d

dt
log detM(t) = tr

(
M ′(t)M(t)−1

)
for all t ∈ R such that M(t) is invertible.
Corollary 5.3.4. Taking M(t) = 1−Ht for a fixed square matrix H yields

d

dt
log det(1−Ht) = tr

(
−H(1−Ht)−1

)
=⇒ −t d

dt
log det(1−Ht) =

∑
k>1

tr(Hk)tk.

Regarding this corollary, we can derive the statement about the power sums of the roots of a
polynomial f(t) by taking H = diag(λ1, . . . , λn) where the λi’s are the roots of f . On the other
hand, it actually suffices to prove Corollary 5.3.4 in the case of diagonal H , since det(1 −Ht)
is invariant to unitary conjugation.

Growth Rate. A key term that shows up in our Ihara–Bass formula is the “growth rate” of the
additive product ofA. Suppose we take t-step nomadic walk starting at a vertex v in the additive
product graph, take a t-step nomadic walk back to v, and then sum over the total weight of such
walks. What we get is ((c− 1)(−λ1λ2))t (see Lemma 5.5.3 for a proof). Thus, the total weight
of aforementioned walks grows exponentially in t at a rate of (c − 1)(−λ1λ2), which in this
section we will refer to as αgr.

The fundamental recurrence. We now relate the generating function matrix F (t) to A. Using
the recurrence used to generated the polynomials pk(x), one can conclude
Lemma 5.3.5. F (t) = AF (t)t− (λ1 + λ2)F (t)t− αgrF (t)t2 + (1 + tλ1)(1 + tλ2)1.

From this recurrence one may express the inverse of F (t) in terms of A and c:
Corollary 5.3.6. (1 + λ1t)

−1(1 + λ2t)
−1 · (1− At+ (λ1 + λ2)t1+ αgrt

2
1)F (t) = 1. In other

words, F (t) = (1 + λ1t)(1 + λ2t)1 · L(t)−1, where L(t) := 1 − At + (λ1 + λ2)t1 + αgrt
2
1 is

the “deformed Laplacian” appearing in the statement of our Ihara–Bass theorem.

Strategy for the rest of the proof. The strategy will be to apply Proposition 5.3.3 with the
deformed Laplacian L(t). On the left side we’ll get a determinant involving A. On the right side
we’ll get a trace involving L(t)−1, which is essentially F (t). In turn, tr(F (t)) is a generating
function for nomadic closed walks, which we can hope to relate to B (although there will be an
edge case to deal with).

Let’s begin executing this strategy. By Proposition 5.3.3 we have

−t d
dt

log detL(t) = −t · tr
(
L′(t)L(t)−1

)
69

= −t · tr
(
(1(λ1 + λ2)− A+ 2αgrt1) · ((1 + λ1t)(1 + λ2t))

−1F (t)
)

=
1

(1 + λ1t)(1 + λ2t)
tr
(
−(λ1 + λ2)F (t)t+ AF (t)t− 2αgrF (t)t2

)
where we used Corollary 5.3.6. Now using Lemma 5.3.5 again we may infer

−(λ1 + λ2)F (t)t+ AF (t)t− 2αgrF (t)t2 = (1− αgrt
2)F (t)− (1 + λ1t)(1 + λ2t)1;

combining the previous two identities yields

− t d
dt

log detL(t) = tr

(
1− αgrt

2

(1 + λ1t)(1 + λ2t)
F (t)− 1

)
. (5.3)

Nomadic walks. The right side above is tr(F (t)) up to some scaling/translating. By definition,
tr(F (t)) is the generating function for nomadic circuits (closed walks) with any starting point.
A first instinct is therefore to expect that

tr(F (t))
?
=
∑
k>0

tr(Bk)tk, (5.4)

as tr(Bk) is the weight of closed length-k circuits of direct edges in the nomadic world. However
this is not quite right: tr(Bk) only weighs the nomadic circuits whose first and last edge are not in
the same atom. The nomadic circuits that are not weighed can be identified either as (i) “tailed”
nomadic circuits, i.e., those where the last directed edge is the reverse of the first directed edge;
(ii) “stretched” nomadic circuits, i.e., those where the last directed edge is distinct from but in
the same atom as the first directed edge. E.g., tr(Bk) would fail to count the following:

u

Figure 5.8: A length-9 nomadic walk from u to u with a tail of length 2

Thus we need to correct (5.4).
Definition 5.3.7. With the −1 taking care of the omission of k = 0, we define

Tails(t) =
∑
k>1

(weight of nomadic circuits of length k)tk = tr(F (t)− 1). (5.5)

We also define

NoTails(t) =
∑
k>1

(weight of tail-less nomadic circuits of length k)tk

70

and

Simple(t) =
∑
k>1

(weight of non-stretched, tail-less nomadic circuits of length k)tk

=
∑
k>1

tr(Bk)tk = −t d
dt

log det(1−Bt), (5.6)

where the last equality used Corollary 5.3.4.

Tails vs. no tails vs. simple: more generating functions. We finish by relating Tails(t),
NoTails(t) and Simple(t). This is the recipe:

A general nomadic circuit of length k is constructed from a tail-less nomadic
circuit of length k − 2` with a tail of length-` attached to one of its vertices.

Tail-less nomadic circuits can be classified as (i) non-stretched tail-less nomadic circuits, and
(ii) stretched, tail-less nomadic circuits, for which,

NoTails(t)− Simple(t) =
∑
k>1

(weight of stretched, tail-less nomadic walks of length k)tk.

Consider a stretched, tail-less nomadic walk of length k that starts at vertex v, takes the edge
e from v to u, goes on a nomadic walk W from u to w, and finally takes edge e′ from w to v to
end the walk at v. Note that e and e′ are part of the same atom Ai. Summing over all v in atom
Ai and applying Fact 5.2.11 gives∑
v∼Ai

wt(Ai(v, u))wt(Ai(w, v))wt(W) = (λ1 + λ2)wt(Ai(w, u))wt(W) = (λ1 + λ2)wt(W ′)

where W ′ is a nomadic circuit of length k − 1 that starts at w, takes edge Ai(w, u) in the first
step, and then takes walk W . From this, we derive

NoTails(t)− Simple(t) = (λ1 + λ2)t · Simple(t).

It’s easy to count the total weight of tails of length ` one can attach to a given vertex of a
tail-less nomadic circuit: if the tail-less nomadic circuit is non-stretched, the first edge can be
chosen by picking any edge in (c−2) atoms and each of the remaining `−1 edges can be chosen
by picking any edge (c − 1) atoms; and if the tail-less nomadic circuit is stretched, each edge
(including the first one) can be chosen anywhere from (c−1) atoms. From this it’s easy to derive

Tails(t) =
(
1 + (−λ1λ2)(c− 2)t2 + (−λ1λ2)2(c− 2)(c− 1)t4 + · · ·

)
Simple(t)

+
(
1 + (−λ1λ2)(c− 1)t2 + (−λ1λ2)2(c− 1)2t4 + · · ·

)
(NoTails(t)− Simple(t))

=
1− (−λ1λ2)t2

1− (c− 1)(−λ1λ2)t2
Simple(t) +

(λ1 + λ2)t

1− (c− 1)(−λ1λ2)t2
Simple(t)

⇔ Simple(t) =
1− αgrt

2

(1 + λ1t)(1 + λ2t)
Tails(t). (5.7)

Using Tails(t) = tr(F (t)− 1) (i.e., (5.5)), we obtain:

71

Corollary 5.3.8. Simple(t) = tr

(
1− αgrt

2

(1 + λ1t)(1 + λ2t)
(F (t)− 1)

)
.

But this is almost the same as (5.3). The difference is

tr

(
1− 1− αgrt

2

(1 + λ1t)(1 + λ2t)
1

)
= tr

(
(λ1 + λ2)t+ (c− 2)(−λ1λ2)t2

(1 + λ1t)(1 + λ2t)
1

)
= |V | · (λ1 + λ2)t+ (c− 2)(−λ1λ2)t2

(1 + λ1t)(1 + λ2t)
.

Combining the above with (5.3), Corollary 5.3.8, and (5.6), we finally conclude

−t d
dt

log detL(t) + |V | · (λ1 + λ2)t+ (c− 2)(−λ1λ2)t2

(1 + λ1t)(1 + λ2t)
= −t d

dt
log det(1−Bt).

Finally, dividing by −t, integrating (which leaves an unspecified additive constant), and expo-
nentiating (now there is an unspecified multiplicative constant) yields

(const.) · (1 + λ1t)
|V | cλ2

λ2−λ1
−1

(1 + λ2t)
|V | cλ1

λ1−λ2
−1

detL(t) = det(1−Bt).

By consideration of t = 0 we see that the constant must be 1.

5.4 Connecting the adjacency and nomadic spectrum
Let A = (A1, . . . , Ac) be a sequence of atoms with two distinct eigenvalues λ1 and λ2, let H be
an r-ary, c-atom constraint graph, and let I = A(H) be the corresponding instance graph. We
use A for the adjacency matrix of I, B for its nomadic walk matrix, V for its vertex set, and E
for its edge set. Recall that αgr is defined as (c− 1)(−λ1λ2).

We want to use Theorem 5.3.1 to describe the spectrum of B with respect to that of A. We
will refer to eigenvalues of B with the letter µ and eigenvalues of A with the letter ν.

First, notice that if t is such that det(1 − Bt) = 0, then µ = 1/t has det(µ1 − B) = 0,
meaning µ is an eigenvalue of B. Thus we want to find for which values of t does the left-hand
side of the expression in Theorem 5.1.4 become 0 in order to deduce the spectrum of B.

It is easy to see that when t = −1/λ1 and t = −1/λ2 the left-hand side is always 0, so−λ1 is
an eigenvalue of B with multiplicity |V |(cλ2

λ2−λ1
− 1) and −λ2 is an eigenvalue with multiplicity

|V |(cλ1

λ1−λ2
−1). The remaining eigenvalues are given by the values of t for which det(L(t)) = 0.

Let t be such that det(L(t)) = 0; then we have that L(t) is non-invertible, which means there is
some vector v in the nullspace of L(t). By rearranging the equality L(t)v = 0 we get:

Av =
1 + (λ1 + λ2)t+ αgrt

2

t
v.

This implies that 1+(λ1+λ2)t+αgrt2

t
is an eigenvalue of A. Let ν be some eigenvalue of A; then

we have that ν = 1+(λ1+λ2)t+αgrt2

t
for some t. If we rearrange the previous expression we get the

following quadratic equation in t:

72

1 + (λ1 + λ2 − ν)t+ αgrt
2 = 0.

By solving this expression for t and then using the fact that µ = 1/t we get (notice that c > 1
and λ1λ2 6= 0):

µ =
−2αgr

λ1 + λ2 − ν ±
√

(λ1 + λ2 − ν)2 − 4αgr

.

To analyze the previous we look at three cases:
1. ν > λ1 + λ2 + 2

√
αgr. In this case the discriminant is always positive. If we look at the −

branch of the ± we further get that the denominator of the previous formula is always less
than −2

√
αgr which means we have that µ is real and µ >

√
αgr. Additionally, we have

that in this interval µ is an increasing function of ν.

2. ν < λ1 + λ2 − 2
√
αgr. This is analogous to the previous case; if we look at the + branch

we have that µ is real and µ < −√αgr. Additionally, we have that in this interval µ is a
decreasing function of ν.

3. ν ∈ [λ1 + λ2 − 2
√
αgr, λ1 + λ2 + 2

√
αgr], for each such ν we get a pair of anti-conjugate

complex numbers, meaning a pair x, x such that xx = −1.

Finally, the spectrum ofB also contains 0 with multiplicity 2|E|−|V |
(

2 + (cλ1

λ1−λ2
− 1) + (cλ2

λ2−λ1
− 1)

)
,

which we get because the degrees of the polynomials in the left-hand side and right-hand do not
match; the right-hand side has degree 2|E| but we only described |V |

(
2 + (cλ1

λ1−λ2
− 1) + (cλ2

λ2−λ1
− 1)

)
roots.

We can now summarize the eigenvalues of B in the following way:
• −λ1 with multiplicity |V |(cλ2

λ2−λ1
− 1);

• −λ2 with multiplicity |V |(cλ1

λ1−λ2
− 1);

• for each eigenvalue ν of A we get two eigenvalues that are solutions to the previous
quadratic equation;

• 0 with multiplicity 2|E| − |V |
(

2 + (cλ1

λ1−λ2
− 1) + (cλ2

λ2−λ1
− 1)

)
;

The distribution of the eigenvalues that come from A forms a sort of semicircle. To showcase
this behavior we display an example of the spectrum of typical lifted instance in Figure 5.9.

We can now prove the central theorem of this section:
Theorem 5.4.1. Let In be a random additive n-lift of A with adjacency matrix AIn , and let
ε > 0. Then:

Pr
[
ρ(AIn) ∈ [λ1 + λ2 − 2

√
αgr − ε, λ1 + λ2 + 2

√
αgr + ε

]
= 1− on(1)

Proof. First recall Theorem 5.1.6 (for fully formal statement, see Theorem 5.6.20) and notice
that ρ(|B|) = αgr, which follows by using the trivial upper bound of α2k

gr on tr
(
|B|k (|B|∗)k

)
.

From cases 1 and 2 in the previous analysis we get that if ρ(AIn) /∈ [λ1 + λ2 − 2
√
αgr − ε, λ1 +

λ2 + 2
√
αgr + ε] there is some constant δ such that ρ(Bn) >

√
αgr + δ, which happens with

on→∞(1) probability by Theorem 5.6.20.

73

4 3 2 1 0 1 2 3 4
Imaginary part

4

3

2

1

0

1

2

3

4

Re
al

pa
rt

Spectrum of B

Figure 5.9: The spectrum of B for a additive 15-lift of 6 copies of a Sort4 graph. The blue dots
are eigenvalues that come from eigenvalues of A, the red dots are either −λ1, −λ2 or 0 and the
yellow line is the limit√αgr.

1 2 3 4 5 6 7 8 9
c

0

2

4

6

8

10

(A
)

Distribution of (A)

1 2 3 4 5 6 7 8 9
c

0

2

4

6

8

10
(B

)

Distribution of (B)

Figure 5.10: A box plot of ρ(A) and ρ(B) of 100 samples of random instance graphs as a function
of c with n = 15, r = 4 and all atoms are the Sort4 graph. The dashed line shows the theoretical
bound prediction of 2

√
αgr for A and √αgr for B.

Also, we note that even though throughout our proof we hide various constant factors, the
bounds obtained in Theorem 5.4.1 and Theorem 5.6.20 are empirically visible for very small
values of n and c. To justify this claim we show in Figure 5.10 a plot of samples of random
instance graphs for different values of c with a fixed small n.

5.5 Additive products of 2-eigenvalue atoms
In this section, we let A = (A1, . . . , Ac) be a sequence of {±1}-weighted atoms with the same
pair of exactly two distinct eigenvalues, λ1 and λ2. We also let X := A1 + · · · + Ac be the
additive product graph. We use AX to denote the adjacency operator of X . In this section, In is
the instance graph of a random additive n-lift of A with negations, and we use AIn to denote its

74

adjacency matrix. Finally, we recall αgr := (c−1)(−λ1λ2) and define the quantity rX := 2
√
αgr.

The main results that this section is dedicated to proving are:
Theorem 5.5.1. The following are true about the spectrum of X:

1. Spec(AX) ⊆ [λ1 + λ2 − rX , λ1 + λ2 + rX];
2. λ1 + λ2 − rX and λ1 + λ2 + rX are both in Spec(AX).

Theorem 5.5.2. For every ε > 0, for large enough n, there are |V (In)| × |V (In)| positive
semidefinite matrices M+ and M− with all-ones diagonals such that

〈AIn ,M+〉 > (λ1 + λ2 + rX − ε)n
〈AIn ,M−〉 6 (λ1 + λ2 − rX + ε)n.

with probability 1− on(1).
In this section, when we measure the distance between vertices u and v in an instance graph

In, we look at the corresponding vertices in the constraint graph H, and define d(u, v) :=
dK(u,v)

2
. We use Puv to refer to the collection of edges comprising the shortest path between u

and v. We begin with a statement about the ‘growth rate’ of X .
Lemma 5.5.3. For all vertices v in V (X), for t > 1 we have∑

u:d(u,v)=t

∏
{i,j}∈Puv

(AX)2
ij = c(c− 1)t−1(−λ1λ2)t.

Proof. We proceed by induction. When t = 1, the statement immediately follows from Fact 5.2.10.
Suppose the equality is true for some t = `− 1, we will show how statement follows for t = `.

∑
u:d(u,v)=`

∏
{i,j}∈Puv

(AX)2
ij =

∑
u:d(u,v)=`−1

 ∏
{i,j}∈Puv

(AX)2
ij

 ·
 ∑

u′∈N(u)
d(u′,v)=`

(AX)2
uu′

From Fact 5.2.10,

∑
u′∼u

d(u′,v)=t

(AX)2
uu′ is equal to (c− 1)(−λ1λ2), which means the above is equal to

=
∑

u:d(u,v)=`−1

 ∏
{i,j}∈Puv

(AX)2
ij

 (c− 1)(−λ1λ2)

= (c− 1)`−2c(−λ1λ2)`−1(c− 1)(−λ1λ2)

= c(c− 1)`−1(−λ1λ2)`.

Corollary 5.5.4. Since all the weights of X are {±1}-valued, the degree of every vertex in X
equals c(−λ1λ2).

75

5.5.1 Enclosing the spectrum
Let BX denote the nomadic walk operator of X . In this section, we show

Spec(AX) ⊆ [λ1 + λ2 − rX , λ1 + λ2 + rX] .

The first part of the proof will involve showing that the spectral radius ofBX is bounded by√αgr,
and the second part translates this bound to the desired one on Spec(AX). Both these components
closely follow proofs from the work of Angel et al.; the former after [AFH15, Theorem 4.2] and
the latter after [AFH15, Theorem 1.5].
Lemma 5.5.5. Spec(BX) ⊆

[
−√αgr,

√
αgr

]
.

Proof. Arbitrarily fix a root r ofX . Recall that the spectral radius ofBX is equal to lim
(
‖Bk

X‖op

)1/k,
and hence it suffices to bound

∣∣〈g,Bk
Xf〉

∣∣ for arbitrary f and g with ‖f‖ = ‖g‖ = 1.
We can decompose every nomadic walk of length k into two segments, a segment of i steps

towards r followed by a sequence of k − i steps away from r; henceforth, we call length-k no-
madic walks with such a decomposition (i, k)-nomadic walks. For every pair of directed edges
e and e′ such that e, e1, . . . , ek−1, e

′ is an (i, k)-nomadic walk, let a(e, e′) := α
k/2−i
gr . From

Lemma 5.5.3, the number of (i, k)-nomadic walks starting at a fixed e is at most c
c−1

αk−igr . Simi-
larly, the number of (i, k)-nomadic walks ending at fixed e′ is at most c

c−1
αigr. Now, we are ready

to bound
∣∣〈g,Bk

Xf〉
∣∣ by imitating the proof of [AFH15, Theorem 4.2].

∣∣〈g,Bk
Xf〉

∣∣ 6
∣∣∣∣∣∣

∑
e,e1,...,ek−1,e′ nomadic

f(e′)g(e)

∣∣∣∣∣∣
6

∑
e,e1,...,ek−1,e′ nomadic

|f(e′)g(e)|

6
∑

e,e1,...,ek−1,e′ nomadic

a(e, e′)f(e′)2 +
1

a(e, e′)
g(e)2

6 sup
e′

 ∑
e,e1,...,ek−1,e′ nomadic

a(e, e′)

 ‖f‖2
2 + sup

e

 ∑
e,e1,...,ek−1,e′ nomadic

1

a(e, e′)

 ‖g‖2
2

6
k∑
i=0

sup
e′

 ∑
(i,k)-nomadic walks ending at e′

a(e, e′)

+ sup
e

 ∑
(i,k)-nomadic walks starting at e

1

a(e, e′)

6

k∑
i=0

αk/2−igr · c

c− 1
αigr +

k∑
i=0

αi−k/2gr · c

c− 1
αk−igr

=
2kc

c− 1
αk/2gr

Thus, we have

‖Bk
X‖op 6

2kc

c− 1
αk/2gr

and taking the limit of ‖Bk
X‖1/k

op for k approaching infinity yields the desired statement.

76

Lemma 5.5.6. If 0 is an approximate eigenvalue of Qt := (t2 +(c−1)(−λ1λ2))1−AXt+(λ1 +
λ2)1t, then it is also an approximate eigenvalue of BX − t1 as long as t 6= −λ1,−λ2.

Proof. Let f be an ε-approximate eigenfunction of unit norm of Qt, then we construct a Cε-
approximate eigenfunction g of BX − t1 defined on pairs uv such that u and v are incident to a
common atom for an absolute constant C > 0 as follows,

guv :=

 ∑
w:{v,w}∈Atom({u,v})

(AX)vwfw

− (λ1 + λ2 + t)fv

for every edge {u, v} of X .

((BX − t1)g)uv =

 ∑
w:

{v,w}/∈Atom({u,v})

(BX)uv,vwgvw

− tguv
=

 ∑
w:

{v,w}/∈Atom({u,v)}

(AX)vw

 ∑
x:

{w,x}∈Atom({v,w})

(AX)wxfx − (λ1 + λ2 + t)fw

− tguv

=

 ∑
w:

{v,w}/∈Atom({u,v)}

∑
x:

{w,x}∈Atom({v,w})

(AX)vw(AX)wxfx

−
 ∑

w:
{v,w}/∈Atom({u,v)}

(λ1 + λ2 + t)(AX)vwfw

− tguv
Using Fact 5.2.10 and Fact 5.2.11, the first term of the three above can be rewritten as

(c− 1)(−λ1λ2)fv + (λ1 + λ2)
∑

w:{v,w}/∈Atom({u,v})

(AX)vwfw

which lets us continue the chain of equalities

= (c− 1)(−λ1λ2)fv − t
∑
w:

{v,w}/∈Atom({u,v)}

(AX)vwfw

− t

 ∑
w:{v,w}∈Atom({u,v})

(AX)vwfw

+ t(λ1 + λ2 + t)fv

= (c− 1)(−λ1λ2)fv − t(Af)v + t(λ1 + λ2 + t)fv

= (Qtf)v.

Thus,

‖(BX − t1)g‖2
2 =

∑
{u,v}∈E(X)

((BX − t1)g)2
uv + ((BX − t1)g)2

vu = d
∑
v∈V

(Qtf)2
v 6 dε2

77

It remains to show that the norm of g is bounded from above and below. Fix a vertex u and an
atom Ã incident to u. Consider g(u,Ã), the restriction of g to entries uv such that the edge {u, v}
is in Ã, and f (Ã), the restriction of f to vertices v such that Ã is incident to v. Observe that
g(u,Ã) = (AÃ− (λ1 +λ2 + t)1)f (Ã). Since the min eigenvalue of AÃ− (λ1 +λ2 + t)1 is nonzero
as long as t 6= −λ1,−λ2, the `2 norm of g is bounded from below. To prove that the `2 norm of
g is bounded from above, observe that

‖g‖2
2 =

∑
Ã∈Atoms(X)

∑
(u,v):{u,v}∈Ã

 ∑
w:{v,w}∈Ã

(AX)vwfw

− (λ1 + λ2 + t)fv

2

6 2
∑

Ã∈Atoms(X)

∑
(u,v):{u,v}∈Ã

 ∑
{v,w}∈Ã

(AX)2
vwf

2
w + (λ1 + λ2 + t)2f 2

v

There is some coefficient α such that the weight on f 2
v for each v in the above sum is bounded

by α, thereby giving a bound of

2
∑
v∈V

αf 2
v 6 2α‖f‖2

2 6 2α.

Proof of Item 1 in Theorem 5.5.1. Let Qt be as defined in the statement of Lemma 5.5.6. It can
be verified that 0 is an approximate eigenvalue of either Q−λ1 or Q−λ2 if and only if dX :=
c(−λ1λ2), which we recall from Corollary 5.5.4 is the degree of every vertex in X , is in the
spectrum of AX . Let µ+ := λ1 + λ2 + rX + η be in spectrum of AX . If µ+ 6= dX , then we can
conclude from Lemma 5.5.6 that

αgr + η +
√
ηαgr + η2/4

is an approximate eigenvalue of BX . Since Spec(BX) is contained in [−√αgr,
√
gr], η cannot be

positive. A similar argument applied to µ− := λ1 + λ2− rX − η precludes η from being positive
as long as µ− 6= dX . As a result, we can conclude that Spec(AX) is contained in [µ−, µ+]∪{dX}.
If dX is in the interval [µ−, µ+], then we are done. If not, then it remains to show that dX is not
in Spec(AX). Since X is {±1}-weighted and the degree of each vertex is dX , any nonzero x
satisfying AXx = dXx must have the same nonzero magnitude in all its entries. However, such
x has unbounded `2 norm, and hence AX has no eigenvectors with eigenvalue dX in `2(V). If
dX is in Spec(AX), it is an isolated point in the spectrum, and hence, by Theorem 5.2.25, is an
eigenvalue of AX , which means dX cannot be in Spec(AX).

5.5.2 Construction of Witness Vectors

Lemma 5.5.7 (Item 2 of Theorem 5.5.1 restated). There exists λ− 6 λ1 + λ2 − rX and λ+ >
λ1 + λ2 + rX in the spectrum of AX .

78

Proof. Let δ > 0 be a parameter to be chosen later. First define ρ as

ρ(s) :=
s(1− δ)√

(c− 1)(−λ1λ2)

Then, for vertex v and define f (s)
v in the following way.

f (s)
v (u) := ρ(s)d(u,v)

∏
{i,j}∈Puv

(AX)ij where Puv is the unique nomadic walk between u and v

(5.8)

To show the lemma, it suffices to prove the claim that for every ε > 0, there is suitable choice of
δ so that

〈f (−1)
v , AXf

(−1)
v 〉

〈f (−1)
v , f

(−1)
v 〉

< λ1 + λ2 − rX + ε

and
〈f (1)
v , AXf

(1)
v 〉

〈f (1)
v , f

(1)
v 〉

> λ1 + λ2 + rX − ε

We proceed by analyzing the expression 〈f (s)
v , AXf

(s)
v 〉.

〈f (s)
v , AXf

(s)
v 〉 =

∑
u∈V

f (s)
v (u)AXf

(s)
v (u)

= f (s)
v (v)

∑
w∈N(v)

(AX)vw f
(s)
v (w) +

∑
u∈V,u6=v

f (s)
v (u)

∑
w∈N(u)

(AX)uwf
(s)
v (w)

=
∑

w∈N(v)

(AX)2
vwρ(s) +

∑
u∈V,u6=v

f (s)
v (u)

∑
w∈N(u)

(AX)uwf
(s)
v (w) (5.9)

Let w0, w1, . . . wT−1, wT be the sequence of vertices from the unique nomadic walk between
u and v where w0 = u and wT = v. Now, let u∗ = w1. Recall the notation Pu,v used
to denote the unique nomadic walk between u and v as a sequence of edges. Let Wu,v :=
ρ(s)d(u,v)

∏
{i,j}∈Pu,v

(AX)ij . Using the notation we just developed, along with applying Fact 5.2.10

on the first term of the above, we get

(5.9) = c(−λ1λ2)ρ(s) +
∑

u∈V,u6=v

ρ(s)Wu∗v(AX)uu∗ ·(AX)uu∗Wu∗v +
∑

w∈Atom({u∗,u})

ρ(s)(AX)u∗w(AX)wuWu∗v +
∑

w/∈Atom({u,u∗})
w∈N(u)

ρ(s)2(AX)u∗u(AX)2
uwWu∗v

= c(−λ1λ2)ρ(s) +

∑
u∈V,u 6=v

ρ(s)W 2
u∗v(AX)2

uu∗·

79

1 +

∑
w∈Atom({u∗,u})

ρ(s)(AX)u∗w(AX)wu

Auu∗
+

∑
w/∈Atom({u,u∗})

w∈N(u)

(AX)2
uwρ(s)2

Now we apply Fact 5.2.10 and Fact 5.2.11 and get

= c(−λ1λ2)ρ(s) +
∑

u∈V,u6=v

ρ(s)W 2
u∗v(AX)2

uu∗ ·
(
1 + ρ(s)(λ1 + λ2) + (c− 1)(−λ1λ2)ρ(s)2

)
= c(−λ1λ2)ρ(s) +

∑
u∈V,u6=v

W 2
uv ·

1 + ρ(s)(λ1 + λ2) + (c− 1)(−λ1λ2)ρ(s)2

ρ(s)

= c(−λ1λ2)ρ(s) +
(
‖f (s)

v ‖2 − 1
)
· 1 + ρ(s)(λ1 + λ2) + (c− 1)(−λ1λ2)ρ(s)2

ρ(s)

= c(−λ1λ2)ρ(s) +
(
‖f (s)

v ‖2 − 1
)
·
(

1 + s2(1− δ)2

ρ(s)
+ (λ1 + λ2)

)
When s = ±1, the above quantity is equal to

c(−λ1λ2)ρ(s) +
(
‖f (s)

v ‖2 − 1
)
·
(

1 + (1− δ)2

ρ(s)
+ (λ1 + λ2)

)
Now, note that

〈f (s)
v , AXf

(s)
v 〉

〈f (s)
v , f

(s)
v 〉

=
c(−λ1λ2)ρ(s)

‖f (s)
v ‖2

+

(
1− 1

‖f (s)
v ‖2

)
·
(

1 + (1− δ)2

ρ(s)
+ (λ1 + λ2)

)
(5.10)

We now compute ‖f (s)
v ‖2, and we assume s is either +1 or −1.

‖f (s)
v ‖2 =

∞∑
t=0

ρ(s)2t
∑

u:d(u,v)=t

∏
{i,j}∈Puv

(AX)2
ij

=
∞∑
t=0

ρ(s)2tc(c− 1)t−1(−λ1λ2)t (by Lemma 5.5.3)

=
c

c− 1

∞∑
t=0

(
(1− δ)2t

(c− 1)t(−λ1λ2)t

)
(c− 1)t(−λ1λ2)t

=
c

c− 1

∞∑
t=0

(1− δ)2t

=
c

c− 1
· 1

δ(2− δ)
Plugging this back in to (5.10) gives

(5.10) = δ(2− δ)(c− 1)(−λ1λ2)ρ(s) +

(
1 + (1− δ)2

ρ(s)
+ (λ1 + λ2)

)
·
(

1− (c− 1)δ(2− δ)
c

)
80

= δ(2− δ)s(1− δ)
√

(c− 1)(−λ1λ2)+(
(1 + (1− δ)2)

√
(c− 1)(−λ1λ2)

1

s(1− δ) + (λ1 + λ2)

)
·
(

1− (c− 1)δ(2− δ)
c

)
For any ε > 0, we can choose δ small enough so that the above quantity is at least

λ1 + λ2 + 2
√

(c− 1)(−λ1λ2)− ε

when s = 1 and at most
λ1 + λ2 − 2

√
(c− 1)(−λ1λ2) + ε

when s = −1.

5.5.3 SDP solution for random additive lifts
For ε > 0, consider f (1)

v constructed in the proof of Lemma 5.5.7, for which

〈f (1)
v , AXf

(1)
v 〉 > (λ1 + λ2 + rX − ε)‖f (1)

v ‖2

Let Lε be an integer chosen such that the total `2 mass of f
(1)
v

‖f (1)
v ‖

on vertices at distance greater

than L from v is at most ε. Define gv as the vector obtained by zeroing out f
(1)
v

‖f (1)
v ‖

on vertices

outside B(v, L) and normalizing to make its norm 1, where B(v, L) is the collection of vertices
within distance L of v.

For any ε′ > 0, we can choose ε so that

〈gv, AXgv〉 > λ1 + λ2 + rX − ε′ (5.11)

gv enjoys the property of being determined by a constant number of vertices, Lε′ . For any in-
stance graph G such that there is a unique shortest nomadic walk between any pair of vertices u
and v, we can explicitly define

gv(u) =

0 if d(u, v) > Lε′

C
∏

{i,j}∈Puv

(1−δ)(AX)ij√
(c−1)(−λ1λ2)

Puv unique shortest nomadic walk from u to v

where C is a constant chosen so that gv has unit norm.
Recall that In is a random signed additive n-lift obtained from a sequence of atoms A.

Definition 5.5.8. Let G be a graph and let φ : E(G)→ {±1} be a signing of the edges. We call
a signing φ balanced if for any cycle given by sequence of edges e1, . . . , ek in E(H), we have
φ(e1) · · ·φ(ek) = 1.

We useAφ(G) to denote the adjacency operator ofG signed with respect to φ— i.e. (Aφ(G))uv =
φ({u, v}) if {u, v} is an edge and 0 otherwise.
Lemma 5.5.9. Suppose φ is a balanced signing of G. Then there exists a diagonal sign operator
D such that Aφ(G) = DAGD

†.

81

Proof. Without loss of generality, assume G is connected. Take a spanning tree of G and root it
at some arbitrary vertex r. Let Drr = 1 and for Px a path from r to x let Dxx =

∏
e∈Px φ(e).

It remains to verify thatDAGD† = Aφ(G). Let P be the path between x and y in the spanning
tree. By virtue of φ being balanced, we have φ({x, y})∏e∈P φ(e) = 1, which means φ({x, y}) =∏

e∈P φ(e). Also, note that
∏

e∈P φ(e) is equal to
∏

e∈Px φ(e)
∏

e∈Py φ(e), which is equal to
DxxDyy. Thus,

(Aφ(G))ij = φ({i, j})(AG)ij = DiiDjj(AG)ij =
(
DAGD

†)
ij

which proves the claim.

Lemma 5.5.10. LetXD be the graph with the adjacency operatorDAXD† whereD is a diagonal
sign matrix. There exists D such that XD covers In.

Proof. When In is generated, (i) the sequence of atoms A first undergoes an additive n-lift, and
then, (ii) the atoms in the lifted graph are given a random balanced signing. The intermediate
graph Ĩn between (i) and (ii) is covered by X via a map π : V (X) → V (Ĩn). Once (ii) is
performed, construct X ′ by taking X and setting the signs on all edges in π−1(e) to the sign on e
for each e ∈ E(In). X ′ can be seen as a balanced signing applied on X , and hence there exists
such a D by Lemma 5.5.9.

Definition 5.5.11. Let π be a covering map from appropriateXD to In. Call a vertex v ∈ V (In)
L-bad if B(v, L) is not isomorphic to B(v∗, L) where v∗ ∈ V (XD) is such that π(v∗) = v.
Remark 5.5.12. The condition of a vertex v in V (In) beingL-bad according to Definition 5.5.11
is equivalent to the corresponding variable v′ in the constraint graph having a cycle in its distance
2L-neighborhood.

With the observation of Remark 5.5.12 in hand, we can extract the following as a consequence
of [DMO+19b].
Lemma 5.5.13. The number of K-bad vertices in graph In for constant K is bounded by
O(log n) with probability 1− on(1).

Construct a vector g̃v for each vertex v of In.

g̃v =

{
ev if v is Lε′-bad
gv otherwise

We are finally ready to prove Theorem 5.5.2.

Proof of Theorem 5.5.2. Let
M+ :=

∑
v∈V (In)

g̃vg̃
†
v

Writing out (M+)uu for arbitrary u

(M+)uu =
∑

v∈V (In)

g̃v(u)g̃v(u)

=
∑

v∈V (In)

g̃u(v)2

82

= ‖g̃u‖2 = 1

and writing out 〈AIn ,M+〉 gives the following with probability 1− on(1).

〈AIn ,M+〉 =
∑

v∈V (In)

〈g̃v, AIn g̃v〉

=
∑

v∈V (In)
v is not (Lε + 1)-bad

〈g̃v, AIn g̃v〉+
∑

v∈V (In)
v is (Lε + 1)-bad

〈g̃v, AIn g̃v〉

>
∑

v∈V (In)
v is not (Lε + 1)-bad

λ1 + λ2 + rX − ε′ +
∑

v∈V (In)
v is (Lε + 1)-bad

c(λ1λ2) (by (5.11))

> (n−O(log n))(λ1 + λ2 + rX − ε′)−O(log n) (by Lemma 5.5.13)
= (1− on(1))(λ1 + λ2 + rX − ε′)n

The desired inequality on 〈AIn ,M+〉 can be obtained by choosing ε′ small enough and n large
enough. The inequality on 〈AIn ,M−〉 can be proved by repeating the whole section and proof
by constructing vectors g̃v from f

(−1)
v .

5.6 Friedman/Bordenave for additive lifts

Theorem 5.6.1. Let A = (A1, . . . , Ac) be a sequence of r-vertex atoms with edges weights ±1.
Let |I1| denote the instance graph A(Kr,c) associated to the base constraint graph when the
edge-signs are deleted (i.e., converted to +1), and let |B1| denote the associated nomadic walk
matrix. Also, let Hn denote a random n-lifted constraint graph and In = A(Hn) an associated
instance graph with 1-wise uniform negations (ξfii′). Finally, let Bn denote the nomadic walk
matrix for In. Then for every constant ε > 0,

Pr[ρ(Bn) >
√
ρ(|B1|) + ε] 6 δ,

where δ = δ(n) is on→∞(1).
Remark 5.6.2. It might seem that our bound involving |B1| may be poor, given that it ignores
sign information from the atoms. However, it is in fact sharp, and the reason is that the main
contribution to ρ(Bn) when using the Trace Method is from walks in which almost all edges are
traversed twice. And if an edge is traversed twice, it of course does not matter if its sign is −1
or +1.
Remark 5.6.3. In fact, it is evident from the theorem statement that without loss of generality
we may assume that the atoms are unweighted — i.e., that all weights are +1. The reason is that
for each constraint f in group j, if we multiply ξfii′ by the fixed value Aj[i, i′], the resulting signs
remain 1-wise uniform — and this has the effect of eliminating all signs from the atoms. Thus
henceforth we will indeed assume that the original atoms are all unweighted.

83

The idea of Friedman/Bordenave proofs. The standard method for trying to prove a theorem
such as Theorem 5.6.1 involves applying the Trace Method toBn. SinceBn is not a self-adjoint
operator, a natural way to do this is to consider tr(B`

nB
∗
n
`) for some large `. Roughly speaking,

this counts the number of closed walks that walk nomadically in In for the first ` steps, and then
walk nomadically in the reverse of In for the next ` steps. A major difficulty is the following:
the Trace Method naturally incurs an “extra” factor of n, and to overcome this one wants to
choose `� log n. However, Θ(log n) is precisely the radius at which random constraint graphs
become dramatically non-tree-like; i.e., they are likely to encounter nontrivial cycles. Based
on Friedman’s work, Bordenave overcomes this difficulty as follows: First, ` is set to c log n for
some small positive constant c > 0. Nomadic walks of this length may well encounter cycles, but
one can show that with high probability, they will not encounter tangles — meaning, more than
one cycle in a radius of `. (This crucial concept of “tangles” was isolated by Friedman and refined
by Bordenave.) Now we set k = ωn(1) to be a slowly growing quantity and consider length-2k`
walks formed by doing ` nomadic steps, then ` nomadic reverse-steps, all k times in succession.
In other words, we consider tr((B`

nB
∗
n
`)k). On one hand, since 2k` � log n, bounding this

quantity will be sufficient to overcome the n-factor inherent in the Trace Method. On the other
hand, using tangle-freeness at radius ` along with very careful combinatorial counting allows us
to bound the number of closed length-2k` walks.

Our proof follows this methodology and draws ideas from Bordenave’s original proof from
[Bor15] as well as [DMO+19b] and [BDH18]. However, our main technical lemma, Lemma 5.6.24,
uses a new tool that takes advantage of the random negations our model employs that simplifies
the equivalent proofs in the three mentioned papers and also allows us to generalize it to our
model.

5.6.1 Trace Method setup, and getting rid of tangles
To begin carrying out this proof strategy, we first define tangle-freeness.
Definition 5.6.4 (Tangles-free). Let G be an undirected graph. A vertex v is said to be `-tangle-
free within G if the subgraph of G induced by v’s distance-4` neighborhood contains at most one
cycle.11

It is straightforward to show that random lifts have all vertices Θ(log n)-tangle-free; we can
quote the relevant result directly from Bordenave (Lemma 27 from [Bor15]):
Proposition 5.6.5. There is a universal constant κ > 0 depending only on r, c such that, for
` = κ log n, a random n-lift H of Kr,c has all vertices `-tangle free, except with probabil-
ity O(1/n.99).

We now begin the application of the Trace Method. We have:

tr((B`
nB
∗
n
`)k) =

∑
~e0,...,~e2k`−1,~e2k`=~e0

Bn[~e0, ~e1] · · ·Bn[~e`−1, ~e`]B
∗
n[~e`, ~e`+1] · · ·B∗n[~e2`−1, ~e2`] · · ·B∗n[~e2k`−1, ~e2k`]

=
∑

~e0,...,~e2k`−1,~e2k`=~e0

Bn[~e0, ~e1] · · ·Bn[~e`−1, ~e`]Bn[~e`+1, ~e`] · · ·Bn[~e2`, ~e2`−1] · · ·Bn[~e2k`, ~e2k`−1]

11We chose the factor 4 here for “safety”. For quantitative aspects of our theorem, constant factors on ` will be
essentially costless.

84

=
∑

wt(e1)N~e0,~e1 · · ·wt(e`)N~e`−1,~e`wt(e`)N~e−1
` ,~e−1

`+1
· · ·wt(e2`−1)N~e−1

2`−1,~e
−1
2`
· · ·wt(e2k`−1)N~e−1

2k`−1,~e
−1
2k`
,

(5.12)

where wt(e) is the sign on edge e coming from the random 1-wise negations (it is the same for
both directed versions of the edge), and where N~e, ~f is an indicator that (~e, ~f) forms a length-
2 nomadic walk. Roughly speaking, this quantity counts (with some ±1 sign) closed walks
in In consisting of 2k consecutive nomadic walks of length `. However, there is some funny
business concerning the joints between these nomadic walks. To be more precise, in each of
the 2k segments we have a nomadic walk of ` + 1 edges; and, the last edge in each segment
must be the reverse of the first edge in the subsequent segment. We will call these necessarily-
duplicated edges “spurs”. Furthermore, when computing the sign with which the closed walk
is counted, spurs’ signs are counted either zero times or twice, depending on the parity of the
segment. Hence they are effectively discounted, since (−1)2 = (−1)0 = +1. Let us make some
definitions encapsulating all of this.
Definition 5.6.6 (Nomadic linkages, and spurs). In an instance graph, a (2k × `)-nomadic link-
age L is the concatenation of 2k many nomadic walks (“segments”), each of length ` + 1, in
which the last directed edge of each walk is the reverse of first directed edge of the subsequent
walk (including wrapping around from the 2kth segment to the 1st). These 2k directed edges
which are necessarily the reverse of the preceding directed edge are termed spurs. The weight of
L, denoted wt(L), is the product of the signs of the non-spur edges in L.
Definition 5.6.7 (NonbacktrackingA-linkages). Recall that, strictly speaking, the nomadic prop-
erty requires “remembering” which atom each edge comes from. Thus the L above is really
associated to what we will call a (2k × 2`)-nonbacktracking A-linkage — call it C — in the
underlying constraint graph. Formally:

• (“linkage”) C is a closed concatenation of 2k walks (called “segments”) in the constraint
graph, each consisting of ` + 1 length-2 variable-constraint-variable subpaths. The last
such length-2 subpath in each segment (“spur”) is equal to (the reverse of) the first length-
2 subpath in the subsequent segment (including wraparound from the 2kth segment to the
1st).

• (“A-linkage”) For each length-2 subpath (v, f, v′) in C, where v is in variable group i, f is
in constraint group j, and v′ is in variable group i′, it holds that {i, i′} is an edge in Aj .

• (“nonbacktracking”) Each of the 2k segments is a nonbacktracking walk of length 2(`+1)
in the constraint graph.

We write wt(C) ∈ {±1} for the weight of the associated nomadic linkage in the instance graph.
Given these definitions, (5.12) tells us:

tr((B`
nB
∗
n
`)k) =

∑
(2k×2`)-nonbacktracking
A-linkages C in Hn

wt(C). (5.13)

Next, we make the observation that if Hn proves to have all vertices `-tangle-free, then we would
get the same result if we only summed over “externally tangle-free” linkages.
Definition 5.6.8 (Externally tangle-free linkages). We say that a (2k × 2`)-nonbacktracking
linkage in a constraint graph Hn is externally `-tangle-free if every vertex it touches is `-tangle-

85

free within Hn. (The “externally” adjective emphasizes that we are concerned with cycles not
just within the linkage’s edges, but also among nearby edges ofHn.)

Thus in light of Proposition 5.6.5 we have:
Lemma 5.6.9. Provided ` 6 κ log n for a certain universal κ > 0, we get that tr((B`

nB
∗
n
`)k) =

S holds except with probability O(1/n.99) , where

S :=
∑

(2k×2`)-nonbacktracking
externally `-tangle-free
A-linkages C in Hn

wt(C).

In order to apply Markov’s inequality later, we will need the following technical claim:
Claim 5.6.10. S is a nonnegative random variable.

Proof. Given In, recall that

B`
n[~e, ~f] =

∑
nomadic walks

~e=~e0,~e1,...,~e`=~f in In

wt(e1)wt(e2) · · ·wt(e`).

Using a key idea of Bordenave (based on the “selective trace” of Friedman), define the related
operatorB(`)

n via

B(`)
n [~e, ~f] =

∑
externally `-tangle-free nomadic walks

~e=~e0,~e1,...,~e`=~f in In

wt(e1)wt(e2) · · ·wt(e`),

where again the walk is said to be “externally `-tangle-free” if every vertex it touches is `-tangle-
free with Hn. Then very similar to the analysis that gave us (5.12) and (5.13), we get that

S = tr((B(`)
n (B(`)

n)∗)k).

ThusS is visibly always nonnegative, being the trace of the kth power of the positive semidefinite
matrixB(`)

n (B
(`)
n)∗.

With these results in place, we can proceed to the main goal of the Trace Method: bounding
E[S]. Such a bound can be used in the following lemma:
Lemma 5.6.11. Assume that ` 6 κ log n and k` = ω(log n). Then from E[S] 6 R we may
conclude that ρ(Bn) 6 (1 + on(1)) ·R 1

2k` holds, except with probability O(1/n.99).

Proof. Let T = tr((B`
nB
∗
n
`)k). On one hand, with λ denoting eigenvalues and σ denoting

singular values, we have

T > λmax((B
`
nB
∗
n
`)k) = λmax

(√
B`
nB
∗
n
`

)2k

= σmax(B
`
n)2k > ρ(B`

n)2k = ρ(Bn)2k`.

On the other hand, since S is a nonnegative random variable (Claim 5.6.10), we can apply
Markov’s Inequality to deduce that S 6 n · R except with probability at most 1/n. Now from
Lemma 5.6.9 we may infer that except with probability O(1/n.99),

T = S 6 n ·R =⇒ ρ(Bn)2k` 6 n ·R.
The result now follows by taking 2k`-th roots.

86

5.6.2 Eliminating singletons, and reduction to counting
Our next step toward bounding E[S] is typical of the Trace Method: Rather than first choos-
ing Hn randomly and then summing over the linkages therein, we instead sum over all potentially-
appearing linkages and insert an indicator that they actually appear in the realized random con-
straint graph. Defining

Kn = the “complete” constraint graph with cn constraint vertices and rn variable vertices,

this means that

S =
∑

(2k×2`)-nonbacktracking
A-linkages C in Kn

1[C is in Hn] · 1[C is externally `-tangle-free within Hn] · wtIn(C).

(5.14)
Here we wrote wtIn(C) to emphasize that even once C is in Hn and is externally `-tangle-free,
its weight is still a random variable arising from the 1-wise uniform negations. These negations
will create another simplification (one not available to Friedman/Bordenave). For this we will
need another definition:
Definition 5.6.12 (Singleton-free C’s). Let C be a (2k × 2`)-nonbacktracking circuit in Kn. If
there is an atom vertex that is passed through exactly once, we call it a singleton. If C contains
no singleton, we call it singleton-free.

Referring to (5.14), consider E[S]. If C contains any singleton, then it will contribute 0 to this
expectation. The reason is that, provided C appears in Hn and is externally `-tangle-free therein,
the 1-wise uniform negations will assign a uniformly random±1 sign to the edge engendered by
C’s singleton, and this sign will be independent of all other signs that go into wtIn(C). On the
other hand, when C is singleton-free, we will simply upper-bound the (conditional) expectation
of wtIn(C) by +1. We conclude that

E[S] 6
∑

(2k×2`)-nonbacktracking
singleton-free

A-linkages C in Kn

Pr[C is in Hn and is externally `-tangle-free therein]. (5.15)

Let us now begin to simplify the probability calculation.
Definition 5.6.13 (E(C), V (C), G(C)). Let C be a (2k × 2`)-nonbacktracking A-linkage in Kn.
Write E(C) for the set of undirected edges in Kn formed by “undirecting” all the directed edges
in C (this includes reducing from a multiset to a set, if necessary). Then let G(C) denote the
undirected subgraph of Kn induced by E(C), and write V (C) for its vertices.

Let’s simplify the “tangle-freeness” situation.
Definition 5.6.14 (Internal tangle-free linkages). We say that a (2k × 2`)-nonbacktracking link-
age C in Kn is internally `-tangle-free if every vertex it touches is `-tangle-free within G(C).

We certainly have:

linkage C not even internally `-tangle-free
=⇒ Pr[C is in Hn and is externally `-tangle-free therein] = 0.

87

Thus we can restrict the sum in (5.15) to internally `-tangle-free linkages. Having done that, we
will upper bound the sum by dropping this insistence on external tangle-freeness. Thus

E[S] 6
∑

(2k×2`)-nonbacktracking
interally `-tangle-free, singleton-free

A-linkages C in Kn

Pr[C is in Hn]. (5.16)

We will now bound Pr[C is in Hn], so as to reduce all our remaining problems to counting.
Towards this, recall that Hn is a random n-lift of the complete graphKr,c. One thing this implies
is that every group-i variable-vertex in Hn will have exactly one edge to each of c groups of
constraint-vertices, and vice versa. Let us codify the C’s that don’t flagrantly violate this property:

Definition 5.6.15 (Valid C’s). We say a (2k× 2`)-nonbacktrackingA-linkage C in Kn is valid if
G(C) has the property that every variable-vertex in it is connected to at most 1 constraint-vertex
from each of the c groups, and each constraint-vertex is connected to at most 1 variable-vertex
from each of the r groups.

Evidently, Pr[C is in Hn] = 0 if C is invalid. Thus from (5.16) we can deduce:

E[S] 6
∑

(2k×2`)-nonbacktracking
valid, internally `-tangle-free, singleton-free

A-linkages C in Kn

Pr[C is in Hn]. (5.17)

Next, it is straightforward to show the following lemma (see Proposition A.8 of [DMO+19b] for
essentially the same observation):
Lemma 5.6.16. If C is a valid (2k × 2`)-nonbacktracking A-linkage in Kn, and k` = o(

√
n),

then
Pr[C is in Hn] = (1 + on(1)) · n−|E(C)|.

Proof. (Sketch.) Proceed through the edges in E(C) in an arbitrary order. Each has approxi-
mately a 1/n chance of appearing in Hn, even conditioned on the appearance of the preceding
edges. For example, this is exactly true for the first edge. For subsequent edges e = {u, v}, valid-
ity ensures that no preceding edge already connects u to a vertex in v’s part, or vice versa. Thus
the conditional probability of e appearing in Hn is essentially the probability that a particular
edge appears in a random matching on n+n vertices (which is 1/n), except that a “small” number
of vertex pairs may already have been matched. This “small” quantity is at most |E(C)| 6 4k`,
so the 1/n probability becomes 1/(n − 4k`) at worst. Multiplying these conditional probabil-
ities across all |E(C)| edges yields a quantity that is off from n−|E(C)| by a factor of at most
(1 +O(k`)/n)4k` 6 1 + on(1), the inequality using (k`)2 = o(n).

Combining this lemma with (5.17) and Lemma 5.6.11, we are able to reduce bounding ρ(Bn)
to a counting problem:
Lemma 5.6.17. Assume that ` 6 κ log n and ω(log n) < k` < o(

√
n). Then except with

probability O(1/n.99),

ρ(Bn) 6 (1 + on(1)) ·R 1
2k` , where R :=

∑
(2k×2`)-nonbacktracking

valid, internally `-tangle-free, singleton-free
A-linkages C in Kn

n−|E(C)|.

88

5.6.3 Tangle-free, singleton-free linkages are nearly duplicative
Our goal in this subsection is to show that each linkage C we sum over in Lemma 5.6.17 is
“nearly duplicative”: the number of variable-vertices is at most (1 + o(1))k`, and the same is
true of constraint-vertices — even though the obvious a priori upper bound for each of them
is 2k`. This factor-1

2
savings is precisely the source of the square-root in Theorem 5.6.1. We

begin with a graph-theoretic lemma and then deduce the nearly-duplicative property.
Lemma 5.6.18. Let C be a (2k × 2`)-nonbacktracking, internally `-tangle-free linkage in Kn.
Assume log(k`) = o(`). Then G(C) has at most O(k log(k`)) vertices of degree exceeding 2.

Proof. For brevity, let us write G = G(C), w = |V (C)|, and note that we have a trivial upper
bound of w 6 4k`. Let t denote the number of cycles of length at most ` in G. By deleting
at most t edges, we can form a graph G̃ with girth at least `. A theorem of Alon, Hoory, and
Linial [AHL02] implies that any (possibly irregular) graph with w vertices and girth at least `
must have average degree at most 2 + O(log(w)/`) (this uses log(w) = o(`)). Thus G̃ has such
a bound on its average degree. After restoring the deleted edges, we can still conclude that the
average degree in G is at most 2 + O(log(w)/`) + 2t

w
. Writing w1, w2, w3+ for the number of

vertices in G of degree 1, 2, and 3-or-more respectively, this means

2 +O(log(w)/`) +
2t

w
>
w1 + 2w2 + 3w3+

w
=
w1 + 2(w − w1 − w3+) + 3w3+

w
= 2− w1

w
+
w3+

w
=⇒ w3+ 6 O(w log(w)/`) + w1 + 2t.

The first term here is O(k log(k`)) as desired, since w 6 4k`. We will also show the next two
terms are O(k). Regarding w1, degree-1 vertices in G can only arise from the spurs of C, and
hence w1 6 2k. Finally, 2t 6 O(k) follows from the below claim combined with w 6 4k`:

t 6
w

2`
+ 1. (5.18)

We establish (5.18) using the tangle-free property of C. Recall that t is the number of “short”
cycles in G, meaning cycles of length at most `. By the `-tangle-free property of C (recalling
the factor 4 in its definition), every v ∈ V has at most one short cycle within distance 3` of it.
Thus if we choose paths in G that connect all short cycles (recall G is connected), then to each
short cycle we can uniquely charge at least 3`− 1 > 2` vertices from these paths. It follows that
w = |V | > 2`(t− 1), establishing (5.18).

Corollary 5.6.19. In the setting of Lemma 5.6.18, assume also that C is singleton-free and valid.
Then the number of variable-vertices C visits is at most k` + O(k log(k`)), and the same is true
of constraint-vertices.

Proof. Think of C as a succession of 2k(` + 1) “two-steps”, where a two-step is a length-2
directed path going from a variable-vertex, to a constraint-vertex, to a (distinct) variable-vertex.
Call two such two-steps “duplicates” if they use the same three variables (possibly going in the
opposite direction). We claim that “almost all” two-steps have at least one duplicate. To see
this, consider the constraint-vertex in some two-step a. Since C is singleton-free, at least one
other two-step b must pass through the constraint-vertex of a. If b is not a duplicate of a, then

89

this constraint-vertex will have degree exceeding 2 in G(C). By Lemma 5.6.18 there are at most
O(k log(k`)) such constraint-vertices. Further, by validity each constraint-vertex can support at
most

(
r
2

)
= O(1) unduplicated two-steps. Thus at most O(k log(k`)) of the 2k(`+ 1) two-steps

are unduplicated.
Now imagine we walk through the two-steps of C in succession. Each two-step can visit at

most one “new” variable-vertex and one “new” constraint-vertex. However each two-step which
is a duplicate of a previously-performed two-step visits no new vertices. Among the 2k(` + 1)
two-steps, at most O(k log(k`)) are unduplicated. Thus at least (2k(`+ 1)−O(k log(k`)))/2 =
k(` + 1)− O(k log(k`)) two-steps are duplicates of previously-performed two-steps. It follows
that at most k(`+1)+O(k log(k`)) two-steps visit any new vertex. This completes the proof.

5.6.4 The final countdown
We now wish to count the objects summed in the definition of R from Lemma 5.6.17. The
remainder of this section will be devoted to proving:
Theorem 5.6.20. For every ε > 0, except with probability O(1/n.99),

ρ(Bn) 6 (1 + on(1)) · (1 + ε) ·
√
ρ(|B1|).

The bulk of the technical matter in the proof of Theorem 5.6.20 will involve analyzing

(2k × 2`)-nonbacktracking, valid, internally `-tangle-free, singleton-free, A-linkages C (5.19)

in Kn.
Definition 5.6.21 (Steps: stale, fresh, and boundary). We call each of the 4k(` + 1) directed
edges from which C is composed a step. If we imagine traversing these steps in order, they
“reveal” vertices and edges of G(C) as we go along. We call a step stale if the edge it traverses
was previously traversed in C (in some direction). Note that both endpoints of the edge must also
have been previously visited. Otherwise, if the step traverses a “new” edge, it will be designated
either “fresh” or “boundary”. It is designated fresh if the vertex it reaches was never previously
visited in C. Otherwise, the step is boundary; i.e., the step goes between two previously-visited
vertices, but along a new edge. For the purposes of defining fresh/boundary, we specify that the
initial vertex of C is always considered to be “previously visited”.

The following facts are immediate:
Fact 5.6.22. The number of fresh steps in C is |V (C)| − 1. (The −1 accounts for the fact that the
initial vertex is considered “previously visited”.) Since the number of fresh and boundary steps
together is |E(C)|, it follows that the number of boundary steps is |E(C)| − |V (C)|+ 1.
Definition 5.6.23. We write Lkgs(f, b) for the collection of linkages as in (5.19) having exactly
f fresh edges and b boundary edges.

Our goal is to show:
Lemma 5.6.24. For every ρ̂ > ρ(|B1|) we have:

|Lkgs(f, b)| 6 poly(k, `)b+k · nf+1 · ρ̂f/2

where the constants in the poly factor depend on ρ̂.

90

Before proving this lemma, observe that many linkages are the same modulo the labels be-
tween 1 and n that are defined by the lifting. To make this formal we first introduce some notation
and follow by using it to aid in the proof of Lemma 5.6.24.

Given a linkage C we write C = ((v1, i1), (v2, i2), . . . , (v4k(`+1), i4k(`+1))), where (vj, ij) are
vertices from Kn and vj indicates the base vertex (from Kr,c) and ij is an integer (between 1 and
n) that indicates the lifted copy. This notation means that C traverses this sequence of vertices in
this order.
Definition 5.6.25 (Isomorphism of linkages). Given two linkages C and C ′ that visit |V (C)| =
|V (C ′)| vertices, we say they are isomorphic if are the same modulo the labels between 1 and
n that are defined by the lifting. Formally, letting C = ((v1, i1), . . . , (v4k(`+1), i4k(`+1))) and
C ′ = ((v′1, i

′
1), . . . , (v′4k(`+1), i

′
4k(`+1))), there exist permutations πv on [n] for each v ∈ V (Kr,c)

such that for all j we have v′j = vj and i′j = πvj(ij).
This isomorphism relation induces equivalence classes for which we want to assign repre-

sentative elements. We do so as follows.
Definition 5.6.26 (Canonical linkages). A linkage C is said to be canonical if for every vertex
v ∈ Kr,c, if C visits j distinct lifted copies of v then it first visits (v, 1), then (v, 2), . . ., and finally
(v, j). We write Lkgsc(f, b) for the collection of canonical linkages as in (5.19) having exactly
f fresh steps and b boundary steps.
Proposition 5.6.27. |Lkgs(f, b)| 6 nf+1|Lkgsc(f, b)|.

Proof. It suffices to show that for every canonical linkage C ∈ Lkgsc(f, b), it has at most nf+1

isomomorphic linkages C ′ ∈ Lkgs(f, b). By Fact 5.6.22, C visits exactly f + 1 distinct vertices,
call them {(v(1), i(1)), . . . , (v(f+1), i(f+1))}. Every isomorphic C ′ may be obtained by taking a list
of numbers (i′1, . . . , i

′
f+1) ∈ [n]f+1 and replacing all appearances of (v(j), i(j)) in C with (v(j), i′j).

(Not all such lists lead to isomorphic C ′, but we don’t mind overcounting.) This completes the
proof, as there are nf+1 such lists.

We now have all the tools to prove the desired lemma.

Proof of Lemma 5.6.24. With Proposition 5.6.27 in place, it suffices to bound the number of
canonical linkages as follows:

|Lkgsc(f, b)| 6 poly(k, `)b+k · ρ̂f/2.

Our strategy is to give an encoding of linkages in Lkgsc(f, b), and then bound the number of
possible encodings. Let C be an arbitrary linkage in Lkgsc(f, b). To encode C, we first partition it
into 2k many “2(`+1)-segments”, each of which corresponds to nonbacktracking walks between
spurs,and specify how to encode each 2(`+1)-segment. We then partition each 2(`+1)-segment
into maximal contiguous blocks of the same type of step (“type” as in Definition 5.6.21) and store
an encoding of information about the steps therein. Ultimately, it will be possible to uniquely
decipher C from its constructed encoding.

Towards describing our encoding, we first define the sequence Svisited, constructed from the
f + 1 vertices in V (C) sorted in increasing order of first-visit time.

91

Encoding positions of blocks. We define Pfresh, Pboundary and Pstale, which are sequences not-
ing the starting positions and ending positions of fresh, boundary, and stale blocks respectively,
in the order visited in C.

Encoding fresh steps. Let Sfresh be the sequence obtained by replacing each vertex of Svisited

with its corresponding base vertex in Kr,c.

Encoding boundary steps. Let β be a block of boundary steps (v0, v1), . . . , (v|β|−1, v|β|). Let ti
be such that vi is the ti-th vertex in Svisited. We define Encb(β) as the sequence (t0, t1), . . . , (t|β|−1, t|β|).
Let β1, . . . , βT be the blocks of boundary steps in the order in which they appear in C. We store
the concatenation of Encb(β1), . . . ,Encb(βT), which we call Sboundary.

Encoding stale steps. For each block β of stale steps, let u be the first vertex and v be the last
vertex of β, and let p(β) be the position in C where the block β starts. Let Sp(β),uv,|β| denote the
list (in, say, lexicographic order) of all possible nonbacktracking walks from u to v of length |β|
that only use edges visited by C before position p(β); note that β occurs in Sp(β),uv,|β|. We let
Encs(β) = (t,m) such that the t-th vertex in Svisited is the last vertex visited in β (that is v), and
m is the position of β in Sp(β),uv,|β|. Let β1, . . . , βT be the blocks of stale steps in the order they
appear in C. We store the concatenation of Encs(β1), . . . ,Encs(βT), which we call Sstale.

We refer to the constructed (Pfresh, Pboundary, Pstale, Sfresh, Sboundary, Sstale) as the encoding of
C.

Unique reconstruction of linkage. In this part of the proof, we show that we can uniquely
recover C from its encoding. First, since C is a canonical linkage we can correctly recon-
struct Svisited from Sfresh because the labels are visited in canonical (increasing) order. From
Pfresh, Pboundary and Pstale, we can infer a partition of [4k(`+ 1)] into blocks in order β1, . . . , βT
and the type of each block. We sketch an inductive proof that shows how C can be uniquely
recovered from its encoding. As our base case, the first block is a fresh block and hence all the
steps that comprise it can be recovered from Svisited. Towards our inductive step, suppose we
know the edges in C from blocks β1, . . . , βi, we show how to recover the edges in βi+1 from the
encoding of C. If βi+1 is a fresh or boundary block, its recovery is straightforward. Suppose βi+1

is a stale block. Then from Pstale and Sstale, we can infer the last vertex v visited by βi+1 and the
length of the block |βi+1|. We know the first vertex u in βi+1 and can reconstruct Sp(βi+1),uv,|βi+1|
since we have complete information about the steps in C prior to βi+1. We can then infer βi+1

from Sp(βi+1),uv,|βi+1| and Sstale.

Bounding the number of metadata encodings. A fresh block must either be followed by
a boundary step, or must occur at the end of a 2(` + 1)-segment; analogously, a stale block
must either be preceded by a boundary step, or must occur at the start of a 2(` + 1)-segment.
Thus, the number of fresh blocks and stale blocks are each bounded by b + 2k. Further, the
number of boundary blocks is clearly bounded by b. Since there are at most (4k(`+ 1))2 distinct
combinations of starting and ending positions of a block, the number of distinct possibilities that
the triple (Pfresh, Pstale, Pboundary) can be bounded by (4k(`+ 1))6b+8k.

92

Bounding number of fresh step encodings. For a fixed Pfresh, we give an upper bound on the
number of possibilities for Sfresh. Fixing Pfresh fixes a number T as well as q1, . . . , qT such that
there are T fresh blocks in C and such that the i-th block has length qi. Let us focus on a single
fresh block β. The sequence of vertices in Sfresh corresponding to β give a nonbacktracking
walk Wβ in the base constraint graph Kr,c. Additionally, for a consecutive triple (i, j, i′) in
this nonbacktracking walk, {i, i′} must be an edge in the corresponding base instance graph I1

due C being an A-linkage. Let W̃β be the maximal subwalk of Wβ that starts and ends with
a variable vertex. Note that W̃β corresponds exactly to a nomadic walk in I1 whose length
is at most |β|/2. Now regarding Wβ , either Wβ is equal to W̃β (there is 1 way in which this
can happen), or both the first and last steps of Wβ are not in W̃β (there are c2 ways in which
this can happen), or exactly one of the first and last steps of Wβ is not in W̃β (there are 2c
ways in which this can happen). This tells us that the number of distinct possibilities for Wβ

is bounded by (c + 1)2δb|β|/2c, where δs denotes the number of nomadic walks of length s in
I1. Thus, we obtain an upper bound of (c + 1)2T

∏T
i=1 δbqi/2c on the number of possibilities

for Sfresh, which is bounded by (c + 1)2b+4k
∏T

i=1 δbqi/2c. Towards simplifying the expression,
we bound δs. Observe that for a given edge e ∈ E(|I1|), the number of nomadic walks of
length s starting with e is given by ‖(|B1|)s1e‖1. This implies that δs 6 ‖(|B1|)s‖1, where
‖(|B1|)s‖1 = sup{‖(|B1|)sx‖ : ‖x‖1 = 1}.

To bound the above, first observe that we have a simple bound ‖(|B1|)s‖1 6 κs provided κ is
a large enough constant (for example, the maximum degree of I1 is a possible such value). Next,
it is known that

lim
s→∞

(‖(|B1|)s‖)1/s = ρ(|B1|),

and hence for any ρ̂ > ρ(|B1|), there is a constant `0 such that ‖(|B|)s‖1 6 (ρ̂)s for all s > `0.
Putting these two bounds together we get that for any s > `0,

δs 6 ‖(|B1|)s‖1 6 (ρ̂)s−`0κ`0 .

Thus the number of possibilities for Sfresh is bounded by (c+ 1)2b+4k
∏T

i=1(ρ̂)bqi/2c−`0κ`0 , which
can, in turn, be bounded by

(
(c+ 1)2κ`0 ρ̂−`0

)b+2k
(ρ̂)f/2.

Bounding number of stale step encodings. For any stale block β, let u and v be the first and
last visited vertices respectively. Sstale specifies a number in [f + 1] to encode v, and a number
between 1 and M where M is the total number of nonbacktracking walks from u to v of length
|β|. Since the number of stale blocks is bounded by b+ 2k, the number of possibilities for what
Sstale can be is at most (M(f + 1))b+2k. We show that M 6 2, and hence translate our upper
bound to (2(f + 1))b+2k.

Since all blocks are contained within 2(`+ 1)-segments and the A-linkage being encoded is
4`-tangle-free, the steps traversed by β are in a connected subgraph H with at most one cycle.
Our goal is to show that there are at most 2 nonbacktracking walks of a given length L between
any pair of vertices x, y. There is at most one nonbacktracking walk between x and y that does
not visit vertices on C, the single cycle in H , and if such a walk exists, it is the unique shortest
path. Any nonbacktracking walk between x and y that visits vertices of C can be broken down

93

into 3 phases — (i) a nonbacktracking walk from x to vx, the closest vertex in C to x, (ii) a
nonbacktracking walk from vx to vy, the closest vertex in C to y, (iii) a nonbacktracking walk
from vy to y. Phases (i) and (iii) are always of fixed length, whose sum is some L′. Thus, it
suffices to show that there are at most 2 nonbacktracking walks from vx to vy of length L − L′.
Any nonbacktracking walk takes r rotations in C and then takes an acyclic path from vx to vy,
whose length is observed to be strictly less than |C|, for r > 0. The steps in a nonbacktracking
walk from vx to vy are either all in a clockwise direction, or all in an anticlockwise direction, and
hence for any r there are at most 2 nonbacktracking walks from vx to vy of length strictly between
(r− 1)|C| and r|C|+ 1. In particular, there are at most 2 nonbacktracking walks between vx and
vy of length equal to L− L′.

Bounding number of boundary step encodings. Sboundary is a sequence of b tuples in [f+1]2,
and hence there are at most (f + 1)2b distinct sequences that Sboundary can be.

Final bound: The above gives us a final bound of:

(4k(`+ 1))6b+8k((c+ 1)2κ`0(ρ̂)−`0)b+2k(ρ̂)f/22b+2k(f + 1)3b+2k (5.20)

which, when combined with Proposition 5.6.27 gives the desired claim.

We wrap everything up by combining the results of Lemma 5.6.24 with Lemma 5.6.17 to
prove Theorem 5.6.20.

Proof of Theorem 5.6.20. Let ` = κ log n, where κ is the universal constant from Proposi-
tion 5.6.5, let k be chosen so that k` = ω(log n), let R be as in Lemma 5.6.17, and let ρ̂ be
any constant greater than ρ(|B1|). Then we have

R =
∑

(2k×2`)-nonbacktracking
valid, internally `-tangle-free, singleton-free

A-linkages C in Kn

n−|E(C)|

=
∞∑
f=0

∞∑
b=0

|Lkgs(f, b)|n−(f+b)

=

2k`+O(k log(k`))∑
f=0

∞∑
b=0

|Lkgs(f, b)|n−(f+b) (by Corollary 5.6.19)

6
2k`+O(k log(k`))∑

f=0

∞∑
b=0

poly(k, `)b · poly(k, `)k · (ρ̂)f/2 · n
nb

(by Lemma 5.6.24)

=

2k`+O(k log(k`))∑
f=0

n · poly(k, `)k · (ρ̂)f/2
∞∑
b=0

(
poly(k, `)

n

)b

=

2k`+O(k log(k`))∑
f=0

n · poly(k, `)k · (ρ̂)f/2 ·
(

1

1− poly(k,`)
n

)

94

6 2n · poly(k, `)k(2k`+O(k log(k`)))(ρ̂)k`+O(k log(k`))

For the choice of k and ` in the theorem statement, we can use Lemma 5.6.17 to conclude that

ρ(Bn) 6 (1 + on(1)) ·
√
ρ̂.

with probability 1−O(n.99). Since the above bound holds for any ρ̂ > ρ(|B1|), for any ε > 0, it
can be rewritten as

ρ(Bn) 6 (1 + on(1)) · (1 + ε) ·
√
ρ(|B1|).

5.7 The SDP value for random two-eigenvalue CSPs
In this section, we put all the ingredients together to conclude our main theorem. We start with
an elementary and well known fact and include a short proof for self containment.
Fact 5.7.1. Let A be a real n× n symmetric matrix. Then

1

n
max

X�0,Xii=1
〈A,X〉 6 λmax(A)

1

n
min

X�0,Xii=1
〈A,X〉 > λmin(A)

Proof. We prove the upper bound below. The proof of the lower bound is identical.

1

n
max

X�0,Xii=1
〈A,X〉 6 1

n
max

X�0,tr(X)=n
〈A,X〉

= max
X�0,tr(X)=1

〈A,X〉

= λmax(A).

Recall αgr := (c− 1)(−λ1λ2) and rX := 2
√
αgr.

Theorem 5.7.2. Let A = (A1, . . . , Ac) be a sequence of r-vertex atoms with edge weights ±1.
Let Hn denote a random n-lifted constraint graph and In = A(Hn) an associated instance
graph with 1-wise uniform negations (ξfii′). Let An be the adjacency matrix of In. Then, with
probability 1− on(1),

max
X�0,Xii=1

〈An, X〉 = (λ1 + λ2 + rX ± ε)n

min
X�0,Xii=1

〈An, X〉 = (λ1 + λ2 − rx ± ε)n.

Proof. maxX�0,Xii=1〈An, X〉 > (λ1+λ2+rX−ε)n follows from Theorem 5.5.2 and maxX�0,Xii=1〈An, X〉 6
(λ1+λ2+rX+ε)n follows from Fact 5.7.1. The upper and lower bounds on minX�0,Xii=1〈An, X〉
can be determined identically.

95

96

Chapter 6

Girth and Ramanujan Graphs

In this Chapter we describe the results of [Par21]. In this paper we described a new method to
remove short cycles on regular graphs while maintaining spectral bounds (the nontrivial eigen-
values of the adjacency matrix), as long as the graphs have certain combinatorial properties.
These combinatorial properties are related to the number and distance between short cycles and
are known to happen with high probability in uniformly random regular graphs.

Using this method we were able to show two results involving high girth spectral expander
graphs: there exists an explicit distribution of d-regular Θ(n)-vertex graphs where with high
probability its samples have girth Ω(logd−1 n) and are ε-near-Ramanujan; there is a a deter-
ministic poly(n)-time algorithm that outputs a d-regular graph on Θ(n)-vertices that is ε-near-
Ramanujan and has girth Ω(

√
log n).

6.1 Regular graphs and short cycles

The study of short cycles and girth (defined as the length of the shortest cycle of a graph) in such
graphs dates back to at least the 1963 paper of Erdős and Sachs [ES63], who showed that there
exists an infinite family with girth at least (1 − on(1)) logd−1 n. On the converse side, a simple
path counting argument known as the “Moore bound” shows that this girth is upper bounded by
(1 + on(1))2 logd−1 n. Though simple, this is the best known upper bound. Given these bounds,
it is common to call an infinite family of d-regular n-vertex graphs high girth if their girth is
Ω(logd−1 n).

The first explicit construction of high girth regular graphs is attributed to Margulis [Mar82],
who gave a construction of graphs that achieve girth (1−on(1))4

9
logd−1 n. A series of works ini-

tiated by Lubotzky-Phillips-Sarnak [LPS88] and then improved by several other people [Mar88,
Mor94, LU95] culminated in the work of Dahan [Dah14], who proves that for all large enough d
there are explicit d-regular n-vertex graphs of girth (1− on(1))4

3
logd−1 n.

Another relevant problem consists of generating random distributions that produce regular
graphs with high girth. Results regarding the probabilistic aspects of certain structures (like
cycles) in graphs often give us tools to count the number of graphs that satisfy certain conditions,
like how many regular graphs have girth at least some value. The distribution of short cycles
in uniformly random regular graphs was first studied by Bollobás [Bol80], who proved, that

97

for a fixed k the random variables representing the number of cycles of length exactly k in
a uniformly random d-regular graph are asymptotically independent Poisson with mean (d −
1)k/2k. Subsequently, McKay-Wormald-Wysocka [MWW04] gave a more precise description
of this by finding the asymptotic probability of a random d-regular graph having a certain number
of cycles of any length up to c logd−1 n, for c < 1/2. More recently, Linial and Simkin [LS21]
showed that a random greedy algorithm that is given d > 3, c ∈ (0, 1) and an even n, produces a
d-regular n-vertex graph with girth at least c logd−1 n with high probability.

The literature of regular graphs with high girth is closely connected to the literature of spectral
expanders, which was the focus of Chapter 4. In this Chapter we concern ourselves with bridging
these two worlds, looking for families of regular graphs that are both good spectral expanders
and also have high girth. This bridge can be seen in several works. The explicit construction of
high girth regular graphs by Margulis [Mar82] was a motivator to his work on Ramanujan graphs
[Mar88]. Additionally, the constructions of [LPS88] and [Mor94] produce graphs that are both
Ramanujan and have girth (1 − on(1))4

3
logd−1 n, according to the previously stated restrictions

on d.
More recently, Alon-Ganguly-Srivastava [AGS21] showed that for a given d such that d− 1

is prime and α ∈ (0, 1/6), there is a construction of infinite families of graphs with girth at
least (1− on(1))(2/3)α logd−1 n and λ at most (3/

√
2)
√
d− 1 with many eigenvalues localized

on small sets of size O(nα). Their motivation comes from the theory of quantum ergodicity in
graphs, which relates high-girth expanding graphs to delocalized eigenvectors. See [AGS21] for
more on this. Our main result is based on some of the techniques of this work.

One other motivation to search for graphs with simultaneous good spectral expansion and
high girth is its application to the theory of error-correcting codes, particularly for Low Density
Parity Check or LDPC codes, originally introduced by Gallager [Gal62]. The connection with
high girth regular graphs was first pointed out by Margulis in [Mar82]. The property of high-girth
is desirable since the decoding of such codes relies on an iterative algorithm whose performance
is worse in the presence of short cycles. Additionally, using graphs with good spectral properties
to generate these codes heuristically seems to lead to good performance, as pointed out by several
works [RV00, LR00, MS02].

6.1.1 Our results
We can now state our results and put them in perspective. Let’s first introduce some useful
definitions and notation.
Definition 6.1.1 ((r, τ)-graph). Let r and τ be a positive integers. Then, we call a graph G a
(r, τ)-graph if it satisfies the following conditions:

• G is bicycle-free at radius at least r;
• The number of cycles of length at most r is at most τ .

Our main result is the following short cycle removal theorem:
Theorem 6.1.2. There exists a deterministic polynomial-time algorithm fix that, given as input a
d-regular n-vertex (r, τ)-graph G satisfying r 6 (2/3) logd−1(n/τ) − 5 outputs a graph fix(G)
satisfying

• fix(G) is a d-regular graph with n+O(τ · (d− 1)r/2+1) vertices;

98

• λ(fix(G)) 6 max{λ(G), 2
√
d− 1}+Od(1/r);

• fix(G) has girth at least r.

The key fact in our proof of this statement is a theorem proved by Kahale [Kah95], originally
used to construct Ramanujan graphs with better expansion of sublinear sized subsets. See also
[AGS21] and [Alo21] for other applications of this technique. We will prove this theorem in
Section 6.2.

The preconditions of this theorem are not arbitrary. Even though random uniformly n-
vertex d-regular graphs have constant girth with high probability, they are bicycle-free at radius
Ω(logd−1 n) and the number of cycles of length at most c logd−1 n (for small enough c) is o(n)
with high probability. Recall that from Theorem 1.1.16 we also know that being near-Ramanujan
is also a property that occurs with high probability in random regular graphs. So a statement like
the above can be used to produce distributions over regular graphs that have high girth and are
near-Ramanujan with high probability. With this in mind, we introduce the following definition:
Definition 6.1.3. ((Λ, g)-good graphs). We call a graph G a (Λ, g)-good graph if λ(G) 6 Λ and
girth(G) > g.

Let µd(n) be a distribution over d-regular graphs with ∼ n vertices. We say µd(n) is (Λ,
g)-good if G ∼ µd(n) is (Λ, g)-good with probability at least 1− on(1).

Additionally, we call the distribution explicit if sampling an element is doable in polynomial
time.

We shall prove the following using Theorem 6.1.2 in Section 6.3:
Theorem 6.1.4. Given d > 3 and n, let G be a uniformly random d-regular n-vertex graph. For
any c < 1/4 and ε > 0, fix(G) is a (2

√
d− 1 + ε, c logd−1 n)-good explicit distribution.

Recall that the upper bound on the girth of a regular graph is (1 + on(1))2 logd−1 n, so this
distribution has optimal girth up to a constant. Based on our proof of the above and using some
classic results about the number of d-regular n-vertex graphs, we can show a lower bound on the
number of (2

√
d− 1 + ε, c logd−1 n)-good graphs in some range.

Corollary 6.1.5. Let d > 3, n be integers and ε > 0, c > 1/4 reals. The number of d-regular
graphs with number of vertices in [n, n+O(n3/8)], which are (2

√
d− 1 + ε, c logd−1 n)-good, is

at least

Ω

((
ddnd

ed(d!)2

)n/2)
.

We prove both of these results in Section 6.3.
Finally, we show a slightly stronger version of result of [MOP20a] by plugging our short

cycle removal theorem into their construction.
Theorem 6.1.6. Given any integer n and constants d > 3, ε > 0 and c, there is a deterministic
polynomial-time (in n) algorithm that constructs a d-regular N -vertex graph with the following
properties:

• N = n(1 + on(1));
• λ(G) 6 2

√
d− 1 + ε;

• G has girth at least c
√

log n.

99

Note that this only works for large enough n. Also, the running time from the theorem above
has an exponential dependency on d, ε and c. The proof of this statement as well as the precise
dependencies on these constants will be worked out in Section 6.4.

6.2 Short cycles removal

In this section we prove Theorem 6.1.2. Recall that we are given a d-regular n-vertex (r, τ)-
graph G with the constraint specified in Theorem 6.1.2 and we wish to find some d-regular graph
fix(G) on ∼ n vertices such that λ(fix(G)) 6 λ(G) + or(1) and its girth is at least r.

Briefly, the algorithm that achieves this works by removing one edge per small cycle from
G, effectively breaking apart all such cycles, and then fixing the resulting off degree vertices by
adding d-ary trees in a certain way. We will now more carefully outline this method and then
proceed to fill in some details as well as show it works as desired.

Before starting, we introduce some notation which will be helpful.
Definition 6.2.1 (Cycg(G)). Given a graph G, let Cycg(G) denote the collection of all cycles in
G of length at most g. Recall that if Cycg(G) is empty then G is said to have girth exceeding g.
Definition 6.2.2 (Bδ(S)). Given a set of vertices S in a graph G, let Bδ(S) denote the collection
of vertices in G within distance δ of S. We will occasionally abuse this notation and write Bδ(v)
instead of Bδ({v}) for a vertex v.

Let Ec be a set containing exactly one arbitrary edge per cycle in Cycr(G). Note that the
bicycle-freeness property implies Ec is a matching. Let Ht be a graph with the same vertex
set as G obtained by removing all edges in Ec from G. To prevent ambiguity, whenever we
pick something arbitrarily let’s suppose the algorithm fix uses the lexicographical order of node
labels as a tiebreaker. We also partition the endpoints of each edge as described in the following
definition:
Definition 6.2.3 (Vi(E)). Given a matching E, we let V1(E) and V2(E) be two disjoint sets of
vertices constructed as follows: for all e = (u, v) ∈ E place u in V1(E) and v in V2(E) (so each
endpoint is in exactly one of the two sets).

Note that according to the above definition we have |V1(Ec)| = |V2(Ec)| = |Ec| 6 τ . For
ease of notation we also define:
Definition 6.2.4 (φE(v)). Given a matching E and (u, v) ∈ E such that u ∈ V1(E) and v ∈
V2(E), we denote by φE the function that maps endpoints to endpoints, so we have φE(u) = v
and φE(v) = u.

We will often abuse notation and drop the E from φE when it is clear from context.
Since we break apart each cycle in Cycr(G), we can conclude that Ht has girth greater than

r. However, note that in removing edges, Ht is no longer d-regular.
To fix this, consider the following object which we refer to as a d-regular tree of height h:

a finite rooted tree of height h where the root has d children but all other non-leaf vertices have
d− 1 children. This definition implies that every non-leaf vertex in a d-regular tree has degree d.

We shall add two d-regular trees to Ht in order to fix the off degrees, while maintaining
the desired girth and bound on λ. The idea of using d-regular trees is based on the degree-
correction gadget used in [AGS21] for their construction of high-girth near-Ramanujan graphs

100

with localized eigenvectors. As such, we will use some of the tools used in their proofs.
Let h be an integer parameter we shall fix later. Let T1 and T2 be two d-regular trees of height

h and let L1 and L2 be the sets of leaves of each one. Note that |L1| = |L2| = d(d − 1)h−1 ≈
(d− 1)h. We shall add the two trees to Ht and then pair up elements of V1(Ec) with elements of
L1 (and analogously for V2(Ec) and L2) and merge the paired up vertices. However, we have to
deal with two potential issues:

• |Li| 6= |Vi(Ec)|, in which case we cannot get an exact pairing between these sets;
• This procedure might result in the creation of small cycles (potentially even cycles of

length O(1)).

To expand on the latter point, we describe a potential problematic instance. Suppose we can
somehow pick h such that |Li| = |Vi(Ec)| and then arbitrarily pair up their elements. Suppose
there are two edges in EC corresponding to two cycles of constant length and denote their end-
points by v1 ∈ V1(EC), v2 ∈ V2(EC) and u1 ∈ V1(EC), u2 ∈ V2(EC). If the distance in T1 of
v1 and u1 given by the pairing of V1(Ec) and L1 is small (constant, for example) and the same
applies to the distance in T2 of v2 and u2, then there is a cycle of small length (constant, for
example) in the graph resulting from adding the two trees to Ht.

To address this issue we remove some extra edges from G that are somehow “isolated” and
group them with edges from EC . The goal is to have the endpoints of any two edges in EC be
far apart in T1 and T2 distance, but close to some of the endpoints of the extra edges. With this
in mind, we set h = dlogd−1 τe + dr/2e + 1 so that |Li| ≈ τ · (d − 1)r/2+1, which is close to
the number of extra edges we want to remove. This choice will also be helpful later when we
analyze the spectral properties of the construction.

Formally, this leads us to the following proposition:
Proposition 6.2.5. There is a set of edges Et of G such that the following is true for i ∈ {1, 2}:

• |Vi(Et) ∪ Vi(Ec)| = d(d− 1)h−1;
• for all distinct u, v ∈ Vi(Et) ∪ Vi(Ec), we have v /∈ Br(u) and u /∈ Br(v).

Additionally, we can find such a set in polynomial time.

Proof. We will describe the efficient algorithm that does this.
We are going to incrementally grow our setEt, one edge at the time, until |Vi(Et)∪Vi(Ec)| =

d(d−1)h−1, so suppose Et is initially an empty set. We start by, for all e = (u, v) ∈ Ec, marking
all vertices inB1+r({v, u}). Note that we marked at most τ ·(d(d−1)r) 6 2τ(d−1)r+1 vertices.

Notice that, since we marked all vertices at distance 1 + r from any vertex in Vi(Ec), we can
safely pick any unmarked vertex and an arbitrary neighbor and add that edge to Et.

We can now describe a procedure to add a single edge to Et:

• Pick an unmarked vertex u and an arbitrary neighbor v of u;
• Add (u, v) to Et;
• Mark all vertices in B1+r({u, v}).

By the same reasoning as before, as long as we have an unmarked vertex, this procedure
works. If we repeat the above t times, we are left with at least n− 2τ(d− 1)r+1 − 2t(d− 1)r+1

101

unmarked vertices. We claim the procedure can be successfully repeated at least 2τ(d− 1)r/2+2

times. In such a case, the number of unmarked vertices left is at least:

n− 2τ(d− 1)r+1 − 4τ(d− 1)r/2+2(d− 1)r+1 > n− 6τ(d− 1)3r/2+3,

which is always greater than 0 when r 6 2
3

logd−1(n/τ)− 5. Hence, we always have at least
one unmarked vertex to pick throughout the procedure.

Note that the number of repetitions we require exactly matches the size of |Et| so we need this
to be exactly d(d−1)h−1−τ 6 2τ(d−1)r/2+2, which means our algorithm always succeeds.

We will state some simple properties of this construction that will be relevant later on.
Fact 6.2.6. |Vi(Et)| > τ · (d− 1)dr/2e

Proof. We simply have: |Vi(Et)| = |Et| = d(d− 1)h−1 − τ > τ · (d− 1)dr/2e.

Fact 6.2.7. For all e ∈ Et, there is at most one cycle in Br(e) in G and if there is a cycle it has
length greater than r.

Proof. That there is at most one cycle in Br(e) is obvious since G is bicycle-free at radius r. So,
let’s suppose there is a cycle C in Br(e) with length less than or equal to r. Then, there is at least
one edge e′ ∈ C that is also in Ec, but in that case e′ ∈ Br(e), which contradicts the definition of
Et.

We can now extend our definition of Ht. Let H be the graph obtained from G by removing
all edges in Ec and in Et.

Recall our plan to add T1 and T2, two d-regular trees of height h (recall h = dlogd−1 τe +
dr/2e+ 1), to H while pairing up elements of Li with endpoints of removed edges. We will now
describe a pairing process that achieves high girth (and later we will see how it also achieves low
λ).

First, consider a canonical ordering of L1 and L2 based on visit times from a breath-first
search, as illustrated in Figure 6.1 for d = 3. Given this ordering, the following is easy to see:
Fact 6.2.8. The tree distance between two leaves with indices i and j is at least 2(1+logd−1((|i−
j|+ 1)/d)).

Proof. Let’s show that the lowest common ancestor of the two leaves is at least 1 + logd−1((|i−
j|+ 1)/d), this proves the claim since we need to travel this distance twice, from the ith indexed
leaf to the ancestor and then back to the jth indexed leaf. Let V0 be the set of |i − j| + 1 leaves
with indices between i and j. Let’s construct the smallest subtree that includes V0 from bottom
up and compute its height, which is an upper bound to the desired lowest common ancestor. First,
group elements of V0 in groups of at most d−1 consecutive indices and add one representative of
each group to a set V1. Each group corresponds to a node that parents all of its elements. There
are at most |V0|/(d − 1) such groups, so |V1| 6 |V0|/(d − 1). Repeat the same procedure until
|Va| 6 1, in which case a is an upper bound to the height of the goal subtree, and by induction
we have that |Vi+1| 6 |Vi|/(d− 1), so a > logd−1 |V0|.

This is not quite right because if the last grouping corresponds to the root of the tree, we need
to group elements in d groups, because this is the degree of the root, so by accounting for this we
have a > 1 + logd−1(|V0|/d).

102

Now, consider the following pairing of elements in L1 and V1(Et)∪V1(Ec): pick an arbitrary
element of V1(Ec) and pair it up with the first leaf of L1. Now pick (d− 1)dr/2e distinct elements
of V1(Et) and pair them up with the next leaves of L1. Repeat this procedure, of pairing one
element of V1(Ec) with (d − 1)dr/2e elements of V1(Et) with a contiguous block of leaves until
we exhaust all elements of V1(Ec). Note that by Fact 6.2.6, there always are enough elements
in Et to perform this pairing. Pair up any remaining leaves with the remaining elements of
V1(Et) arbitrarily. Now repeat the same procedure but for L2 and V2(Et)∪V2(Ec) with the same
groupings (so the endpoints of an edge in either Et or Ec are mapped to the same leaves of L1

and L2). This pairing procedure is pictured in Figure 6.2 below.

1

2

3

4

5

6

Figure 6.1: Leaf ordering for d =
3

...

...
...

...

Figure 6.2: Example pairing

Let fix(G) be defined as the graph resulting from applying the method described in the pre-
vious paragraph to fix the degrees of H . It is now obvious that fix(G) is a d-regular graph and
we only add |T1| + |T2| = O(τ · (d − 1)r/2+1) new vertices, so it has n + O(τ · (d − 1)r/2+1)
total vertices. We will now analyze the resulting girth and λ value and prove Theorem 6.1.2 in
the process.

6.2.1 Analyzing the girth of fix(G)

Here we prove that the girth of fix(G) is at least r. Let’s start by supposing, for the sake of
contradiction, that there is a cycle C of length less than r. We know that the girth of H is more
than r by definition, so C has to use an edge from T1 or T2. Without loss of generality, let’s
assume that C contains at least one edge from T1. Since T1 is a tree, C has to eventually exit T1

and use some edges from H , so in particular it uses some vertex v ∈ L1. We will show that in
this case C has length at least r, which is a contradiction. Thus, we have to handle two cases:
v ∈ V1(Ec) and v ∈ V1(Et).

Let us start with the v ∈ V1(Ec) case. Let’s follow C starting in v and show that to loop back
to v, C would require to traverse at least r edges. So, we start in v and go into T1 by following
the only edge in T1 that connects to v. Then, the cycle C has to use some edges from T1 and
finally exit through some other vertex in L1 before eventually looping back to v. Suppose that
u ∈ L1 is such a vertex. Due to our grouping of elements in Et with (d− 1)dr/2e elements in Ec,
if u is in V1(Ec), we know that the tree indices of v and u differ by at least (d − 1)dr/2e. Hence,
plugging this into the bound from Fact 6.2.8, the tree distance between v and u is at least r − 1,
which would imply C has length at least r. So u has to be in V1(Et).

103

Continuing our traversal of C, we now exit T1 through u and need to loop back to v. From
our construction in Proposition 6.2.5 we know that the distance in H between v and u is at least
r, so any short path in fix(G) between these vertices has to go through T1 or T2. Again, our
Proposition 6.2.5 construction gives that the distance in H between v and any other vertex in L1

is at least r, so such a short path will have to use some edges in T2.
Finally, we claim that the distance from u to any vertex w in L2 is at least r. If w 6= φ(u),

we know from our Proposition 6.2.5 construction that the distance between u and w is at least r.
Otherwise, if there is a path P of length less than r from u to w, then the cycle P +uw has length
at most r and is in Br({u,w}), which contradicts Fact 6.2.7. In conclusion, it is not possible to
loop back to v using less than r steps, which concludes the proof of the v ∈ V1(Ec) case.

The proof for the v ∈ V1(Et) case is already embedded in the previous proof, so we will
just sketch it. Using the same argument we start by following C into T1 and eventually exiting
through some vertex u ∈ V1(Et). As we saw before, the H distance between u and v is at least r
and the H distance between u and any other vertex in L1 or any vertex in L2 is at least r, so we
cannot loop back to v from u, which concludes the proof of this case.

6.2.2 Bounding λ(fix(G))

We finally analyze the spectrum of fix(G) by proving that λ(fix(G)) 6 λ(G) + Od(1/r). This
argument is similar to the proof in Section 4 of [AGS21], but adapted to our construction.

First, observe that the adjacency matrix of fix(G), which we will denote by simply A, can be
written in the following way: A = AG − AEc − AEt + AT1 + AT2 , where AG is the adjacency
matrix of G defined on the vertex set of fix(G) (which is to say G with a few isolated vertices
from the added trees), AEc is the adjacency matrix of the cycle edges removed, and so on. Also,
let VG be the set of vertices from G, V1 the set of vertices from T1 and V2 the set of vertices from
T2, so V = VG ∪ V1 ∪ V2. In this section we will prove λ(A) 6 λ(G) +Od(1/r).

Let g be any unit eigenvector of A orthogonal to the all ones vector, so
∑

v∈V g
2
v = 1 and∑

v∈V gv = 0. We have that |∑v∈V1∪V2
gv| 6

√
2|Ti| by Cauchy-Schwarz (since this vector is

supported on only 2|Ti| entries), which in turn implies that |∑v∈VG gv| 6
√

2|Ti|.
It suffices to show that |gTAg| 6 λ(G) + Od(1/r). To do so, we shall analyze the contribu-

tions of AG, AEc , AEt , AT1 and AT2 to |gTAg|.
To bound the contribution of AT1 and AT2 , we use a lemma proved by Alon-Ganguly-

Srivastava:
Lemma 6.2.9. ([AGS21, Lemma. 4.1]). Let Wi be the set of non-leaf vertices of Ti. Then for
any vector f we have:

|fTATif | 6 2
√
d− 1

∑
w∈Wi

f 2
w +
√
d− 1

∑
v∈Li

f 2
v .

Recall that the edges in Et ∪ Ec define a perfect matching between L1 and L2, so we have
the following:

|gT (AEc + AEt)g| =
∣∣∣∣∣ ∑
uv∈Et∪Ec

2gugv

∣∣∣∣∣ 6 ∑
v∈L1∪L2

g2
v .

104

Finally, let gG be the projection of g to the subspace spanned by VG. Observe that |gTAGg| =
|gTGAGgG|. Now, let 1G be the all ones vector supported on the set VG and g⊥ be a vector
orthogonal to 1G such that gG = a1G + g⊥, for some constant a. We have that 1TGgG = a1TG1G,
which implies

|a| =
∣∣∣∣
∑

v∈VG(gG)v

n

∣∣∣∣ 6
√

2|Ti|
n

.

Now observe:

|gTGAGgG| 6 |gT⊥AGg⊥|+ |(a1G)TAG(a1G)| 6 λ(G)
∑
v∈VG

g2
v +

2|Ti|d
n

.

Note that
∑

v∈VG g
2
v 6 1. We claim that the term 2|Ti|d

n
is Od(1/r). We have |Ti| = O(τ ·

(d− 1)r/2+1) and we know from the problem constraints that r 6 (2/3) logd−1(n/τ)− 5 which
implies τ · (d− 1)r/2+1/n 6 O((d− 1)−r) = Od(1/r).

We can now plug everything together and apply Lemma 6.2.9 to obtain:

|gTAg| 6 λ(G) + (
√
d− 1 + 1)

∑
v∈L1∪L2

g2
v +Od(1/r).

We will conclude our proof by showing that
∑

v∈L1∪L2
g2
v is O(1/r). It should be clear from

the symmetry of our construction that we only need to prove
∑

v∈L1
g2
v = O(1/r), since the same

is analogous for L2.
The following lemma can be proved using a known method by Kahale [Kah95, Lemma 5.1].

This statement is similar to one found in [Alo21, Lemma 3.2] and its proof is also very similar.
For completeness, we present a self-contained proof of that based on the one from [Alo21].
Lemma 6.2.10. Let v be some vertex of V . Let l be a positive integer such that Bl(v) forms a
tree. Let Xi be the set of all vertices at distance exactly i from v in fix(G), so X0 = {v}. Let f
be any non zero eigenvector with eigenvalue |µ| > 2

√
d− 1. Then, for 1 6 i 6 l:∑

u∈Xi

f 2(u) >
∑

u∈Xi−1

f 2(u)

Proof. We will proceed by induction on i. First of all, let’s establish the i = 1 case. Note that
we have

∑
u∈X1

f(u) = µf(v).
By Cauchy-Schwarz we get d · ∑u∈X1

f 2(u) > µ2f 2(v), and using the fact that |µ| >
2
√
d− 1 we obtain the desired: ∑

u∈X1

f 2(u) >
µ2

d
f 2(v) > f 2(v).

Let’s now assume that the statement is true for i − 1 and prove that this implies it is true
for i. Let u be some vertex in Xi−1. Recall that Bl(v) is a tree and let u′ be its parent in
Xi−2 and w1, . . . wd−1 be its children in Xi. We have f(u′) +

∑d−1
i=1 f(wi) = µf(u). Note that

f(u′) =
√
d− 1f(u′)/

√
d− 1 and apply Cauchy-Schwarz to obtain:

105

(
f 2(u′)

d− 1
+

d−1∑
i=1

f 2(wi)

)
(2d− 2) > µ2f 2(u),

which implies

f 2(u′)

d− 1
+

d−1∑
i=1

f 2(wi) >
µ2

2d− 2
f 2(u) > 2f 2(u),

where the last inequality follows from the fact that |µ| > 2
√
d− 1.

We can finally sum the above for all u ∈ Xi−1, noting that from the fact that Bl(v) is a tree
we know that each element in Xi−2 appears d− 1 times (as the parent of d− 1 vertices) and each
element in Xi appears once:∑

u∈Xi−2

f 2(u) +
∑
u∈Xi

f 2(u) > 2
∑

u∈Xi−1

f 2(u).

We now apply the induction hypothesis and obtain the result:∑
u∈Xi

f 2(u) > 2
∑

u∈Xi−1

f 2(u)−
∑

u∈Xi−2

f 2(u) >
∑

u∈Xi−1

f 2(u).

Our plan is to pick the parameters l and v from Lemma 6.2.10 and use it to show that∑
v∈L1

g2
v = O(1/r). Let µ be the eigenvalue associated with g and suppose that |µ| > 2

√
d− 1,

otherwise |µ| 6 λ(G), which would imply the result. Set v to be the root of T1. We will show
that if we pick l = h+ br/2c, where h = dlogd−1 τe+ dr/2e+ 1 is the height of T1 and T2, then
Bl(v) forms a tree.

Note that Bh(v) is exactly T1, so it obviously forms a tree. To observe what happens in
Bl(v) \ Bh(v), we first prove the following proposition, whose proof uses some of the ideas of
Section 6.2.1:
Proposition 6.2.11. Let u be a vertex in L1. Let P(u) be the set of non-empty paths that start
in u and whose first step does not go into T1. Then, the shortest path in P(u) that ends in any
vertex in L1 has length at least r.

Proof. As in the previous girth proof, we have two cases, u ∈ V1(Ec) and u ∈ V1(Et). The latter
case is obvious from the proof in Section 6.2.1, since if u ∈ V1(Et) then the H distance to any
node in L1 is at least r (from Proposition 6.2.5) and the H distance to any node in L2 is also at
least r (from Fact 6.2.7). So, suppose u ∈ V1(Ec).

Let’s follow the same proof strategy as before, so let P ∈ P(u) be the shortest path and
let’s follow P starting in u. Again, from Proposition 6.2.5 the H distance of u to any node in
L1 is at least r. However, u might reach φ(u) in a short number of steps (namely, if the cycle
corresponding to (u, φ(u)) is short). So, let’s follow P to φ(u) and into T2. We are now in the
exact same situation as in the setup of the proof in Section 6.2.1 (but starting in T2), so the result
follows.

106

Let u be some vertex in L1. Let’s say a vertex w is at P-distance δ from u if the shortest
path P ∈ P(u) that ends in w has length δ. Additionally, let Sδ(u) be the set of vertices that
are at a P-distance of at most δ from u. From Proposition 6.2.11, we know that for all distinct
u,w ∈ L1, the sets Sbr/2c(u) and Sbr/2c(w) are disjoint. Thus, we have that for u ∈ L1 the
vertices in Sbr/2c(u) form disjoint trees rooted at u, which shows that Bl(v) forms a tree.

We can now apply Lemma 6.2.10 and conclude that for all 1 6 i 6 l, we have
∑

u∈Xi g
2
u >∑

u∈Xi−1
g2
u. So the sequence (

∑
u∈Xi g

2
u)i is an increasing sequence. Note that Xh = L1, so∑

u∈Xh g
2
u =

∑
u∈L1

g2
u. Additionally, we know that the total sum of (

∑
u∈Xi g

2
u)i is at most

one (since g is a unit vector and the Xi are disjoint), so we have that br/2c · ∑u∈Xh g
2
u 6∑l

i=h

∑
u∈Xi g

2
u 6 1 and finally

∑
u∈L1

g2
u =

∑
u∈Xh g

2
u 6 1/br/2c = O(1/r).

This concludes the proof of Theorem 6.1.2.

6.3 A near-Ramanujan graph distribution of girth Ω(logd−1N)

Recall Theorem 1.1.16, which says that uniformly random d-regular graphs are near-Ramanujan.
We will combine this result with our machinery of Section 6.2 to show Theorem 6.1.4, namely
that there exists a distribution over graphs that is (2

√
d− 1 + ε, c logd−1 n)-good for any ε > 0

and c < 1/4, which we will show is the distribution resulting from applying algorithm fix to a
sample of Gd(n).

First, we note that Gd has nice bicycle-freeness. We quote the relevant result from [Bor19],
which we restate below:
Lemma 6.3.1. ([Bor19, Lemma 9]). Let d > 3 and r be positive integers. Then G ∼ Gd(n) is
bicycle-free at radius r with probability 1−O((d− 1)4r/n).

An obvious corollary of this is that for any constant c < 1/4, we have that G ∼ Gd(n) is
bicycle free at radius c logd−1 n with high probability.

To bound the number of short cycles in Gd(n) we use a classic result that very accurately
estimates the number of short cycles in random regular graphs.
Lemma 6.3.2. ([MWW04, Section 2]). Let G ∼ Gd(n) and Xi be the random variable that
denotes the number of cycles of length i in G. Let Ri = max{(d− 1)i/i, log n}. Then

Pr
[
Xi 6 Ri, for all 3 6 i 6 1/4 logd−1 n

]
= 1− on(1).

Given the above, we obtain the following bound, for all c < 1/4:

c logd−1 n∑
i=1

max{(d− 1)i/i, log n} = O(nc).

So we obtain the following proposition:
Proposition 6.3.3. For any c < 1/4 and any ε > 0, G ∼ Gd(n) is a (c logd−1 n,O(nc))-graph
and satisfies λ(G) 6 2

√
d− 1 + ε with probability 1− on(1).

Finally, we want to apply Theorem 6.1.2, so first we need to verify its preconditions. For all
c < 1/4 we have that (2/3) logd−1(n/nc) = (2/3)(1 − c) logd−1 n > c logd−1 n. Also note that

107

nc(d − 1)c/2 logd−1 n+1 = n3c/2 = O(n3/8), so when applying Theorem 6.1.2 the resulting graph
has n+O(n3/8) = n(1 + on(1)) vertices. Thus, we obtain Theorem 6.1.4.
Remark 6.3.4. Recall that Gd(n) is the same as the conditional distribution of the d-regular n-
vertex configuration model when conditioned on it being a simple graph. Indeed, a graph drawn
from the d-regular n-vertex configuration model is simple with probability Ωd(1). A result very
similar to Lemma 6.3.2 also holds for the configuration model and thus the results of this section
also hold for the configuration model.

6.3.1 Counting near-Ramanujan graphs with high girth

We will briefly prove Corollary 6.1.5 using the result we just proved. For simplicity, we are
going to work with the configuration model, using the observation of Remark 6.3.4.

Our proof will use a classic result on the number of not necessarily simple d-regular n-vertex
graphs, which is the same as the number of graphs in the n-vertex d-regular configuration model.
It is easy to show [BC78] that for nd even, the number of such graphs is

∼
((

ddnd

ed(d!)2

)n/2)
.

Hence, the core claim we need to prove, is the following:
Proposition 6.3.5. Let G1 and G2 be distinct graphs that follow the preconditions of Theo-
rem 6.1.2. Then fix(G1) and fix(G2) are also distinct.

This proposition implies that given any two good d-regular n-vertex graphs, applying fix
produces two distinct graphs. From our proof of Theorem 6.1.4 we also know that the result of
applying fix adds at most O(n3/8) vertices. Finally, since a (1− on(1)) fraction of the graphs are
good an thus when we apply fix they result in (2

√
d− 1 + ε, c logd−1 n)-good graphs, the result

follows. For briefness, we will not give a detailed proof but only a sketch of the proof.

Proof sketch of Proposition 6.3.5. Recall the H graph from the description of fix and let H1 be
such graph corresponding to G1 and define H2 analogously. If H1 and H2 are distinct, then
fix(G1) and fix(G2) are also distinct. This follows from the fact that the vertices of the two
added trees will have to be matched up in an isomorphism between fix(G1) and fix(G2).

We claim that if G1 and G2 are distinct, then H1 and H2 are distinct. Let Si be the set of
vertices that were endpoints of edges removed from cycles in G1 and G2, respectively. Note that
there are at least two such vertices in Si and also we cannot remove multiple edges adjacent to
one vertex since this would imply the existence of two cycles in a small neighborhood, breaking
the bicycle-freeness assumption. We can ignore the other removed edges since the local neigh-
borhoods of edges removed from cycles are necessarily distinct from the local neighborhoods of
the other removed edges. Now, the edges removed from Gi form a perfect matching on Si that
adds exactly |Si|/2 cycles to Hi. Also, there is exactly one perfect matching that adds |Si|/2
cycles to Hi to recover Gi. That means that there is only one Gi that could have generated Hi,
which implies the claim.

108

6.4 Explicit near-Ramanujan graphs of girth Ω(
√

log n)

In this section we prove Theorem 6.1.6, building on the construction in the proof of Chapter 4.
We note that the original construction has no guarantees on the girth of the constructed graph
other than a constant girth.

To prove Theorem 6.1.6 we apply a similar strategy as the one from Section 6.3. Instead of
derandomizing Lemma 6.3.2 we are going to obtain a simpler bound, which is good enough to
obtain the desired. We note however, that Lemma 6.3.2 can be derandomized and for complete-
ness we show how to in Section 6.4.1.

We start by proving the following lemma:
Lemma 6.4.1. Let G be a d-regular n-vertex graph with λ(G) > 2

√
d− 1 and such that G is

bicycle-free at radius α logd−1 n, for α 6 2. Then we can apply fix to G and obtain a graph such
that:

• fix(G) is d-regular and has n(1 + on(1)) vertices;
• λ(fix(G)) 6 λ(G) + on(1);
• fix(G) has girth (α/3) logd−1 n.
Before proving this lemma, we prove a core proposition in a slightly more generic way.

Proposition 6.4.2. Let G be a d-regular graph that is bicycle-free at radius 2r, then

|Cycr(G)| 6 n/(d− 1)r.

Proof. Pick one vertex per cycle in Cycr(G) and place it in a set S. We claim that for every
distinct u, v ∈ S, Br(u) ∩ Br(v) = ∅. Suppose this wasn’t the case and suppose there is some
w such that w ∈ Br(u) ∩ Br(v), for some pair u, v. Note that B2r(w) includes the two length r
cycles that correspond to u and v, which contradicts bicycle-freeness in G.

Given the above, we have that the sets Br(u) for u ∈ S are pairwise disjoint and also we
know that |Br(u)| = d(d− 1)r−1. Hence we have:

|Cycr(G)| · d(d− 1)r−1 6 n,

which implies the desired result.

And we can prove the above lemma.

Proof of Lemma 6.4.1. By pluggingG into Proposition 6.4.2 we can conclude thatG is a (α logd−1 n, n
1−α/2)-

graph. We wish to apply Theorem 6.1.2 so first recall its preconditions. By definition λ(G) >
2
√
d− 1. However, the precondition on the radius of bicycle-freeness does not hold, since

(2/3) logd−1(n/n1−α/2) = (α/3) logd−1 n which is less than α logd−1 n. If we instead use the
fact that G is also trivially a ((α/3) logd−1 n, n

1−α/2)-graph, then the precondition is satisfied.
Thus, we can apply Theorem 6.1.2 and we obtain that fix(G) satisfies all the required condi-

tions, which concludes the proof.

Given this lemma, we will modify the first step of the construction of Chapter 4 to produce
a graph G0 with girth c

√
log n. Note that, similarly to bicycle-freeness, the girth of a graph

109

can only increase when applying any 2-lift, so this strategy guarantees that after step 2 of the
construction, the final graph has the desired girth, which would imply Theorem 6.1.6.

First, when enumerating over all seeds to generate G0 in step 1, we look for one that guaran-
tees that G0 is bicycle-free at radius (1/5) logd−1 n0 (recall that by Theorem 1.1.16 a 1 − on(1)
fraction of the seeds satisfy this). Next, we apply Lemma 6.4.1 and obtain fix(G0) with girth
(1/15) logd−1 n0 and the desired value of λ(G0). Let κ = 15c/ logd−1 2. We can set n0 to
2κ
√

logn, in which case G0 has girth c
√

log n.
Note that the above only works as long as κ 6

√
log n, otherwise n0 > n. Also, from

Theorem 4.1.1 and Theorem 1.1.16, we need d 6 (log n)1/8/C and ε�
√
d(log log n)4/(log n)

(the details on how to obtain these can be found on Chapter 4).
Finally, we can precisely determine the running time of this algorithm. From Theorem 1.1.16,

constructingG0 takes time poly(n
log(n0)/

√
ε

0) = poly(nlog(c/ logd−1(2))/
√
ε) and using Theorem 4.1.1

with the appropriate choice of C takes time poly(nd
1/4 log(d)/

√
ε).

6.4.1 Derandomizing the number of short cycles

Proposition 6.4.3. Fix d > 3, n and k > c logd−1 n, where c < 1/4. Let G be drawn from the
d-regular n-vertex 4k-wise configuration model and Xi be the random variable that denotes the
number of cycles of length i in G. Let Ri = max{(d− 1)i/i, log n}. Then

Pr
[
Xi 6 Ri, for all 1 6 i 6 1/4 logd−1 n

]
= 1− on(1).

By Theorem 3.4.5, these statements remain true in the (δ, 4k)-wise uniform versions of the
model, δ 6 1/n16k+1.

Proof. The proof follows almost directly from the proof of Lemma 6.3.2. First, note that Xi can
be written as a polynomial of degree at most i in the entries ofG’s adjacency matrix, by summing
over the products of the edge indicators of all possible cycles of length i in G. Thus, it can be
written as a polynomial of degree at most 2k in the permutation indicators 1[π(j) = (v, i)]. So
we can compute E [Xi] assuming that Xi is drawn from the fully uniform configuration model.
Similarly, X2

i can be written as a polynomial of degree at most 4k in the permutation indicators,
so we can compute Var [Xi] assuming that Xi is drawn from the fully uniform configuration
model.

From [MWW04] we have the following estimates, that only apply when (d− 1)2i−1 = o(n):

E [Xi] =
(d− 1)i

2i
(1 +O(i(i+ d)/n)) Var [Xi] = E [Xi] +O(i(i+ d)/n)E [Xi]

2 .

By applying Chebyshev’s inequality to each Xi, just like in [MWW04], we get the desired
result.

We can finally rewrite Theorem 1.1.16 in the language of the d-regular n-vertex (δ, k)-wise
uniform configuration model and tack on the result we just proved.

110

Theorem 6.4.4. For a large enough universal constant α and any integer n > 0, fix 3 6 d 6
α−1
√

log n and c < 1/4, and let ε 6 1 and k satisfy

ε > α3 ·
(

log log n

logd−1 n

)2

, k > α log(n)/
√
ε.

Let G be chosen from the d-regular n-vertex k-wise uniform configuration model. Then
except with probability at most 1/n.99, the following hold:

• G is bicycle-free at radius c logd−1 n;
• The total number of cycles of length at most c logd−1 n is O(nc);
• λ(G) 6 2

√
d− 1 · (1 + ε).

Finally, by Theorem 3.4.5, these statements remains true in the (δ, k)-wise uniform configu-
ration model, δ 6 1/n16k+1.

111

112

Chapter 7

Abelian Lifts and Applications to Coding
Theory

In this section we describe the results of [JMO+22], which was joint work with Fernando Granha
Jeronimo, Tushant Mittal, Ryan O’Donnell and Madhur Tulsiani. In this paper we study a gen-
eralization of lifts based on groups and we describe explicit constructions of expanders obtained
via abelian lifts. Expanding graphs obtained via abelian lifts, form a key ingredient in recent
breakthrough constructions of quantum LDPC codes. However, these constructions are non-
explicit. Our result obtains explicit quantum lifted product codes of almost linear distance (and
also in a wide range of parameters) based on these non-explicit results. As a corollary, we also
obtain good quasi-cyclic LDPC codes with any circulant size up to nearly linear.

7.1 Symmetries and codes
Regarding explicit constructions of expanding graphs, one of the goals of this thesis so far has
been to construct graphs that have both strong spectral bounds and some other property. In this
chapter our focus is on constructing graphs that have certain symmetries. Informally, we say
that G has symmetries of H if H ⊆ Aut(G), where Aut(G) denotes the group of all graph
isomorphisms to itself.

One of the problems that has been studied in graph theory is to construct graphs with a given
automorphism group. Frucht [Fru39] proved in 1939 that for every finite group H , we have a
graph G such that Aut(G) = H . Later, Babai [Bab74] showed that there is such a graph on at
most 2|H| vertices, except forZ3, Z4 andZ5. Thus, one can ask if there are explicit constructions
of expanding graphs with given symmetries.

While interesting in its own right, the ability to control symmetries also has concrete ap-
plications. For example, a very recent work [GW21] constructs many families of expanding
asymmetric graphs, i.e., having no symmetries, and shows applications to property testing and
other areas. We will focus on an important connection to both quantum and classical codes that
was the motivation behind this work.

Low-density parity check (LDPC) codes were first introduced by Gallager [Gal62] in the
’60s and are one of the most popular classes of classical error-correcting codes, both in theory

113

and in practice. LDPC codes are linear codes whose parity check matrices have row and column
weights bounded by a constant (which means that each parity check depends only on a constant
number of bits). The popularity of this family of codes comes from the fact that there are many
known constructions of classical LDPC codes that achieve linear rate and distance that can also
be decoded in linear time [RU08].

A family of codes that has been extensively studied is cyclic codes. These are codes that are
invariant under the action of ZN where N is the block length. This symmetry leads to efficient
encoding and decoding algorithms and a major open problem is whether good cyclic codes exist.
Babai, Shpilka and Stefankovich [BSS05] showed that cyclic codes cannot be good LDPC codes
and this negative result was extended by Kaufman and Wigderson [KW10] to LDPC codes with
a transitive action by an arbitrary abelian group.

Quasi-cyclic codes are a generalization of cyclic codes in which symmetry is only under
rotations of multiples of a parameter (called index) n where N = n`. This is equivalent to
relaxing the transitivity condition to allow for n orbits. Unlike cyclic codes, good quasi-cyclic
codes are known to exist as was shown by Chen, Peterson and Weldon [CPW69]. More recently,
Bazzi and Mitter [BM06] gave a randomized construction for any constant n > 2 and showed
that it attains Gilbert–Varshamov bound rate 1/n. Quasi-cyclic codes have been extensively
studied and are very useful in practice (e.g., their LDPC counterparts are part of the 5G standard
of mobile communication [LBM+18]).

In the realm of quantum computing, the fragility of qubits makes quantum error correct-
ing codes crucial for the realization of scalable quantum computation. Calderbank-Shor-Steane
(CSS) codes are a family of quantum error-correcting codes that was first described in [CS96,
Ste96]. A CSS code is defined by a pair of classical linear codes that satisfy an orthogonality
condition. The quantum analog of LDPC codes is thus defined as CSS codes where the parity
check matrices of both codes have bounded row and column weights.

Constructing quantum LDPC codes of large distance has been active area of research re-
cently. After two decades, [EKZ20] broke the

√
N barrier and there was a flurry of activity with

[HHO21] extending it to N3/5 (up to poly log factors). Panteleev and Kalachev [PK21] came
up with another breakthrough construction achieving almost linear distance. Both [HHO21]
and [PK21] are non-explicit constructions crucially relying on symmetries. The construction
in [PK21] interestingly used quasi-cyclic LDPC codes which in turn was constructed using ex-
pander graphs with cyclic symmetry. Moreover, Breuckmann and Eberhardt [BE21] introduced a
new approach for constructing quantum codes simultaneously generalizing [HHO21] and [PK21]
in order to obtain explicit codes out of a pair of graphs having the symmetries of any group. This
provides a very concrete motive to study explicit construction of expander graphs symmetric
under various families of groups.

Recently Panteleev and Kalachev [PK22] showed how to construct explicit asymptotically
good quantum LDPC codes, which subsumed our application of the results of this chapter to
quantum LDPC codes.

Current techniques
Many of the current known constructions of expanders are Cayley graphs and therefore are highly
symmetric but are somewhat rigid in the sense that one may not be able to finely control the

114

symmetries of a given construction. One general approach is to construct an expanding Cayley
graph for a given group but the Alon–Roichman theorem [AR94] only guarantees a logarithmic
degree which is tight when the group is abelian (and this large degree is undesirable for some
application in coding theory). The other technique used to build expanders is via lifting, like
seen in the previous chapters.

Let’s consider the graph lift operation. One way to generalize a graph lift is by restricting the
types of matchings that are allowed to replace an edge. In general form, a group lifting operation
takes a lift size parameter `, a base graph G0 on n vertices and a subgroup H of the symmetric
group Sym(`) and constructs a new “lifted” graph G on n` vertices where each vertex v of G0

is replaced by `-copies (v, 1), . . . , (v, `) and for every edge e = (u, v) of G0 we associate an
element of he ∈ H and (u, i) is connected to (v, he(i)) for i ∈ [`]. Notice that an ordinary `-lift,
which we will call a unstructured `-lift for the rest of this chapter, is a lift based on the symmetric
group, i.e. H = Sym(`).

An example of such group is the class of shift lifts, where we consider the cyclic group
Z`. These were first studied by Agarwal et al. [ACKM19], who showed that an uniformly
random shift k-lift of any n-vertex d-regular base graph G has the new eigenvalues bounded by
λ(G) + O(

√
d) with probability 1 − k · exp(−Ω(n/d2)). Later, Chandrasekaran and Velingker

[CV17] showed that for bipartite graphs there is always a shift 3-lift and a 4-lift whose new
eigenvalues are bounded by 2

√
d− 1, using techniques similar to those of [MSS15a]. They also

conjectured that this is true for any shift k-lift, but Agarwal et al. [ACKM19] showed that for
k = 2Ω(nd) this is impossible (and the same applies to any lift based on an abelian group).

Lifting has three very useful properties. One, it preserves the degree of the base graph.
Secondly, random lifts preserve expansion with high probability. This holds for any lift size in
the case of “unstructured” `-lifts, but only holds for ` 6 2Od(n) whenH is abelian (and transitive).
Finally, if H is abelian, then the lifted graph inherits symmetries of H . The first two properties
are clearly useful in constructing larger expanders from a small one, and for this reason, there
has been extensive work on lift based constructions.

Motivated by the applications of these lifts to codes, we obtain explicit constructions of
expanding abelian lifts, for a wide range of lift sizes.

7.1.1 Our results and techniques

Consider an n-vertex d-regular graph G = (V,E) and assume that we have an an ordering on V
and by convention, (u, v) ∈ E if u 6 v.

The action of a group H on a set of ` elements is defined by a map ψ : H → Sym(`) which
satisfies ψ(h1h2) = ψ(h1)ψ(h2). Since we only care about the action of the group, we will
assume that our input is actually ψ(H) ⊆ Sym(`) and the action is the natural one.
Definition 7.1.1 ((H, `)-lift of a graph). An (H, `)-signing of an undirected graph G = (V,E)
is a function s : E → H ⊆ Sym(`). The lifted graph G(s) = (V ′, E ′) is a graph on ` copies of
the vertices V ′ = V × [`] where for every edge (u, v) ∈ E we have ((u, i), (v, s(u, v)·i)) ∈ E ′

We will restrict to analyzing abelian H and the most important case to consider is when
H = Z`, i.e. the cyclic group. A necessary condition for the lift to be expanding is for it to
be connected. A subgroup H is transitive if for every i, j ∈ [`], there exists h ∈ H such that

115

h · i = j. Lifts of non-transitive subgroups are disconnected because if the pair {i, j} violate the
condition then any pair (u, i) and (v, j) are disconnected. Thus, we will assume henceforth that
we work with transitive abelian subgroups.

Our construction of the lifts (and the expansion thereof) vary based on the parameter ` and
we make the following classification for ease in presenting the results. Let n, d, ε be given and
suppose we want an n-vertex d-regular graph with spectral expansion a function of ε.

• Sub-Exponential - This is the regime where ` 6 exp
(
nδ(d,ε)

)
. The exponent δ(d, ε) goes

to zero as the degree (d) increases or ε vanishes.
• Moderately-Exponential - This is when ` 6 exp

(
nδ0
)
. The exponent is some fixed univer-

sal constant δ0 ∈ (0, 1) .

Our first main result shows explicit constructions in the sub-exponential and moderately ex-
ponential regimes.
Theorem 7.1.2. For large enough n and constant degree d > 3, given ` such that ` 6 exp(nΘ(1)),
the generating elements of a transitive abelian group H 6 Sym(`), and any fixed constant
ε ∈ (0, 1), we can construct in deterministic polynomial time, a d-regular graph G on Θ(n`)
vertices such that

• G is an (H, `)-lift of a graph G0 on Θ(n) vertices.
• (Sub-Exponential) If ` 6 exp

(
nδ(d,ε)

)
, then λ(G) 6 2

√
d− 1 + ε.

• (Moderately-Exponential) If ` 6 exp
(
nδ
)

and also d > d0(ε), then λ(G) 6 ε · d.
The bulk of the technical work is in the proof of Theorem 7.1.2. For this, we build on the

techniques described in Chapter 4 for derandomizing 2-lifts via the trace power method. When
analyzing larger lift sizes (required in our derandomization of quantum and classical codes), we
are led to consider much larger walk lengths in the trace power method. For lift sizes larger
than 22Θ(

√
logn) , the counting argument in Chapter 4 trivializes no longer implying expansion

of the construction. Our main technical contribution consists in providing alternative ways of
counting such special walks by carefully compressing the traversal of the depth-first search (DFS)
algorithm.

We are able to extend the near-Ramanujan guarantee for 2-lifts from Chapter 4 to the entire
sub-exponential regime of lift sizes `. In the moderately exponential regime, the walks are too
long and we resort to another counting that can only guarantee an expansion of ε · d. Theo-
rem 7.1.2 can be seen as a simplification of the construction from Chapter 4 since we can now
do a single large lift instead of performing a sequence of 2-lifts.

Let us now formally state the results of Agarwal et al. in Theorem 7.1.3 showing randomized
constructions of abelian lifts.
Theorem 7.1.3 (Agarwal et al. [ACKM19], Theorem 1.2). LetG0 be a d-regular n-vertex graph,
where 2 6 d 6

√
n/(3 lnn). Let G be a random (Z`, `)-lift of G0. Then

λ(G) = O(λ(G0)),

with probability 1− ` · e−Ω(n/d2). Moreover, if ` > exp(Oε(nd)), then no abelian (H, `) lift has
λ(G) 6 ε · d.

This result is based on discrepancy methods building on the work of Bilu and Linial [BL06]
and gives lower and upper bounds that are tight up to a factor of d3 in the exponent.

116

Theorem 7.1.2 can be seen as a (derandomization of the parameters) in Theorem 7.1.3 for
every constant degree and lift size from 2 all the way to exp(nΘd(1)). In the sub-exponential
regime, our result improves their spectral guarantee from O(

√
d) to 2

√
d− 1 + ε.

7.1.2 Derandomized quantum and classical codes
We first state the code constructions in [PK21] and then show how large explicit abelian lifts
derandomize their codes.
Theorem 7.1.4 ([PK21]). LetG be a d-regular graph on n`-vertices such thatG has a symmetry1

of Z` and λ2(G) 6 ε · d. Then we can construct the following,
• A good quasi-cyclic LDPC code of block length N = Θ(n`) and index Θ(n).
• A quantum LDPC code which has distance Θε,d(`) and dimension Θ(n).
Panteleev and Kalachev use the aforementioned randomized construction of abelian lifted

expanders by Agarwal et al. [ACKM19], where each edge of the base graph is associated with
an element in Z` sampled uniformly. When ` is in the exponential regime they obtain quantum
LDPC codes with almost linear distance, i.e., Ω(N/ log(N)).

Breuckmann and Eberhardt [BE21] gave a derandomization of [PK21] in a more restricted
parameter regime by observing that the Ramanujan graph construction by Lubotsky, Philips and
Sarnak [LPS88] of size n has a (free) action of Zn1/3 . By Theorem 7.1.4, we have an explicit
quantum LDPC code of distance O(N1/3) under the notion of distance2 in [PK21, HHO21].

As a direct corollary of Theorem 7.1.2, we have a partial derandomization of [PK21] yielding
explicit quantum LDPC codes of almost linear distance. This greatly improves the distance of
the existing explicit construction. We also get good quasi-cyclic LDPC codes of almost linear
circulant size. Moreover, the ability to construct a wide range of lift sizes from Theorem 7.1.2
lets us control the circulant size which can be useful in practice. By controlling the lift size, we
can also directly amplify the rate of their quantum LDPC codes (without resorting to the product
of complexes). To summarize,
Corollary 7.1.5 ([PK21], Theorem 7.1.2). We have an explicit polynomial time construction of
each of the following,

• Good quasi-cyclic LDPC code of block lengthN and any circulant size up toN/polylog(N).
• Quantum LDPC code with distance Ω(N/polylog(N)) and dimension Ω(polylog(N)).
• Quantum LDPC code with distance Ω(N1−α/2/polylog(N)) and dimension Θ(Nαpolylog(N))

for every constant α > 0.

7.2 Non-backtracking walks and the Ihara–Bass formula for
group lifts

Like was done on Chapter 5, we will need new tools to deal with non-backtracking walks in the
abelian lift model. We will see that we will need to use representation theory of abelian groups

1To be more precise, Z` acts freely on G.
2[BE21] state their result for a slightly different notion of a quantum codes called subsystems codes for which

the corresponding distance (also known as dressed distance) is larger.

117

to facilitate this discussion so we start by defining some well known concepts.
A character3 of a group is a map χ : H → C

∗ that respects group multiplication, i.e.,
χ(h1h2) = χ(h1)χ(h2). For a finite group |χ(h)| = 1 for every h ∈ H . The trivial character is
the one which has χ(h) = 1 for every h. The rest of the characters we call non-trivial.

Recall that an (H, `)-signing of an undirected graph G = (V,E) is a function s : E → H ⊆
Sym(`). We extend the signing to ~E such that for an edge (u, v) ∈ E, s(v, u) := s(u, v)−1.
Definition 7.2.1 (Non-backtracking walk operator). For an extended signing s : ~E → H and a
character χ of H , the signed non-backtracking walk matrix Bs(χ) is a non-symmetric matrix of
size | ~E| × | ~E| in which the entry corresponding to the pair of edges (u, v), (x, y) is χ(s(x, y)) if
v = x, u 6= y, and zero otherwise.

The unsigned variant is obtained by taking the trivial character in the definition above. Let
the non-backtracking walk matrix of G be B and the lifted graph with respect to a signing s be
BG(s).

For the rest of this section we will prove two important facts that we summarize here:
Fact 7.2.2. Let B be the non-backtracking walk matrix of a d-regular graph G. Then,

λ(G) 6 2 ·max{
√
d− 1, ρ2(B)}.

Fact 7.2.3. If H ⊆ Sym(`) is abelian, then there exist characters {χ1, · · · , χ`}4 such that we
have Spec(BG(s)) =

⋃
i Spec(Bs(χi)). If H is transitive, then exactly one of the characters is

trivial.

7.2.1 Diagonalizing the non-backtracking operator
Let ρ : Sym(l)→ GL(Cl) be the matrix representation of a permutation. More concretely, given
a permutation σ ∈ Sym(l) the map ρ(σ)ei = eσ·i where {e1, · · · , el} is the set of elementary
basis vectors of V = C

l. Since H ⊆ Sym(l)→ GL(Cl) it also gives a map on H by restriction.
For example, let P be the l × l permutation matrix that maps Pei = ei+1 where i + 1 is taken
modulo l. Then for H = Zl and for t ∈ Zl, ρ(t) = P t.

For a map ρ as above and an extended signing s , define a generalized non-backtracking
walk matrix in which for a non-zero entry indexed by (e1, e2) we replace 1 by the block matrix
ρ(s(e2)).
Lemma 7.2.4. The non-backtracking walk matrix of the lifted graph is BG(s) = BG(ρ).

Proof. In the lifted graph, the edges are of the form [(u, i − s(u, v)), (v, i)] =: [u, v, i] and thus
can be indexed by E ′ × [l]. The non-backtracking walk matrix BĜ would then have a non zero
entry from ([u, v, i], [x, y, j]) iff (v, i) = (x, j − s(x, y)) and (y, j) 6= (u, i − s(u, v)). Assume
that the first condition is met i.e. x = v and j = i + s(x, y). If y = u, then i − s(u, v) =
i − s(y, x) = i + s(x, y) = j and therefore, the second condition can’t be met. This is just a
longer way of saying that the lifts give a matching between u× [l] and v× [l]. The implication of
all this is that y has to be distinct from u and thus the pair of edges (u, v), (v, y) has a non-zero

3The definition we give is that of a linear character. We use the term character as we work only with abelian
groups.

4These need not be distinct. For example if H is trivial, then all the χi are trivial

118

entry in BG. Moreover, for every i and every pair of edges (u, v), (v, y) we have a non-zero entry
for (u, v, i), (v, y, i+ s(v, y)) in BG(s) and thus it can be written as a block matrix with the entry
in (u, v), (v, y) equal to ρ(s(v, y)).

Since the base graph G and the signing s will be fixed throughout, we will drop the subscript
to make reading less hurtful. We will need the following well-known fact (see [Con, Thm. 5] for
a proof) that a collection of commuting matrices that are diagonalizable are also simultaneously
diagonalizable. Since, H is abelian, we have that {ρ(h)} are commuting and since they are
invertible, they clearly are diagonalizable. Thus, they simultaneously diagonalize, i.e., there
exists F such that ρ(h) = F diag(χ1(h), · · · , χl(h))F−1 where χi are characters of H .
Corollary 7.2.5. If forH , the standard representation splits as ρ = ⊕iχi, then the non-backtracking
walk matrixBG = Q diag(B(χ1), · · · , B(χt))Q

−1 and thus Spec(BG) = ∪iSpec(B(χi)). More-
over, if H is transitive, then exactly one of the characters is trivial.

Proof. To ease notation we write BG(ρ) =
∑
Mu,v ⊗ ρ(s(u, v)) for some Mu,v. We have

ρ(s(u, v)) = F diag(χ1(h), · · · , χl(h))F−1 and thus

BG(ρ) = (I ⊗ F)
∑

Mu,v ⊗ diag(χ1(h), · · · , χl(h))(I ⊗ F−1)

Let |E| = N and let T denote the permutation on Nt that maps T (i) := bt + (a + 1) where
a, b are the unique non-negative integers such that 0 6 b < N i − 1 = aN + b. It can then
be seen that

∑
Mu,v ⊗ diag(χ1(h), · · · , χt(h)) = T diag (

∑
Mu,v ⊗ χi(h))T−1. Notice that∑

Mu,v ⊗χi(h) = BG(χi) and thus putting it together we have that for Q = (I ⊗F)T , BG(s) =
Q diag(B(χ1), · · · , B(χt))Q

−1. The statement on the spectrum follows immediately.
Since, the all-ones vector is clearly invariant under the standard representation, we have a

copy of the trivial character χ0 in ρ. Let there be another vector v ∈ C` that is invariant. Let
i ∈ supp(v) and j 6∈ supp(v). By transitivity, we have an h such that h · i = j but then h · v 6= v
which violates the invariance.

7.2.2 An Ihara–Bass formula for signed graphs
Claim 7.2.6. Let A be the (signed) adjacency matrix of a d-regular graph. Suppose f is an
eigenvector of A satisfying

Af =

(
β +

d− 1

β

)
f.

Then g(u, v) := (f(u)−βf(v)) (or in the signed case g(u, v) := A(u, v)−1(f(u)−β·A(u, v)f(v)))
is an eigenvector of the (signed) non-backtracking matrix B with eigenvalue β.

Proof. Let f and g be as in the statement of the claim. Suppose for that A and B are not signed.
Computing we have

(Bg)(u, v) =
∑

w∼v,w 6=u

f(v)− β · f(w)

119

= (d− 1)f(v)−
∑

w∼v,w 6=u

β · f(w)

= (d− 1)f(v) + β · f(u)− β
∑
w∼v

f(w)

= (d− 1)f(v) + β · f(u)− β(Af)(v)

= (d− 1)f(v) + β · f(u)− β
(
β +

d− 1

β

)
f(v)

= β(f(u)− β · f(v)) = β · g(u, v).

Now suppose that A and B are signed. First note that g is well-defined since for every entry
g(u, v) the pair (u, v) is an orientation of an edge of the graph so it has a signing A(u, v) 6= 0.
We have

(Bg)(u, v) =
∑

w∼v,w 6=u

A(v, w)A(v, w)−1(f(v)− β · A(v, w)f(w))

= (d− 1)f(v)− β
∑

w∼v,w 6=u

A(v, w)f(w)

= (d− 1)f(v) + β · A(v, u)f(u)− β
∑
w∼v

A(v, w)f(w)

= (d− 1)f(v) + β · A(v, u)f(u)− β(Af)(v)

= (d− 1)f(v) + β · A(v, u)f(u)− β
(
β +

d− 1

β

)
f(v)

= β · A(v, u)

(
f(u)− β 1

A(v, u)
f(v)

)
,

= β · A(u, v)−1 (f(u)− β · A(u, v)f(v)) = β · g(u, v),

where we used A(v, u) = A(u, v)−1.

Corollary 7.2.7. Let A be the (signed) adjacency matrix of a d-regular graph. Let B be its
(signed) non-backtracking operator. For any λ > 2

√
d− 1, if ρ2(B) 6 λ/2, then ρ2(A) 6 λ.

Hence, λ(G) = ρ(A) 6 2 max {
√
d− 1, ρ2(B) }.

Proof. We show via the contrapositive. Suppose that f is eigenvector of A with eigenvalue α
such that |α| > λ. By possibly multiplying A and B by a phase (i.e., eiθ), we can assume α is
a non-negative real number. By Claim 7.2.6, we have that β satisfying the equation β2 − αβ +
(d− 1) = 0 is an eigenvalue of B. Considering the solution β+ = (α+

√
α2 − 4(d− 1))/2 and

thus, we have β+ > α/2 > λ/2.

7.3 Proof strategy
We give an overview of the proof of Theorem 7.1.2. To do so, we will first recall some of the
techniques of Chapter 4. To avoid discussing some unimportant technicalities, we will make
some simplifications in this high-level overview.

120

Let G0 be a base expander graph and s : E0 → Z2 be a signing that defines a lift. As we have
seen before, we can use the trace method to bound the spectral radius of the non-backtracking
operator. Combining that

ρ(Bs)
2k 6 tr((B∗s)

kBk
s) =

∑
(e1,...,e2k)

closed edge walk

2k∏
i=1

χ(s(ei)).

The above expression greatly simplifies when we take the expectation over a uniformly ran-
dom signing since only walks in which every edge occurs at least twice stand a chance of surviv-
ing the expectation. We have

E
[
ρ(B)2k

]
6

∑
(e1,...,e2k)

closed edge walk

Es

[
2k∏
i=1

χ(s(ei))

]

reducing the problem of bounding the spectral radius to a counting problem of these special
walks. In the hypothetical scenario of G0 being Ramanujan and the counting on the RHS above
being (d − 1)k, we would have a Ramanujan lift. This idealized scenario can be too optimistic
and the count of (d − 1)k has additional factors, but they remain small after taking a 2k-th root
(when k is neither too small or large)

Now, we wish to count 2k-length singleton free non-backtracking walks in G0. For the sake
of intuition, we will assume that G0 has girth g, but has we saw before, we can modify the next
argument to when the graph is merely bicycle-free at radius g/2. Assume that g = Ω(logd−1(n))
and consider the hike graphH. If k is not too large, thenH looks like a tree possibly with a few
additional edges forming cycles as established by Alon, Hoory and Linial in [AHL02].

Assuming that the hike is singleton free, we can have at most k steps that visit an edge that
was not previously visited. This implies that the hike graph H has at most k edges and at most
k+ 1 vertices (since it is connected). We can count the number of these special walks by directly
specifying an encoding for the hike. Up to negligible factors (after 2k-th root for k not too small),
there are at most

n · (d− 1)k · kO(ln(k)
g)·k,

singleton free hikes of length 2k. This bound trivializes, i.e., it becomes at least (d−1)2k, for
ln(k)� √g = Θ

(√
logd−1(n)

)
. This means that we cannot use this bound for very long walks

and this in turn prevents us from getting lift sizes larger than 22
Θ(
√

logd−1(n))

from this result.
Now, let’s turn to the setup of this Chapter. Consider Z` lifts for large `. The spectral radius of

each individual Bs(χ) can be analyzed in a similar fashion as above via the trace power method.
However, we need to bound all of them simultaneously. We know no better way than a simple
union bound over the ` − 1 cases, but this will force us to obtain a much better concentration
guarantee out of the trace power method which in turn entails having to consider much larger
walk lengths.

121

Instead of encoding a hike directly, we will first encode the subgraph of G0 traversed by the
hike (the hike graph) and then encode the hike having the full hike graph at our disposal. We
will give two different encodings for the hike graph. The first one is simpler and can encode
an arbitrary graph. The second encoding uses the special structure of the hike graph, namely,
having few vertices of degree greater than 2. Both encodings are based on the traversal history
of the simple depth-first search (DFS) algorithm. Let H be the hike graph on m 6 k edges
and n′ 6 k + 1 vertices. As DFS traverses H, each of its edges will be visited twice: first
“forward” via a recursive call and later “backwards” via a backtracking operation. We view each
step of the DFS traversal as being associated with an edge that is being currently traversed and
the associated type of traversal: recursive (R) or backtracking (B). A key observation is that only
for the recursive traversals we need to know the next neighbor out of d − 1 possibilities (except
for the first step). For the backtracking steps, we can rely on the current stack of DFS. Thus, if
we are given a starting vertex from G0, a binary string in {R,B }2m and a next neighbor for each
recursive step, we can reconstructH. Note that there at most

n · d · (d− 1)k · 22k,

such encodings. Having access to the hike graph and again assuming that the graph has girth g =
Ω(logd−1(n)) (similarly, bicycle freeness is also enough). Using the locally tree-like structure,
a 2k-length hike can be specified by splitting it into segments of length < g/2, by specifying
the starting vertex of the first segment and the ending vertex of each segment, we have enough
information to recover the full hike. Note that there are at most

kO(k/g),

ways of encoding a hike. Then, the number of 2k-hikes in G0 is at most

n · d · (d− 1)k · 22k · kO(k/g).

Now we can take k ≈ nδ for a sufficiently small δ = δ(d) > 0 and obtain, after taking the 2k-th
root of the above quantity,

ρ(Bs) 6 (1 + ε) · 2 ·
√

(d− 1),

when k = k(n, d, ε) is sufficiently large and c = c(ε) is sufficiently small. The extra factor 2
prevent us from obtaining near-Ramanujan bounds with this counting. Nonetheless, the simple
counting already allows us to obtain expansion O(

√
d) for lifts sizes as large as 2n

δ(d) . Moreover,
by weakening the expansion guarantee we can obtain lift sizes as large as 2n

Θ(1) from this count-
ing and obtain part of Theorem 7.1.2. If we insist on getting a near-Ramanujan bound, we need
to compress the traversal history further since storing a string {R,B }2m is too costly and leads
to this factor of 2. Note that this string has an equal number of R and B symbols, so it cannot be
naively compressed.

To obtain a near-Ramanujan graph, we will take advantage of the special structure of the hike
graph (when the walk length is large but not too large) in which most of its vertices have degree
exactly 2. These degree 2 vertices are particularly simple to handle in a DFS traversal. For them,
we only need to store the next neighbor out of d − 1 possibilities in G0 (except possibly for the

122

first step). In a sequence of backtrackings, if the top of the DFS stack is a degree 2 vertex we
know that we are done processing it since no further recursive call will be initiated from it. Then,
we simply pop it from the stack. It is for the “rare” at most δ · n′ vertices v of degree > 3 that
we need to store how many extra recursive calls tv we issue from v and a tuple of additional next
neighbors (d1, . . . , dtv). The total number of such encodings is at most

n · d · (d− 1)k ·
(

k + 1

δ(k + 1)

)
· (d− 1)δ(k+1),

which combined with the same previous way of encoding a hike given its graph results in a total
number of hike encodings of G0 of at most

n · d · (d− 1)k ·
(

k + 1

δ(k + 1)

)
· (d− 1)δ(k+1) · kO(k/g),

By choosing δ = δ(d, ε) sufficiently small and taking k = k(n, d, ε) 6 2δ·g ≈ nOd(δ) sufficiently
large, we obtain after taking the 2k-th root

ρ(Bs) 6
√

(d− 1) + ε,

indeed leading to a near-Ramanujan bound for lifts as large as 2n
δ in Theorem 7.1.2.

Now we briefly explain how to handle the union bound to ensure that ρ(Bs(χ)) is simultane-
ously small for all (`− 1) non-trivial characters (in the decomposition of Fact 7.2.3). This union
bound is standard when using the trace power method, what is relevant is the trade-off between
lift size and walk length. To obtain a high probability guarantee from a guarantee on expectation,
it is standard to consider larger walk lengths from which concentration follows from a simple
Markov inequality. More precisely, if for some function f , E[ρ(Bs(χj))

2k] 6 f(n, d, g, k), then
by Markov’s inequality,

Pr
s∈ZE0

`

[
ρ(Bs(χ)) > 2log2(`)/(2k) · f(n, d, g, k)1/(2k)

]
6

1

`
.

Therefore, for k > log2(`) sufficiently large, we can union bound over all characters χ and obtain
similar bounds as before. As alluded above, this lower bound on the length of the walk depending
on the lift size is the reason why we are led to consider much longer walks. To conclude this proof
sketch, we need to replace a random signing by a pseudorandom random one. We use ε-biased
distributions but suitably generalized to abelian groups, e.g., the one by Jalan and Moshkovitz
in [JM21]. For our application, it suffices to have the support size of the ε-biased distribution
polynomial in 1/ε. We may be taking very large walks on the base graph G0, so the error of the
generator needs to be smaller than n · d2k, where k can be as large as nΘ(1). We note that as long
as the degree d is a constant this quantity is at most a polynomial in the size of the final lifted
graph G since walks of length O(log(|V (G)|)) suffice for any lift size up to full extent of 2O(n),
for which abelian lifts can be expanding.

7.4 A new encoding for special walks
In this section we will count the total number of singleton-free hikes of a given length on a
fixed graph, G. We split the count into two parts. First, we count the number of possible hike

123

graphs and then, for a given hike graphH, we count the number of hikes that can i.e., yieldH on
traversal. Each of these counts is via an encoding argument and therefore we have two kinds of
encoding. One for graphs and the other for hikes. In the first part of the section we give two ways
of encoding graphs, and in the other half, we encode hikes. Since the first section is a general
encoding for subgraphs, we relegate formal definitions related to hikes to a later section.

7.4.1 Graph encoding

Let H be a subgraph of a fixed d-regular graph G. We wish to encode H in a succinct way such
that given the encoding and G, we can recover H uniquely. We will give two ways of encoding
H. The first one will be generic that works for any subgraph of a d-regular graph. The second
encoding takes advantage of the special sparse structure (not too many vertices of degree greater
than two). We assume that we have an order on the neighbors of every vertex, and thus, given
(v, j), we can access the jth neighbor of v efficiently.

We will do this by encoding a DFS based-traversal of it from a given start vertex. Here, we
really need our DFS traversal to be optimal in the sense that the number of times each edge is
traversed is at most two and not any higher.

To reconstruct the graph, we reconstruct the traversal and so we need access to two types of
data before every step - (1) Is this step recursive or backtracking (2) If it is a recursive step, then
which neighbor do we recurse to.

To determine the neighbor of the current vertex we need to move to in a recursive call we
need to specify one out d− 1 possibilities (except in the first step which has d possibilities). This
can be specified by a tuple of (d1, . . . , d|E(H)|) ∈ [d] × [d − 1]|E(H)|−1 indicating the neighbor.
For a backtracking step, we just pop the stack and thus don’t need any additional data.

We use two ways to figure out whether a step is recursive or backtracking. The direct way
(Encoding I) is to just record the sequence in a binary string of length 2|EH|. To define the
second way, first let a neighbor u of v by called recursive if the edge (v, u) is visited by a re-
cursive call from v. A simple observation about backtracking sequences is that it starts when we
encounter a vertex that has already been visited or we reach a degree one vertex and ends when
we see a visited vertex that has unvisited recursive neighbors. Therefore, (Encoding II) we store
a string σ ∈ [d] × [d − 1]|V (H)|−1 in which σi denotes the number of recursive neighbors of the
ith visited vertex. To summarize,

GraphEnc(H):

(a) Starting vertex v1 ∈ V (G)

(b) A sequence of degrees (d1, . . . , d|E(H)|) ∈ [d]× [d− 1]|E(H)|−1

(c) Either σ ∈ {R,B }2|E(H)| (Encoding I) or σ ∈ [d]× [d− 1]|V (H)|−1 (Encoding II)

124

Algorithm 7.4.1 (Unpacking Algorithm for GraphEnc).
Input GraphEnc(H)

Output H

· Initialize DFS stack S with v1

· InitializeH = ({ v1 } , ∅)
· Initialize n, r, t = 1 // count visited vertices, recursive steps and total steps

· Initialize ord(v1) = 1

· While S 6= ∅:
· Let v be the top vertex on the stack S

· step = StepType(v, t)

· If step = R (recursive):

· Assign vnext to be dthr neighbor of v and increment r

· Add edge { v, vnext } toH
· If vnext is unvisited :

· Add vertex vnext toH
· n← n+ 1

· ord(vnext)← n

· push(vnext, S)

· Else if vnext is visited, increment t // Next step is backtracking

· If step = B (backtracking):

· pop(S)

· t← t+ 1

· returnH

Algorithm 7.4.2 (StepType).
Input (v, t)

Output (Type)
Note - The subroutine to detect the type of step depends on the encoding string σ.
· If σ is from Encoding I, return σt

· Else, let j = ord(v)

· If σj > 0 //Check if there are any remaining recursive neighbours

· Decrement σj ← σj − 1

· return R

· Else, return B

125

Counting the encodings

For the first kind of encoding of type, we have 22k strings of length 2k over {R,B}. The second
encoding might seem wasteful in general but it is much better when the graph has special struc-
ture that our hike graph will satisfy. We first note that for any vertex v, the number of recursive
neighbours σv 6 degH(v)− 1 (or 6 degH(v) if v = v0).
Definition 7.4.3 (Excess Set). We define a vertex to be an excess vertex inH if degH(v) > 2 and
we define the excess set to be the set consisting of such vertices i.e

excSet(H) := |{ v ∈ V (H) | deg(v) > 2 }|.

Lemma 7.4.4. Let G be a fixed d-regular graph on n vertices. The total number of connected
subgraphsH of G having at most 6 k edges is at most

2n · d · (d− 1)k−1 · 22k.

Moreover, if H is constrained to have at most two vertices of degree one5 and exc(H) 6 δk, the
count is at most

2nk3 · d · (d− 1)k−1 · 2H2(δ
1−δ)k · dδk.

Proof. We first fix the number of edges as m and we will then sum up the expression for m 6 k.
Algorithm 7.4.1 unambiguously recovers the graph and therefore the number of possible graphs
can be counted by counting the number of possible inputs. The number of degree sequences and
start vertices are n · d(d− 1)m−1. The number of σ-strings of encoding I are 22m. Therefore for
a given m, we have nd · (d− 1)m−1 · 22m and summing this gives the first claim.

In the second case, the key idea is that for every vertex (except the start) of degree 2, σv must
be 1. Since |excSet(H)| 6 δm, almost all of the string σ is filled by 1.

We first pick the number of vertices, say t. There are at most m choices for this. Then, we
let the number of excess vertices be j. Summing over all possible j, the number of σ-strings of
length t is 6 t2

∑δm
j=0

(
t
j

)
dj 6 t2dδm

∑δm
j=0

(
t
j

)
6 t2dδm2H2(δ

1−δ)t.
Here the first term counts the ways or having or up to two vertices of degree 1, the second

counts the ways to choose the excess vertices and the third counts the number of their recursive
neighbours. In the last inequality we used that t = m− exc(H) > (1− δ)m.

The complete expression for the number of graphs would then be

∑
m6k

nd(d− 1)m−1

m∑
t=(1−δ)m

t2dδm2H2(δ
1−δ)t

 6 2nk3 · d · (d− 1)k−1 · 2H2(δ
1−δ)k · dδk.

5We will see later that hike graphs satisfy this strange property

126

7.4.2 Bounding special walks
A singleton-free k-hike on G defines a subgraphH such that there at most two vertices of degree
1 (the start vertex and the middle vertex) and the number of edges is at most k as every edge is
traversed at least twice. The goal now is to count the possible number of singleton-free k-hikes
that yield a fixed subgraph H. Having access to H, we will need to encode the hike in a way
similar to the encoding of stale stretches in Chapter 4.
HikeEnc:

(a) (v1, . . . , vs) ∈ V (H)s,where s = d2k/re and r is the bicycle free radius ofH.

(b) (c1, . . . , cs) ∈ {0,±1, · · · ,±br/2c}s. Here, ci denotes the number of times the unique
cycle (in the neighborhood of vi) is to be traversed and the sign indicates the orientation.
Since each stretch is of length r and each cycle of length at least 2 we can traverse a cycle
at most br/2c times.

Claim 7.4.5. For any graphH that is bicycle free at radius r, the number of simple singleton-free
k-hikes that haveH as their hike graph is at most (|rV (H)|)d2k/re.

Proof. Follows from the possible values the encoding HikeEnc can take.

Using Corollary 4.2.7 we can conclude the following corollary:
Corollary 7.4.6. Let G be a d regular graph on n vertices bicycle free at radius r. Let H be
a subgraph with at most two vertices of degree one on n0 vertices where n0 = eδr−1 for some
δ 6 1/10. Then,

excSet(H) 6 2δn0 + 2.

We can now state the main bound on the number of special walks.
Lemma 7.4.7. Let G be a d regular graph, with d > 3, on n vertices bicycle free at radius r.
Then, the total number of singleton free (k − 1)-hikes on G is at most(

2γ1
√
d− 1

)2k

where γ1 = 1 +
log(nrk)

2k
+

log(rk)

r
.

If we assume that 3 6 k 6 eδr, then it is at most(
2γ2
√
d− 1

)2k

where γ2 =
log(16nk3rd)

2k
+

log(rk)

r
+H2(5δ)/2 + δ log d.

Proof. Any singleton-free (k−1)-hike defines a connected graphH with at most k−1 edges and
therefore at most k − 1 vertices. If there is no backtracking step then all vertices except the start
have degree at least two. Else, the end point of one of the backtracking step may have degree 1.
Thus there are at most 2 vertices of degree one. When k is unbounded, we use the bound from
the first encoding i.e. Lemma 7.4.4 and combine it with the number of possible hikes on this
from Claim 7.4.5 to get

6 2n · d · (d− 1)k−2 · 22(k−1)(r(k − 1))
2(k−1)
r

+1

6 (nrk) · (d− 1)k · 22k(rk)
2k
r

127

6
(

2 · 2log(nrk)/2k2
log(rk)
r

)2k

(d− 1)k

6
(

2γ1
√
d− 1

)2k

.

The assumption on k lets us use Corollary 7.4.6 which when combined with Lemma 7.4.4
gives us the bound on the number of such graphs as 4nk2d·(d−1)k−1 ·

(
k

2δk+1

)
·d2δk+1. Combining

with the number of possible hikes on this from Claim 7.4.5, we get the total number of singleton-
free k-hikes bounded by

6 4n(k − 1)2 · d · (d− 1)k−2 ·
(

k − 1

2δ(k − 1) + 2

)
· d2δ(k−1)+2(r(k − 1))

2k−2
r

+1

6 (16nk3rd)(d− 1)k · 2H2(5δ)k · d2δk(rk)
2k
r

6
(

2log(16nk3rd))/2kdδ2
log(rk)
r 2H2(5δ)/2

)2k

(d− 1)k

6
(

2γ2
√
d− 1

)2k

.

7.5 Explicit expanding abelian lifts
In this section, we will use the bound on singleton-free hikes obtained in the last section to bound
the eigenvalue of the lifted graph. We first handle non-singleton free hikes and show that they can
be easily bounded by the ε-biased property of the distribution of the signings. We then formalize
the construction by instantiating it using an expander from MOP having large bicycle-free radius
and then bring the bounds together.

7.5.1 Generalizing the trace power nethod
We now show that the the problem of bounding the spectral radius of the signed non-backtracking
operator reduces to counting singleton free hikes. This reduction is a straightforward generaliza-
tion of the argument Proposition 4.3.3 for Z2 to any abelian group.

Let Bs(χ) (as defined in Definition 7.2.1) be the signed non-backtracking operator with re-
spect to a signing and a non-trivial character χ and ρ(Bs) denote its spectral radius. The goal is
to bound the largest eigenvalue of Bs(χ).

The signing s is drawn from some distribution D and we wish to show via the probabilistic
method that there exists a signing in D for which ρ(Bs(χ)) is small for any set of (l − 1) non-
trivial characters χ. We will use a first-order Markov argument and therefore wish to bound
Es∼D[tr(Bk

s (B∗s)
k)]. Writing it out we get,

Tχ(s) = tr((B∗s)
kBk

s) =
∑
e∈ ~E

(
(B∗s)

kBk
s e
)
e

=
∑

(e0,··· ,e2k)

B(e0, e1) · · ·B(ek−1, ek)B
∗(ek, ek+1) · · ·B∗(e2k−1, e2k)

128

=
∑

(e0,··· ,e2k)

χ(s(e1)) · · ·χ(s(ek))χ
∗(s(ek)) · · ·χ∗(s(e2k−1))

=
∑

(e0,··· ,e2k)

χ(s(e1)) · · ·χ(s(ek−1))χ∗(s(ek+1)) · · ·χ∗(s(e2k−1)).

Notice that e0, ek don’t appear in the term and so we defineHk−1 as the multiset of all tuples
(e1, . . . , ek−1, ek+1, . . . , e2k−1) appearing in the support of this summation. We denote each term
in the summation above by χw(s) where w ∈ Hk−1. It follows directly from the definition that
each w ∈ Hk−1 defines a (k − 1)-hike. Also observe that, any tuple appears at most (d − 1)2

times as given a tuple w, we have at most (d − 1) choices for each e0, ek. Let Hs
k−1 denote the

singleton-free hikes inHk−1. We can split Tχ(s) = T1(s) + T2(s) where

T1(s) =
∑

w∈Hsk−1

χw(s), T2(s) =
∑

w 6∈Hsk−1

χw(s).

We now define ε-biased distributions that will be the key pseudorandomness tool.
Definition 7.5.1 (Bias). Given a distribution D on a group H and a character χ, we can define
the bias of D with respect to χ as biasχ(D) := |Eh∼Dχ(h)| and the bias of D as bias(D) =
maxχ biasχ(D), where the maximization is over non-trivial characters.
Lemma 7.5.2. LetD ⊆ HE(G) be an ν-biased distribution and let w 6∈ Hs

k−1 be a singleton-hike
i.e. there is an edge that is travelled exactly once. Then, |Es∼Dχw(s)| 6 ν.

Proof. Let the set of distinct edges in w be {e1, · · · , er} and let edge ei be travelled ti times
where ti takes the sign into account.6Let ej be the edge traversed exactly once. Then, tj = ±1.
Now, we can rewrite χw(s) =

∏r
i=1 χ(s(ei))

ti and it can be extended to a character on HE(G).
Since tj = ±1, this character is non-trivial and the claim follows from the ν-biased property.

Lemma 7.5.3 (Analog of Corollary 4.3.11). Let G be a d-regular graph on n-vertices, ε < 1
be a fixed constant, ` be a parameter, H ⊆ Sym(`) be an abelian group and D ⊆ Hm be an
ν-biased distribution such that ν 6 (nld2)−1.

(
ε
d

)2k.
Assume that the number of singleton-free (k − 1)-hikes is bounded by (2γ

√
d− 1)2k. Then

for any non-trivial character χ of Hm, we have that except with probability at most 1/` over D,
ρ(B(χ)) 6 2γ

′√
d− 1 + ε where γ′ = γ + log(`d2)

2k
.

Proof. By the decomposition above, we have T (s) = T1(s) + T2(s). As each term in the ex-
pression is of the form χ(h) and as remarked earlier, all the characters are roots of unity so
|χ(s(e))| = 1. Thus, |T1(s)| 6 |π−1

(
H∗k−1

)
| 6 (d− 1)2|H∗k−1|

µ := |Es∼DT | = |ET1 + ET2|
6 |ET1|+ |ET2|
6 |Hs

k−1|+
∑

w 6∈Hsk−1

|Es∼Dχw(s)|

6Let ei appear f1 times in the first k − 1 steps and b1 times in the next (k − 1) steps. Similarly let eTi which
is the reverse direction of e appear f2 times in the first k − 1 steps and b2 times in the next (k − 1) steps. Then,
ti = f1 + b2 − f2 − b1.

129

6 d2(2γ
√
d− 1)2k + ν|Hk−1|

6 d2(2γ
√
d− 1)2k + νnd2k+2.

Here we have used the observation that |Hs
k−1| 6 (d − 1)2|{Singleton-free (k − 1)-hikes}| and

Lemma 7.5.2. The bound on |Hk−1| is trivial as we have nd choices for the starting edge and
a walk of length of 2k + 1. Since T is a non-negative random variable, we apply Markov to
conclude that T 6 µ` with probability at most 1/`.

ρ(Bs(χ)) 6 T 1/2k < (µ`)1/2k 6

(
d2`
(

2γ
√
d− 1

)2k

+ ν`nd2k+2

)1/2k

6 (d2`)1/2k2γ
√
d− 1 +

(
ν`nd2k+2

)1/2k

6 2γ
′√
d− 1 + (ν`nd2)1/2kd

6 2γ
′√
d− 1 +

ε

d
d

6 2γ
′√
d− 1 + ε.

7.5.2 Combining all the ingredients
Before we instantiate the explicit construction of abelian lifted expanders leading to Theo-
rem 7.1.2, we will need two tools. The first one is an explicit construction of expander graphs to
be used as base graphs in the lifting operation, which follows from Theorem 4.1.1.

The second tool is a ν-biased distribution for abelian groups (having a sample space depend-
ing polynomial on 1/ν). In particular, we use a recent construction by Jalan and Moshkovitz.
Theorem 7.5.4. [JM21] Given the generating elements of a finite abelian groupH and an integer
m > 1 and ν > 0, there is a deterministic polynomial time algorithm that constructs subset
S ⊆ Hm with size O

(
m log(H)O(1)

ν2+o(1)

)
such that the uniform distribution over S is ν-biased.

We are now ready to prove our main result.

Proof of Theorem 7.1.2. Construct G0 on n 6 n′ 6 2n vertices for given (d, ε) using Theo-
rem 4.4.9 which is bycicle-free at radius r > c logd−1 n

′.

· Regime 1 (Sub-Exponential) - Here shorter walks will suffice and we will use the bound on
γ2 from Lemma 7.4.7. To get Near-Ramanujan, we need γ′ = γ2 + log(d2`)

2k
= γ′2 + log(`)

2k
to be

vanishing with ε. Observe that when k = ω(log n), γ2 is bounded by o(1) +
(

2
√
δ + δ log d

)
.

We pick δ small enough and assume that n′ > N(ε, d) such that γ′2 6 2ε√
d−1

. In the bounded

k regime we can pick k < eδr. Since, log(`)
2k

must also be vanishing in ε, this forces log(`) 6
εk 6 εeδr. This explains the bound on `.
· Regime 2 (Moderately-Exponential) - Here ` is larger and so we pick k = log `. Now, we

need to use γ1 which we recall is 1 + log k
r

+ o(1). Thus, γ′ = (γ1 + log d2

k
) + log `

k
6 3/2 + log k

r
.

Since, r = c logd−1(n′), to get non-trivial expansion k 6 nc/2 which explains the bound on the
exponent δ.

130

The precise parameters are as follows

Regime δ k ν γ′

1 O
(
ε2

d

)
10
√
d−1
ε

max(log `, log n) (nld2)−1
(
ε
3d

)2k
= (n`)cd,ε 2ε

3
√

(d−1)

2 6 c/2 log ` = nδ (n`d2)−1
(

1
3d

)2k
= (n`)cd 2 + δ

c
log(d− 1)

Construct a ν-biased distribution D using theorem 7.5.4. These two constructions take
poly(n, `) time.

From corollary 7.2.5, we have to analyze B(χ) for `− 1 non-trivial characters χ that appear
in this decomposition. The largest eigenvalue is clearly given by B(1) which is d − 1. For the
second largest, λ2(B(1)) 6

√
d− 1 + ε by the property of the base graph G. Since we have the

bicycle-free property, we can use corollary 7.5.3 to conclude that for any non-trivial characters
we have except with probability at most 1/`

· Regime 1 - ρ(B(χ)) 6 2γ
′√
d− 1 + ε/3 6

√
d− 1 + ε.

· Regime 2 - ρ(B(χ)) 6 2γ
′√
d− 1 + 1 6 2 · 22dδ/c

√
d− 1 6 εd when d >

(
8
ε

) 2c
c−2δ .

Using the fact Fact 7.2.3, we assume that the decomposition has exactly one trivial character
(say, χ1) and (l−1) non-trivial characters. Then for the trivial character ρ(BG0(s)) = ρ(B(χ1)) =
d− 1 and thus, ρ2(B) = max

{
λ(G0),max`i=2 ρ(B(χi))

}
.

Since the bound holds for any non-trivial χ except with probability 1/`we take a union bound
over these ` − 1 characters we get that there is a labelling s ∈ D such that the bound holds for
ρ(B(χi)) and thus for λ(BG0(s)). By Fact 7.2.2, we get that λ(G) 6 2ρ2(BG) which satisfies the
bounds we need.

We can brute force through each s ∈ supp(D) to find an s such that the lifted graph G =
G0(s) has the required spectral gap. Checking this is a simple linear algebraic task and can be
done in time cubic in n`. Therefore, the total time taken is poly(n, `).

7.6 Explicit quantum and classical codes
We now briefly recall the construction of quantum LDPC codes as in [PK21] and show how
our results derandomize it. The construction is as follows. Let G be a d-regular graph (on n`
vertices) such that G is a (Z`, `)-lift of a graph on n-vertices. Let C0 ⊆ F

d
2 be a binary linear

code (of block length d). Let B denote the bipartite graph of the Tanner code T(G, C0) and let
F denote the cycle graph on ` vertices. They define the lifted product LP(B,F) of B and F
which is a variation of the usual tensor product and is also equivalent to the twisted product in
[HHO21]. The main result of [PK21] is the following.
Theorem 7.6.1 ([PK21]). Let G be (Z`, `)-lift of a d regular graph on n-vertices with λ2(G) 6
ε · d. Let C0 ⊆ Fd2 and its dual attain the Gilbert–Varshamov bound. If ε > 0 is sufficiently small
and d is a sufficiently large constant, then

• T(G, C0) is a good quasi-cyclic LDPC code of blocklength Θ(n`) and circulant size Θ(`).
• The quantum lifted product code LP(B,F) is LDPC and has distance Θε,d(`) and dimen-

sion Θ(n).

131

To achieve these, [PK21] picks a d-regular expander on n vertices and creates a random `-lift
i.e. where each signing is chosen uniformly at random from Z`. The final graph is expanding
with high probability from the results of [ACKM19] (Theorem 7.1.3). The distance achieves the
almost-linear bound only when the lift is large and thus lifts of exponential size are preferred. By
the upper bound in Theorem 7.1.3, better than exponential size lifts break expansion for abelian
groups.

For this application, the constant degree regime is important for two reasons. The locality
of the code is essentially d and thus it has to be constant for it to be LDPC. Moreover, the code
C0 ⊆ Fd2 can be easily constructed via brute-force search since d is constant.

While the corollary follows in a straightforward manner from our main results, we show the
computations for completeness.
Corollary 7.6.2 ([PK21], Theorem 7.1.2). We have explicit polynomial time construction of each
of the following,

1. Good quasi-cyclic LDPC code of block lengthN and any circulant size up toN/polylog(N).
2. Quantum LDPC code with distance Ω(N/polylog(N)) and dimension Ω(polylog(N)).
3. Quantum LDPC code with distance Ω(N1−α) and dimension Θ(Nα) for every constant
α > 0.

Proof. We always work in the constant degree regime so C0 ⊆ Fd2 can be found by brute-force.
Let ` 6 2n

δ0 with some fixed δ0 ∈ (0, 1). We can explicitly construct G which is a (Z`, `)-lift by
Theorem 7.1.2 and by [PK21], T(G, C0) has circulant size Θ(`) and log(N) 6 log n+nδ0 6 2nδ0

(for n sufficiently large) and thus, ` = O
(
N/(logN)1/δ0

)
. Therefore, the construction works for

any size less than N/(logN)1/δ0 . This calculation also shows that we get quantum LDPC codes
for any distance less than N/(logN)1/δ0 . So for a given α, we take a base graph on n = Nα

vertices and construct a ` = N1−α = n1/α−1 lift. For any α, this is a polynomial sized-lift and
can be done via Theorem 7.1.2.

132

Chapter 8

Open Problems and Closing Remarks

We conclude this thesis by discussing some open problems that fit the template of the three
fundamental questions of this thesis.
Open Question 1. Can we build on these results to obtain near-Ramanujan graphs with other
combinatorial properties (e.g. high girth)?

For a lot of applications of expander graphs it is important that the expander also has extra
combinatorial properties. As we saw in Chapter 6, an example of such a property is high girth,
which has implications in the decodability of some families of error correcting codes. This
motivates the next question:
Open Question 2. Can we improve Theorem 6.1.6 to obtain high (Θ(logd−1 n)) girth?

Something like this could be proved by showing that when 2-lifting a graph with large enough
girth, with sufficiently high probability the girth of the resulting graph increases. This would
boost the girth of the graph generated by the first step of the construction of [MOP20a] during
the repeated 2-lift step. However, it is unclear if this can be done. Alternatively, one could show
that bicycle-freeness increases with good probability as we 2-lift, but this is also unclear.

A different strategy would be to find a different way to derandomize Theorem 1.1.16 such
that the we can generate a starter graph of larger size. However, it is unclear if this strategy could
work since the tool used to derandomize this, namely (δ, k)-wise uniform permutations, cannot
be improved to derandomize this to the required extent.
Open Question 3. Can we obtain a combinatorial strongly explicit construction of near-Ramanujan
graphs?

The zig-zag product of Reingold-Vadhan-Wigderson [RVW02] is the only known combina-
torial construction of strongly explicit expander graphs. It would be interesting to find other
strongly explicit constructions with better expansion, perhaps based on the results of this section.
Open Question 4. Are there explicit Ramanujan graphs of all degrees d?

This is the “holy grail” of the field of expanders, the question that has been asked since the
’70s. Even the existence of such graphs for many degrees (non prime powers) is open. The
results in Chapter 4 got us closer to this answer, but a completely different approach will be
needed to fully answer it.
Open Question 5. What can we say about the expansion of non-abelian lifts?

One of the reasons why shift lifts were studied in the context of expanders was as a potential

133

way to build Ramanujan graphs of all degrees [CV17]. Suppose we could prove the following:
There exists a shift k-lift that maintains the Ramanujan property of d-regular graphs on n vertices
for all n. Then, we could start with a complete d-regular graph Kd+1 and then there would be a
shift k-lift for k ∼ n that lifts this starting graph to a Ramanujan graph with n vertices. Since
there are at most kd2 shift lifts, a simple brute force algorithm would work in polynomial time.

Unfortunately, [ACKM19] showed that this is impossible since for k = 2Ω(n0d) (where n0 is
the number of vertices of the starting graph) there is no expanding shift lift. Even more, they show
the same also applies for any abelian lift. This closes a lot of possibilities, however, we know
that for general graph lifts, a generalization [HPS18] of [MSS15a] shows that there is always a
one-sided Ramanujan k-lift of any graph. This result is only existential and it is hard to make
explicit, but it suggests the question: what can we say about the expansion of other non-abelian
group lifts? Can we find a good expanding non-abelian group that is easy to derandomize, just
like shift lifts?

Recently, Panteleev and Kalachev [PK22] used non-abelian group lifts in their breakthrough
result on asymptotically good quantum and locally testable classical LDPC codes.
Open Question 6. Can we obtain explicit constructions of graphs with other notions of expan-
sion (e.g. lossless expanders)?

There are other notions of expansion we haven’t explored in this thesis. A well known exam-
ple is vertex expansion, which we denote by ΨV (G, k) and define as follows:

ΨV (G, k) = min
S⊂V
|S|6k

|N(S)|
|S| .

One can show that for every δ > 0 there exists ε > 0 such that for almost every n-vertex
d-regular graph G we have ΨV (G, εn) > d − 1 − δ. This is virtually optimal, since for a
connected subset S of vertices we have ΨV (G, |S|) 6 d − 1 + 2/|S|. Graphs that achieve this
optimal bound are known as lossless expanders. These types of graphs have many applications
in areas like distributed routing algorithms, expander-based linear codes and even lower bound
complexity (see [HLW06] for a list of references).

So we know that random graphs are lossless expanders with high probability, however the
best known explicit result is by Kahale [Kah95], who showed that n-vertex Ramanujan graphs G
satisfy ΨV (G, εn) > (d/2) · (1− od(1)) · (1−O(log d/ log(1/ε))). Kahale also showed that this
is tight, i.e. there are Ramanujan graphs with vertex expansion at most d/2. Recently, McKenzie
and Mohanty [MM21] showed that that high-girth Ramanujan graphs are also not necessarily
lossless expanders. Also recently, Kamber and Kaufman [KK22] disproved the conjecture that
certain number theoretical constructions of Ramanujan graphs (namely the result from Morgen-
stern [Mor94]) are lossless expanders.

Capalbo-Reingold-Vadhan-Wigderson [CRVW02] took a major step in answering this ques-
tion by providing an explicit construction of a bipartite graph whose left bipartition losslessly
expands onto the right one for sets of linear size. Their result is based on the zig-zag product
of Reingold-Vadhan-Wigderson [RVW02]. Fortunately, some of the aforementioned applica-
tions of lossless expanders only need this notion of bipartite lossless expansion. Another result
of interest is the construction by Alon-Capalbo [AC02] of explicit unique-neighbor expanders
for some degrees, a related notion of vertex expanders (optimal unique-neighbor expanders are

134

lossless expanders).
But the main question remains, can we build explicit lossless vertex expanders (for any pa-

rameters n or d)? A simpler question is: can we merely improve on Kahale’s result of vertex
expansion of about d/2?

135

136

Bibliography

[AA15] Scott Aaronson and Andris Ambainis. Forrelation: a problem that optimally sepa-
rates quantum from classical computing. In Proceedings of the 47th Annual ACM
Symposium on Theory of Computing, pages 307–316, 2015. 5.2.2

[ABW10] Benny Applebaum, Boaz Barak, and Avi Wigderson. Public-key cryptography
from different assumptions. In Proceedings of the 42nd Annual ACM Symposium
on Theory of Computing, pages 171–180, 2010. 5.1

[AC88] N. Alon and F. R. K. Chung. Explicit construction of linear sized tolerant net-
works. In Proceedings of the First Japan Conference on Graph Theory and Ap-
plications (Hakone, 1986), volume 72, pages 15–19, 1988. doi:10.1016/
0012-365X(88)90189-6. 1.1

[AC02] Noga Alon and Michael Capalbo. Explicit unique-neighbor expanders. In The
43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Pro-
ceedings., pages 73–79. IEEE, 2002. 8

[ACKM19] Naman Agarwal, Karthekeyan Chandrasekaran, Alexandra Kolla, and Vivek
Madan. On the expansion of group-based lifts. SIAM J. Discrete Math.,
33(3):1338–1373, 2019. doi:10.1137/17M1141047. 7.1, 7.1.3, 7.1.2, 7.6, 8

[ADR82] Alain Aspect, Jean Dalibard, and Gérard Roger. Experimental test of Bell’s in-
equalities using time-varying analyzers. Physical Review Letters, 49(25):1804–
1807, 1982. 5.2.7

[AFH15] Omer Angel, Joel Friedman, and Shlomo Hoory. The non-backtracking spectrum
of the universal cover of a graph. Transactions of the American Mathematical
Society, 367(6):4287–4318, 2015. 3.2, 3.2, 5.2.21, 5.5.1, 5.5.1

[AGHP92] Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple construc-
tions of almost k-wise independent random variables. Random Structures & Algo-
rithms, 3(3):289–304, 1992. 3.4

[AGS21] Noga Alon, Shirshendu Ganguly, and Nikhil Srivastava. High-girth near-
Ramanujan graphs with localized eigenvectors. Israel J. Math., 246(1):1–20, 2021.
doi:10.1007/s11856-021-2217-y. 6.1, 6.1.1, 6.2, 6.2.2, 6.2.9

[AHL02] Noga Alon, Shlomo Hoory, and Nathan Linial. The Moore bound for irregular
graphs. Graphs and Combinatorics, 18(1):53–57, 2002. 4.2.6, 5.6.3, 7.3

[AL13] Noga Alon and Shachar Lovett. Almost k-wise vs. k-wise independent permuta-

137

https://doi.org/10.1016/0012-365X(88)90189-6
https://doi.org/10.1016/0012-365X(88)90189-6
https://doi.org/10.1137/17M1141047
https://doi.org/10.1007/s11856-021-2217-y

tions, and uniformity for general group actions. Theory of Computing, 9:559–577,
2013. 3.4, 3.4.5, 3.4.6

[Alo86] Noga Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, 1986. 1.1,
1.1.2

[Alo21] Noga Alon. Explicit expanders of every degree and size. Combinatorica,
41(4):447–463, 2021. doi:10.1007/s00493-020-4429-x. 1.1.1, 1.1.14,
1.1, 6.1.1, 6.2.2

[AM85] N. Alon and V. D. Milman. λ1, isoperimetric inequalities for graphs, and super-
concentrators. J. Combin. Theory Ser. B, 38(1):73–88, 1985. doi:10.1016/
0095-8956(85)90092-9. 1.1

[Amb06] Andris Ambainis. Polynomial degree vs. quantum query complexity. Journal of
Computer and System Sciences, 72(2):220–238, 2006. 5.2.2

[APV16] Andris Ambainis, Krišjānis Prūsis, and Jevgēnijs Vihrovs. Sensitivity versus cer-
tificate complexity of Boolean functions. In Proceedings of the 11th Annual Com-
puter Science Symposium in Russia, pages 16–28, 2016. 5.2.2

[AR94] Noga Alon and Yuval Roichman. Random cayley graphs and expanders. Random
Struct. Algorithms, 5(2):271–285, 1994. doi:10.1002/rsa.3240050203.
7.1

[Bab74] László Babai. On the minimum order of graphs with given group. Canadian Math-
ematical Bulletin, 17(4):467–470, 1974. doi:10.4153/CMB-1974-082-9.
7.1

[Bas92] Hyman Bass. The Ihara–Selberg zeta function of a tree lattice. International Jour-
nal of Mathematics, 3(6):717–797, 1992. 3.2

[BC78] Edward Bender and Rodney Canfield. The asymptotic number of labeled graphs
with given degree sequences. Journal of Combinatorial Theory. Series A,
24(3):296–307, 1978. 3.3, 6.3.1

[BDH18] Gerandy Brito, Ioana Dumitriu, and Kameron Decker Harris. Spectral gap
in random bipartite biregular graphs and its applications. arXiv preprint
arXiv:1804.07808, 2018. 5.6

[BE21] Nikolas P. Breuckmann and Jens N. Eberhardt. Balanced Product Quantum Codes.
IEEE Transactions on Information Theory, 67(10):6653–6674, 2021. arXiv:
2012.09271, doi:10.1109/TIT.2021.3097347. 7.1, 7.1.2, 2

[Bel64] John Bell. On the Einstein Podolsky Rosen paradox. Physics Physique Fizika,
1(3):195–200, 1964. 5.2.7

[BFKL93] Avrim Blum, Merrick Furst, Michael Kearns, and Richard Lipton. Cryptographic
primitives based on hard learning problems. In Proceedings of the 13th Annual
International Cryptography Conference, pages 278–291, 1993. 5.1

[BKM17] Jess Banks, Robert Kleinberg, and Cristopher Moore. The Lovász Theta function
for random regular graphs and community detection in the hard regime. In Pro-
ceedings of the 21st Annual International Workshop on Randomized Techniques in

138

https://doi.org/10.1007/s00493-020-4429-x
https://doi.org/10.1016/0095-8956(85)90092-9
https://doi.org/10.1016/0095-8956(85)90092-9
https://doi.org/10.1002/rsa.3240050203
https://doi.org/10.4153/CMB-1974-082-9
http://arxiv.org/abs/2012.09271
http://arxiv.org/abs/2012.09271
https://doi.org/10.1109/TIT.2021.3097347

Computation, volume 81, pages 28:1–28:22, 2017. 5.1

[BL06] Yonatan Bilu and Nathan Linial. Lifts, discrepancy and nearly optimal spectral
gap. Combinatorica, 26(5):495–519, 2006. 1.1.1, 1.1.12, 1.1, 3.3, 4.1.1, 4.1.2,
5.2.16, 7.1.1

[BLM15] Charles Bordenave, Marc Lelarge, and Laurent Massoulié. Non-backtracking
spectrum of random graphs: community detection and non-regular Ramanujan
graphs. In 2015 IEEE 56th Annual Symposium on Foundations of Computer Sci-
ence, pages 1347–1357. IEEE, 2015. 5.1.2

[BM06] L.M.J. Bazzi and S.K. Mitter. Some randomized code constructions from group
actions. IEEE Transactions on Information Theory, 52(7):3210–3219, 2006. doi:
10.1109/TIT.2006.876244. 7.1

[BMMN13] Mark Braverman, Konstantin Makarychev, Yury Makarychev, and Assaf Naor. The
Grothendieck constant is strictly smaller than Krivine’s bound. Forum of Mathe-
matics. Pi, 1:e4, 42, 2013. 5.2.1

[Bol80] Béla Bollobás. A probabilistic proof of an asymptotic formula for the number of
labelled regular graphs. European Journal of Combinatorics, 1(4):311–316, 1980.
3.3, 6.1

[Bol01] Béla Bollobás. Random Graphs. Cambridge University Press, second edition
edition, 2001. 3.3

[Bor15] Charles Bordenave. A new proof of Friedman’s second eigenvalue theorem and its
extension to random lifts. arXiv preprint arXiv:1502.04482, 2015. 5.6, 5.6.1

[Bor19] Charles Bordenave. A new proof of Friedman’s second eigenvalue theorem and
its extension to random lifts. Technical Report 1502.04482v4, arXiv, 2019. To
appear in Annales scientifiques de l’École normale supérieure. 1.1.2, 1.1.16, 3.2,
3.3, 4.1.1, 4.3, 4.3, 4.4, 4.4, 4.4.1, 4.4.2, 4.4.5, 4.4.2, 4.4.2, 5.1.2, 6.3, 6.3.1

[BSS05] László Babai, Amir Shpilka, and Daniel Stefankovic. Locally testable cyclic codes.
IEEE Trans. Inf. Theory, 51(8):2849–2858, 2005. doi:10.1109/TIT.2005.
851735. 7.1

[BT11] Avraham Ben-Aroya and Amnon Ta-Shma. A combinatorial construction of
almost-Ramanujan graphs using the zig-zag product. SIAM Journal on Computing,
40(2):267–290, 2011. 1.1.11, 1.1

[CGHV15] Endre Csóka, Balázs Gerencsér, Viktor Harangi, and Bálint Virág. Invariant Gaus-
sian processes and independent sets on regular graphs of large girth. Random
Structures & Algorithms, 47(2):284–303, 2015. 5.1

[Chi92] Patrick Chiu. Cubic Ramanujan graphs. Combinatorica, 12(3):275–285, 1992.
1.1.1, 1.1

[CHSH69] John Clauser, Michael Horne, Abner Shimony, and Richard Holt. Proposed exper-
iment to test local hidden-variable theories. Physical Review Letters, 23(15):880–
884, 1969. 5.2.7, 5.2.7

[CHTW04] Richard Cleve, Peter Høyer, Benjamin Toner, and John Watrous. Consequences

139

https://doi.org/10.1109/TIT.2006.876244
https://doi.org/10.1109/TIT.2006.876244
https://doi.org/10.1109/TIT.2005.851735
https://doi.org/10.1109/TIT.2005.851735

and limits of nonlocal strategies. In Proceedings of the 19th Annual Computational
Complexity Conference, pages 246–249, 2004. 5.2.6

[Cla06] Pete Clark. Ramanujan graphs and Shimura curves. Retrieved from http:
//alpha.math.uga.edu/˜pete/ramanujanrevisited.pdf, 2006.
1.1.1, 1.1

[CM08] Sebastian M. Cioabă and M. Ram Murty. Expander graphs and gaps between
primes. Forum Mathematicum, 20(4):745–756, 2008. 1.1.1, 1.1.13, 1.1.1, 1.1

[Coh16] Michael Cohen. Ramanujan graphs in polynomial time. In Proceedings of the
57th Annual IEEE Symposium on Foundations of Computer Science, pages 276–
281, 2016. 1.1.1, 1.1.15, 1.1

[Con] Keith Conrad. Simultaneous Ccommutativity Of Operators. https:
//kconrad.math.uconn.edu/blurbs/linmultialg/simulcomm.
pdf. [Online; accessed June-2022]. 7.2.1

[CPW69] C.L. Chen, W.W. Peterson, and E.J. Weldon. Some results on quasi-cyclic codes.
Information and Control, 15(5):407–423, November 1969. doi:10.1016/
s0019-9958(69)90497-5. 7.1

[CRVW02] Michael Capalbo, Omer Reingold, Salil Vadhan, and Avi Wigderson. Randomness
conductors and constant-degree lossless expanders. In Proceedings of the Thirty-
Fourth Annual ACM Symposium on Theory of Computing, pages 659–668. ACM,
New York, 2002. doi:10.1145/509907.510003. 8

[CS96] A. R. Calderbank and Peter W. Shor. Good quantum error-correcting codes ex-
ist. Phys. Rev. A, 54:1098–1105, Aug 1996. doi:10.1103/PhysRevA.54.
1098. 7.1

[CV17] Karthekeyan Chandrasekaran and Ameya Velingker. Shift lifts preserving Ra-
manujan property. Linear Algebra Appl., 529:199–214, 2017. doi:10.1016/
j.laa.2017.04.031. 7.1, 8

[CW04] Moses Charikar and Anthony Wirth. Maximizing quadratic programs: extending
Grothendieck’s Inequality. In Proceedings of the 45th Annual IEEE Symposium on
Foundations of Computer Science, pages 54–60, 2004. 5.2.1

[Dah14] Xavier Dahan. Regular graphs of large girth and arbitrary degree. Combinatorica,
34(4):407–426, 2014. doi:10.1007/s00493-014-2897-6. 6.1

[dlHM06] Pierre de la Harpe and Antoine Musitelli. Expanding graphs, Ramanujan graphs,
and 1-factor perturbations. Bulletin of the Belgian Mathematical Society — Simon
Stevin, 13(4):673–680, 2006. 1.1.1, 1.1

[DMO+19a] Yash Deshpande, Andrea Montanari, Ryan O’Donnell, Tselil Schramm, and Sub-
habrata Sen. The threshold for SDP-refutation of random regular NAE-3SAT. In
Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 2305–2321, 2019. 4.1.1

[DMO+19b] Yash Deshpande, Andrea Montanari, Ryan O’Donnell, Tselil Schramm, and Sub-
habrata Sen. The threshold for SDP-refutation of random regular NAE-3SAT. In

140

http://alpha.math.uga.edu/~pete/ramanujanrevisited.pdf
http://alpha.math.uga.edu/~pete/ramanujanrevisited.pdf
https://kconrad.math.uconn.edu/blurbs/linmultialg/simulcomm.pdf
https://kconrad.math.uconn.edu/blurbs/linmultialg/simulcomm.pdf
https://kconrad.math.uconn.edu/blurbs/linmultialg/simulcomm.pdf
https://doi.org/10.1016/s0019-9958(69)90497-5
https://doi.org/10.1016/s0019-9958(69)90497-5
https://doi.org/10.1145/509907.510003
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1016/j.laa.2017.04.031
https://doi.org/10.1016/j.laa.2017.04.031
https://doi.org/10.1007/s00493-014-2897-6

Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 2305–2321, 2019. 5.1, 5.2.3, 5.5.3, 5.6, 5.6.2

[DMS17] Amir Dembo, Andrea Montanari, and Subhabrata Sen. Extremal cuts of sparse
random graphs. The Annals of Probability, 45(2):1190–1217, 2017. 5.1

[Dod84] Jozef Dodziuk. Difference equations, isoperimetric inequality and transience of
certain random walks. Trans. Amer. Math. Soc., 284(2):787–794, 1984. doi:
10.2307/1999107. 1.1

[DP93] Charles Delorme and Svatopluk Poljak. Laplacian eigenvalues and the maximum
cut problem. Mathematical Programming, 62(1–3):557–574, 1993. 5.1, 5.2.1,
5.2.4, 8

[DS16] Amit Daniely and Shai Shalev-Shwartz. Complexity theoretic limitations on learn-
ing DNF’s. In Proceedings of the 29th Annual Conference on Learning Theory,
pages 815–830, 2016. 5.1

[DSS15] Jian Ding, Allan Sly, and Nike Sun. Proof of the satisfiability conjecture for large
k. In Proceedings of the 47th Annual ACM Symposium on Theory of Computing,
pages 59–68, 2015. 5.1

[EKZ20] Shai Evra, Tali Kaufman, and Gilles Zémor. Decodable quantum LDPC codes
beyond the square root distance barrier using high dimensional expanders. In
Proceedings of the 61st Annual IEEE Symposium on Foundations of Computer
Science, pages 218–227. IEEE, 2020. arXiv:2004.07935, doi:10.1109/
FOCS46700.2020.00029. 7.1

[Elo09] Yehonatan Elon. Gaussian waves on the regular tree. Technical Report 0907.5065,
arXiv, 2009. 5.1

[ES63] Paul Erdős and Horst Sachs. Reguläre graphen gegebener tailenweite mit mini-
maler knollenzahl. Wiss. Z. Univ. Halle-Willenberg Math. Nat., 12:251–258, 1963.
6.1

[Fei02] Uriel Feige. Relations between average case complexity and approximation com-
plexity. In Proceedings of the 34th Annual ACM Symposium on Theory of Com-
puting, pages 543–543, 2002. 5.1, 5.1

[FK81] Z. Füredi and J. Komlós. The eigenvalues of random symmetric matrices. Combi-
natorica, 1(3):233–241, 1981. doi:10.1007/BF02579329. 2.2, 3.2, 4.1.2

[Fri93] Joel Friedman. Some geometric aspects of graphs and their eigenfunctions. Duke
Mathematical Journal, 69(3):487–525, 1993. 1.1

[Fri08] Joel Friedman. A proof of Alon’s second eigenvalue conjecture and related prob-
lems. Memoirs of the American Mathematical Society, 195(910):viii+100, 2008.
1.1.2, 1.1.16, 4.3, 5.1, 5.1.2

[Fru39] R. Frucht. Herstellung von Graphen mit vorgegebener abstrakter Gruppe. Compo-
sitio Math., 6:239–250, 1939. URL: http://www.numdam.org/item?id=
CM_1939__6__239_0. 7.1

[FS02] Uriel Feige and Gideon Schechtman. On the optimality of the random hyperplane

141

https://doi.org/10.2307/1999107
https://doi.org/10.2307/1999107
http://arxiv.org/abs/2004.07935
https://doi.org/10.1109/FOCS46700.2020.00029
https://doi.org/10.1109/FOCS46700.2020.00029
https://doi.org/10.1007/BF02579329
http://www.numdam.org/item?id=CM_1939__6__239_0
http://www.numdam.org/item?id=CM_1939__6__239_0

rounding technique for Max-Cut. Randoom Structures and Algorithms, 20(3):403–
440, 2002. 5.2.1

[Gal62] R. G. Gallager. Low-density parity-check codes. IRE Trans., IT-8:21–28, 1962.
doi:10.1109/tit.1962.1057683. 1.1.3, 3.5, 6.1, 7.1

[GG81] Ofer Gabber and Zvi Galil. Explicit constructions of linear-sized superconcentra-
tors. Journal of Computer and System Sciences, 22(3):407–420, 1981. Special
issued dedicated to Michael Machtey. 1.1.1

[GLS84] M. Grötschel, L. Lovász, and A. Schrijver. Corrigendum to our paper: “The ellip-
soid method and its consequences in combinatorial optimization” [Combinatorica
1 (1981), no. 2, 169–197; MR0625550 (84a:90044)]. Combinatorica, 4(4):291–
295, 1984. doi:10.1007/BF02579139. 1

[GLS88] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms
and Combinatorial Optimization. Springer–Verlag, 1988. 8

[GLS93] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algo-
rithms and combinatorial optimization, volume 2 of Algorithms and Combi-
natorics. Springer-Verlag, Berlin, second edition, 1993. doi:10.1007/
978-3-642-78240-4. 1

[Gol00] Oded Goldreich. Candidate one-way functions based on expander graphs. Techni-
cal Report 90, Electronic Colloquium on Computational Complexity, 2000. 1.1.3,
5.1

[Gro53] Alexander Grothendieck. Résumé de la théorie métrique des produits tensoriels
topologiques. Boletı́n de la Sociedad Matemática São Paulo, 8:1–79, 1953. 5.2.1

[GRS12] Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. Essential coding theory.
Draft available at http://www. cse. buffalo. edu/atri/courses/coding-theory/book,
2, 2012. 3.5

[GW95] Michel Goemans and David Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. Journal
of the ACM, 42:1115–1145, 1995. 5.1, 5.2.1

[GW21] Oded Goldreich and Avi Wigderson. Robustly self-ordered graphs: Construc-
tions and applications to property testing. In Valentine Kabanets, editor, Pro-
ceedings of the 36th Annual Computational Complexity Conference, volume 200
of LIPIcs, pages 12:1–12:74. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.CCC.2021.12. 7.1

[GZ99] Rostislav Grigorchuk and Andrzej Żuk. On the asymptotic spectrum of random
walks on infinite families of graphs. In Random walks and discrete potential theory
(Cortona, 1997), Sympos. Math., XXXIX, pages 188–204. Cambridge Univ. Press,
Cambridge, 1999. 5.1.2

[Hås84] Johan Håstad. An NP-complete problem – some aspects of its solution and some
possible applications. Master’s thesis, Uppsala University, 1984. 4.1.1

[Has89] Ki-ichiro Hashimoto. Zeta functions of finite graphs and representations of p-adic

142

https://doi.org/10.1109/tit.1962.1057683
https://doi.org/10.1007/BF02579139
https://doi.org/10.1007/978-3-642-78240-4
https://doi.org/10.1007/978-3-642-78240-4
https://doi.org/10.4230/LIPIcs.CCC.2021.12

groups. In Automorphic forms and geometry of arithmetic varieties, volume 15 of
Advanced Studies in Pure Mathematics, pages 211–280. Elsevier, 1989. 3.2.1, 3.2

[HHO21] Matthew B. Hastings, Jeongwan Haah, and Ryan O’Donnell. Fiber bundle codes:
breaking the n1/2polylog(n) barrier for quantum LDPC codes. In Proceedings of
the 53th Annual ACM Symposium on Theory of Computing, pages 1276–1288.
ACM, 2021. arXiv:2009.03921, doi:10.1145/3406325.3451005.
7.1, 7.1.2, 7.6

[HLW06] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their ap-
plications. American Mathematical Society Bulletin, 43(4):439–561, 2006. 1.1.1,
1.1.3, 8

[HPS18] Chris Hall, Doron Puder, and William F. Sawin. Ramanujan coverings of graphs.
Adv. Math., 323:367–410, 2018. doi:10.1016/j.aim.2017.10.042. 8

[HV15] Viktor Harangi and Bálint Virág. Independence ratio and random eigenvectors in
transitive graphs. The Annals of Probability, 43(5):2810–2840, 2015. 5.1

[Iha66] Yasutaka Ihara. On discrete subgroups of the two by two projective linear group
over p-adic fields. Journal of the Mathematical Society of Japan, 18:219–235,
1966. 1.1.1, 1.1, 3.2

[JŁR00] Svante Janson, Tomasz Łuczak, and Andrzej Rucinski. Random graphs. John
Wiley & Sons, 2000. 4.4.1, 4.4.3

[JM21] Akhil Jalan and Dana Moshkovitz. Near-optimal cayley expanders for abelian
groups. In 41st IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, 2021. 7.3, 7.5.4

[JMO+22] Fernando Granha Jeronimo, Tushant Mittal, Ryan O’Donnell, Pedro Paredes, and
Madhur Tulsiani. Explicit abelian lifts and quantum ldpc codes. In 13th Innova-
tions in Theoretical Computer Science Conference (ITCS 2022). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2022. 1.2, 7

[JP00] Ari Juels and Marcus Peinado. Hiding cliques for cryptographic security. Designs,
Codes and Cryptography, 20(3):269–280, 2000. 1.1.3, 5.1

[Kah95] Nabil Kahale. Eigenvalues and expansion of regular graphs. Journal of the ACM
(JACM), 42(5):1091–1106, 1995. 6.1.1, 6.2.2, 8

[Kas07] Martin Kassabov. Symmetric groups and expander graphs. Inventiones Mathemat-
icae, 170(2):327–354, 2007. 3.4, 3.4.4, 3.4.6

[KK22] Amitay Kamber and Tali Kaufman. Combinatorics via closed orbits: number the-
oretic ramanujan graphs are not unique neighbor expanders. In Proceedings of the
54th Annual ACM SIGACT Symposium on Theory of Computing, pages 426–435,
2022. 8

[KMM+13] Florent Krzakala, Cristopher Moore, Elchanan Mossel, Joe Neeman, Allan Sly,
Lenka Zdeborová, and Pan Zhang. Spectral redemption in clustering sparse net-
works. Proceedings of the National Academy of Sciences of the United States of
America, 110(52):20935–20940, 2013. 5.1.2

143

http://arxiv.org/abs/2009.03921
https://doi.org/10.1145/3406325.3451005
https://doi.org/10.1016/j.aim.2017.10.042

[KMOW17] Pravesh Kothari, Ryuhei Mori, Ryan O’Donnell, and David Witmer. Sum of
squares lower bounds for refuting any CSP. In Proceedings of the 49th Annual
ACM Symposium on Theory of Computing, pages 132–145, 2017. 5.1, 5.1

[KNR09] Eyal Kaplan, Moni Naor, and Omer Reingold. Derandomized constructions of k-
wise (almost) independent permutations. Algorithmica. An International Journal
in Computer Science, 55(1):113–133, 2009. 3.4, 3.4.4, 3.4.6

[Kow19] Emmanuel Kowalski. An introduction to expander graphs. Société mathématique
de France, 2019. 1.1.3

[Kub12] Carlos S Kubrusly. Spectral theory of operators on Hilbert spaces. Springer Sci-
ence & Business Media, 2012. 5.2.6, 5.2.25

[KW10] Tali Kaufman and Avi Wigderson. Symmetric LDPC codes and local testing. In
Andrew Chi-Chih Yao, editor, Innovations in Computer Science - ICS 2010, Ts-
inghua University, Beijing, China, January 5-7, 2010. Proceedings, pages 406–
421. Tsinghua University Press, 2010. URL: http://conference.iiis.
tsinghua.edu.cn/ICS2010/content/papers/32.html. 7.1

[LBM+18] Huaan Li, Baoming Bai, Xijin Mu, Ji Zhang, and Hengzhou Xu. Algebra-
assisted construction of quasi-cyclic LDPC codes for 5G new radio. IEEE Access,
6:50229–50244, 2018. doi:10.1109/ACCESS.2018.2868963. 7.1

[Lin17] Huijia Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and
locality-5 PRGs. In Proceedings of the 37th Annual International Cryptography
Conference, pages 599–629, 2017. 5.1

[Lov79] László Lovász. On the Shannon capacity of a graph. Institute of Electrical
and Electronics Engineers. Transactions on Information Theory, 25(1):1–7, 1979.
5.2.1

[LPS88] Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Com-
binatorica, 8(3):261—-277, 1988. 1.1.1, 1.1.1, 1.1, 6.1, 7.1.2

[LR00] John Lafferty and Dan Rockmore. Codes and iterative decoding on algebraic ex-
pander graphs. In the Proceedings of ISITA. Citeseer, 2000. 6.1

[LS21] Nati Linial and Michael Simkin. A randomized construction of high girth regular
graphs. Random Structures Algorithms, 58(2):345–369, 2021. doi:10.1002/
rsa.20976. 6.1

[LU95] Felix Lazebnik and Vasiliy A. Ustimenko. Explicit construction of graphs with
an arbitrary large girth and of large size. Discrete Appl. Math., 60(1-3):275–284,
1995. ARIDAM VI and VII (New Brunswick, NJ, 1991/1992). doi:10.1016/
0166-218X(94)00058-L. 6.1

[Lyo17] Russell Lyons. Factors of IID on trees. Combinatorics, Probability and Comput-
ing, 26(2):285–300, 2017. 5.1

[Mar73] Grigory Margulis. Explicit construction of concentrators. Problemy Peredachi
Informatsii, 94(4):71–80, 1973. 1.1.1

[Mar82] G. A. Margulis. Explicit constructions of graphs without short cycles and low den-

144

http://conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/32.html
http://conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/32.html
https://doi.org/10.1109/ACCESS.2018.2868963
https://doi.org/10.1002/rsa.20976
https://doi.org/10.1002/rsa.20976
https://doi.org/10.1016/0166-218X(94)00058-L
https://doi.org/10.1016/0166-218X(94)00058-L

sity codes. Combinatorica, 2(1):71–78, 1982. doi:10.1007/BF02579283.
6.1

[Mar88] Grigory Margulis. Explicit group-theoretic constructions of combinatorial
schemes and their applications in the construction of expanders and concentrators.
Problemy Peredachi Informatsii, 24(1):51–60, 1988. 1.1.1, 1.1, 6.1

[Mas14] Laurent Massoulié. Community detection thresholds and the weak ramanujan
property. In Proceedings of the forty-sixth annual ACM symposium on Theory
of computing, pages 694–703. ACM, 2014. 5.1.2

[MM09] Marc Mézard and Andrea Montanari. Information, physics, and computation. Ox-
ford University Press, 2009. 5.1

[MM21] Theo McKenzie and Sidhanth Mohanty. High-girth near-Ramanujan graphs with
lossy vertex expansion. In 48th International Colloquium on Automata, Lan-
guages, and Programming, volume 198 of LIPIcs. Leibniz Int. Proc. Inform., pages
Art. No. 96, 15. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2021. 8

[MNS18] Elchanan Mossel, Joe Neeman, and Allan Sly. A proof of the block model thresh-
old conjecture. Combinatorica, 38(3):665–708, 2018. 5.1.2

[MO18] Sidhanth Mohanty and Ryan O’Donnell. X-Ramanujan graphs, 2018. Available
at https://arxiv.org/abs/1904.03500. 5.1.2, 5.1.2, 5.2.4

[Mon17] Andrea Montanari. Bounds on ground state enery in the Sherrington–Kirkpatrick
model, 2017. Open problem from AIM workshop, available at http://aimpl.
org/phaserandom/1/. 5.1

[Mon19] Andrea Montanari. Optimization of the Sherrington-Kirkpatrick Hamiltonian. In
2019 IEEE 60th Annual Symposium on Foundations of Computer Science, pages
1417–1433. IEEE Comput. Soc. Press, Los Alamitos, CA, 2019. doi:10.1109/
FOCS.2019.00087. 5.1

[MOP20a] Sidhanth Mohanty, Ryan O’Donnell, and Pedro Paredes. Explicit near-ramanujan
graphs of every degree. In Proceedings of the 52nd Annual ACM SIGACT Sympo-
sium on Theory of Computing, pages 510–523, 2020. 1.2, 4, 6.1.1, 8

[MOP20b] Sidhanth Mohanty, Ryan O’Donnell, and Pedro Paredes. The sdp value for ran-
dom two-eigenvalue csps. In 37th International Symposium on Theoretical Aspects
of Computer Science (STACS 2020). Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik, 2020. 1.2, 5

[Mor94] Moshe Morgenstern. Existence and explicit constructions of q+1 regular Ramanu-
jan graphs for every prime power q. Journal of Combinatorial Theory. Series B,
62(1):44–62, 1994. 1.1.1, 1.1.10, 1.1, 6.1, 8

[MPR16] Raffaele Marino, Giorgio Parisi, and Federico Ricci-Tersenghi. The backtracking
survey propagation algorithm for solving random k-sat problems. Nature Commu-
nications, 7:12996, 2016. 5.1

[MS02] Mohammad M Mansour and Naresh R Shanbhag. Construction of ldpc codes from
ramanujan graphs. In 36th Annu. Conf. on Information Sciences and Systems,

145

https://doi.org/10.1007/BF02579283
https://arxiv.org/abs/1904.03500
http://aimpl.org/phaserandom/1/
http://aimpl.org/phaserandom/1/
https://doi.org/10.1109/FOCS.2019.00087
https://doi.org/10.1109/FOCS.2019.00087

2002. 6.1

[MS16] Andrea Montanari and Subhabrata Sen. Semidefinite programs on sparse random
graphs and their application to community detection. In Proceedings of the 48th
Annual ACM Symposium on Theory of Computing, pages 814–827, 2016. 5.1

[MSS15a] Adam Marcus, Daniel Spielman, and Nikhil Srivastava. Interlacing families I:
Bipartite Ramanujan graphs of all degrees. Annals of Mathematics. Second Series,
182(1):307–325, 2015. 1.1.1, 1.1.15, 1.1, 7.1, 8

[MSS15b] Adam Marcus, Daniel Spielman, and Nikhil Srivastava. Interlacing families IV:
Bipartite Ramanujan graphs of all sizes. In Proceedings of the 56th Annual IEEE
Symposium on Foundations of Computer Science, pages 1358–1377, 2015. 1.1.1,
1.1.15, 1.1

[MWW04] Brendan D. McKay, Nicholas C. Wormald, and Beata Wysocka. Short cy-
cles in random regular graphs. Electron. J. Combin., 11(1):Research Paper
66, 12, 2004. URL: http://www.combinatorics.org/Volume_11/
Abstracts/v11i1r66.html. 6.1, 6.3.2, 6.4.1

[Nil91] A. Nilli. On the second eigenvalue of a graph. Discrete Mathematics, 91(2):207–
210, 1991. 1.1

[NN93] Joseph Naor and Moni Naor. Small-bias probability spaces: efficient constructions
and applications. SIAM Journal on Computing, 22(4):838–856, 1993. 3.4, 3.4.2

[Nor97] Sam Northshield. Several Proofs of Ihara’s theorem. 1997. 5.3

[OST+14] Ryan O’Donnell, Xiaorui Sun, Li-Yang Tan, John Wright, and Yu Zhao. A com-
position theorem for parity kill number. In Proceedings of the 29th Annual Com-
putational Complexity Conference, pages 144–154, 2014. 5.2.2

[Par21] Pedro Paredes. Spectrum preserving short cycle removal on regular graphs. In
38th International Symposium on Theoretical Aspects of Computer Science, 2021.
1.2, 6

[Piz90] Arnold Pizer. Ramanujan graphs and Hecke operators. American Mathematical
Society. Bulletin. New Series, 23(1):127–137, 1990. 1.1.1, 1.1

[PK21] Pavel Panteleev and Gleb Kalachev. Quantum LDPC Codes with Almost Lin-
ear Minimum Distance. IEEE Transactions on Information Theory, December
2021. arXiv:2012.04068, doi:10.1109/TIT.2021.3119384. 7.1,
7.1.2, 7.1.4, 7.1.2, 7.1.5, 7.6, 7.6.1, 7.6, 7.6.2, 7.6

[PK22] Pavel Panteleev and Gleb Kalachev. Asymptotically good quantum and locally
testable classical ldpc codes. In Proceedings of the 54th Annual ACM SIGACT
Symposium on Theory of Computing, pages 375–388, 2022. 7.1, 8

[Ram15] Farzaneh Ramezani. On the signed graphs with two distinct eigenvalues. arXiv
preprint arXiv:1511.03511, 2015. 5.2.3

[RRS17] Prasad Raghavendra, Satish Rao, and Tselil Schramm. Strongly refuting random
CSPs below the spectral threshold. In Proceedings of the 49th Annual ACM Sym-
posium on Theory of Computing, pages 121–131, 2017. 5.1

146

http://www.combinatorics.org/Volume_11/Abstracts/v11i1r66.html
http://www.combinatorics.org/Volume_11/Abstracts/v11i1r66.html
http://arxiv.org/abs/2012.04068
https://doi.org/10.1109/TIT.2021.3119384

[RU08] Tom Richardson and Ruediger Urbanke. Modern coding theory. Cambridge uni-
versity press, 2008. doi:10.1017/CBO9780511791338. 3.5, 7.1

[RV00] Joachim Rosenthal and Pascal O Vontobel. Constructions of ldpc codes using
ramanujan graphs and ideas from margulis. In in Proc. of the 38-th Allerton Con-
ference on Communication, Control, and Computing. Citeseer, 2000. 6.1

[RVW02] Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-
zag graph product, and new constant-degree expanders. Annals of Mathematics,
155(1):157–187, 2002. 1.1.1, 1.1.11, 1.1, 8, 8

[Sen18] Subhabrata Sen. Optimization on sparse random hypergraphs and spin glasses.
Random Structures & Algorithms, 53(3):504–536, 2018. 5.1

[Ser77] Jean-Pierre Serre. Arbres, amalgames, SL2. Société Mathématique de France,
Paris, 1977. Avec un sommaire anglais, Rédigé avec la collaboration de Hyman
Bass, Astérisque, No. 46. 3.2

[Sho90] Victor Shoup. New algorithms for finding irreducible polynomials over finite
fields. Mathematics of Computation, 54(189):435–447, 1990. 3.4

[Spi19] Daniel Spielman. Spectral and Algebraic Graph Theory. Incomplete Draft, De-
cember 2019. 3.1, 3.1

[SS96] Michael Sipser and Daniel A. Spielman. Expander codes. volume 42, pages 1710–
1722. 1996. Codes and complexity. doi:10.1109/18.556667. 1.1.3

[Ste96] Andrew Steane. Multiple-particle interference and quantum error correction. Pro-
ceedings of the Royal Society of London. Series A: Mathematical, Physical and
Engineering Sciences, 452(1954):2551–2577, Nov 1996. arXiv:quant-ph/
9601029v3, doi:10.1098/rspa.1996.0136. 7.1

[Tal06] Michel Talagrand. The Parisi formula. Annals of Mathematics. Second Series,
163(1):221–263, 2006. 5.1

[Tsi80] Boris Tsirelson. Quantum generalizations of Bell’s inequality. Letters in Mathe-
matical Physics, 4(2):93–100, 1980. 5.2.6, 5.2.7

[WF09] Yusuke Watanabe and Kenji Fukumizu. Graph zeta function in the Bethe free en-
ergy and loopy belief propagation. In Proceedings of the 23rd Annual Conference
on Neural Information Processing Systems, pages 2017–2025, 2009. 3.2, 3.2.3

[Wil07] Ryan Williams. Algorithms and resource requirements for fundamental problems.
PhD thesis, Carnegie Mellon University, 2007. 5.2.2

[Wor99] Nicholas Wormald. Models of random regular graphs. In Surveys in combinatorics,
1999 (Canterbury), volume 267 of London Mathematical Society Lecture Note
Series, pages 239–298. Cambridge Univ. Press, Cambridge, 1999. 3.3, 4.4.1

147

https://doi.org/10.1017/CBO9780511791338
https://doi.org/10.1109/18.556667
http://arxiv.org/abs/quant-ph/9601029v3
http://arxiv.org/abs/quant-ph/9601029v3
https://doi.org/10.1098/rspa.1996.0136

	1 Introduction
	1.1 A (formal) journey through the world of expanders
	1.1.1 Constructing expanding graphs
	1.1.2 The expansion of random graphs
	1.1.3 Applications of expanders

	1.2 Outline of this thesis

	2 A Self-Contained Proof of the Main Technical Tool
	2.1 Statement of the theorem
	2.2 Setting up the proof
	2.3 The random part
	2.4 The deterministic part
	2.4.1 Encoding the hike graph
	2.4.2 Encoding the walk
	2.4.3 Full encoding

	2.5 The final countdown

	3 Background
	3.1 Graphs and linear algebra
	3.2 The trace method, non-backtracking walks and the Ihara–Bass formula
	3.3 Random models of regular graphs
	3.4 Standard derandomization tools
	3.5 A primer on coding theory

	4 2-Lifts and Explicit Near-Ramanujan Graphs
	4.1 Overview of main results
	4.1.1 On Bordenave's theorem with random edge-signs
	4.1.2 Explicit near-Ramanujan graphs via repeated 2-lifts

	4.2 On bicycle-freeness
	4.3 On random edge-signings of fixed bicycle-free base graphs
	4.4 Weakly derandomizing Bordenave's theorem for random lifts
	4.4.1 Derandomizing Bicycle-freeness
	4.4.2 Bound on the modified trace

	4.5 Explicit near-Ramanujan graphs
	4.6 The probabilistically strongly explicit construction

	5 Additive Lifts, CSPs and Two-Eigenvalue Graphs
	5.1 Background
	5.1.1 Our results
	5.1.2 Sketch of our techniques

	5.2 Preliminaries
	5.2.1 2XOR optimization problems and their relaxations
	5.2.2 Quantum games, and some quantum-relevant constraints
	5.2.3 2XOR graphs with only 2 distinct eigenvalues
	5.2.4 Random constraint graphs, instance graphs, and additive products
	5.2.5 Nomadic walks operators
	5.2.6 Operator theory

	5.3 An Ihara–Bass formula for additive lifts of 2-eigenvalue atoms
	5.4 Connecting the adjacency and nomadic spectrum
	5.5 Additive products of 2-eigenvalue atoms
	5.5.1 Enclosing the spectrum
	5.5.2 Construction of Witness Vectors
	5.5.3 SDP solution for random additive lifts

	5.6 Friedman/Bordenave for additive lifts
	5.6.1 Trace Method setup, and getting rid of tangles
	5.6.2 Eliminating singletons, and reduction to counting
	5.6.3 Tangle-free, singleton-free linkages are nearly duplicative
	5.6.4 The final countdown

	5.7 The SDP value for random two-eigenvalue CSPs

	6 Girth and Ramanujan Graphs
	6.1 Regular graphs and short cycles
	6.1.1 Our results

	6.2 Short cycles removal
	6.2.1 Analyzing the girth of fix(G)
	6.2.2 Bounding (fix(G))

	6.3 A near-Ramanujan graph distribution of girth (logd - 1 N)
	6.3.1 Counting near-Ramanujan graphs with high girth

	6.4 Explicit near-Ramanujan graphs of girth (logn)
	6.4.1 Derandomizing the number of short cycles

	7 Abelian Lifts and Applications to Coding Theory
	7.1 Symmetries and codes
	7.1.1 Our results and techniques
	7.1.2 Derandomized quantum and classical codes

	7.2 Non-backtracking walks and the Ihara–Bass formula for group lifts
	7.2.1 Diagonalizing the non-backtracking operator
	7.2.2 An Ihara–Bass formula for signed graphs

	7.3 Proof strategy
	7.4 A new encoding for special walks
	7.4.1 Graph encoding
	7.4.2 Bounding special walks

	7.5 Explicit expanding abelian lifts
	7.5.1 Generalizing the trace power nethod
	7.5.2 Combining all the ingredients

	7.6 Explicit quantum and classical codes

	8 Open Problems and Closing Remarks
	Bibliography

