Class 6 - Implementing a Genetic Algorithm

Guiding Genetic Algorithms with Language Models for Combinatorial Optimization

MISE Research Program - July 2025

Pedro Paredes

Hill Climbing

Warm Up - First-Fit Algorithm for Truck Packing

The first-fit algorithm is an heuristic algorithm for the Truck Packing
It works in the following way:

Keep a list of trucks that aren’t full yet, which is initially empty

Iterate through each package one by one, in the order of the input

For each package find the first truck which the package can fit and place the package iniit
If there is no such truck, add a new truck and place the package in it

This algorithm has a few interesting properties:

e The quality of the output depends on the order of the input
e Thereis always some order of the input that leads to the optimal solution
e Regardless of the order of the input, the output is always at most twice the optimal solution

First-Fit
Implementation

def first_fit(packages, C):
trucks = []
for package in packages:
for t in trucks:
if sum(t) + package <= C:

t.append(package)
break
else:
trucks.append([package])
return trucks

Hill Climbing for Truck Packing

States: list of lists, where each internal list contains the packages in one truck
Score function of a state: size of the list (i.e., number of trucks used)
Random state:

e Copy thelist of package lengths and randomly shuffle it
e Use the first-fit algorithm using the shuffled list of packages to produce a state

Transitions:

e Foreachtruck, check if its packages can be added to another truck without exceeding the capacity
e Incase of ties, pick arandom example of the above

Note that the transition method above can only improve the score of a state by 1

def hill_climb_packing(packages, C, time_limit):

Main Hiu_ Climbing t@ = time.perf_counter()

current = random_state(packages, C)
Logic Loop best = [t.copy() for t in current]
while time.perf_counter() - t@ < time_limit:
if not(try_improve_x(current, packages, C)):

current = random_state(packages, C)
if len(current) < len(best):
best = [t.copy() for t in current]

.. . . . if not verify(best, packages, C):
This is the main logic of the hill print("Error")

climbing algorithm, which could be return best, len(best)
used in any problem

Verify Logic

This is a helper method to help us
debug our code, i.e., make sure we
are finding valid solutions

def verify(packing, packages, C):
for truck in packing:
load = sum(truck)
IfiloadE=NE:

return False
packed_items = sorted(x for truck in packing for x in truck)
return packed_items == sorted(packages)

Random State
generation def random_state(packages, C):
items = packages.copy()

random.shuffle(items)
return first fit(items, C)

def try_improve_x(state, packages, C):
trucks_idx = list(range(len(state)))

Find the Best random. shuffle(trucks_idx)

for i in trucks_idx:

TranSition for j in trucks_idx:

=

continue
if sum(state[j]) + sum(state[i]) <= C:
for x in statel[i]:
state[j].append(x)
del statel[il]
return True
return False

Genetic Algorithms

Seeclass 7

This topic was postponed to next class

What's next?

Next class tomorrow/thursday (2pm)

No assighment sheet today, study the code from the class, which will be on the website

Class 7: Analyzing and Plotting Results

