Class 4 - Greedy Heuristics and Hill Climbing

Guiding Genetic Algorithms with Language Models for Combinatorial Optimization

MISE Research Program - July 2025

Pedro Paredes




Informed Search



Recall: Finding a Path on a Grid

Suppose you have a grid and you want to find a shortest path from point A to point B avoiding obstacles




DFS Solution

def dfs_shortest_path(r, c, goal, path_len, visited):
if {r, c) == goal:
return path_len

bs = 100000

for dr, dc in ((1,0), (-1,0), (0,1), (0,-1)):
nr, nc = r + dr, ¢ + dc
inside = @ <= nr < len(grid) and @ <= nc < len(grid[0])
if inside and grid[nr][nc] == 0 and (nr, nc) not in visited:

visited.add((nr, nc))

bs = min(bs, dfs_shortest_path(nr, nc, goal, path_len + 1, visited))

visited.remove((nr, nc))
return bs




Informed Search - Dijkstra's Algorithm

The simple DFS solution is pretty inefficient since we repeatedly search the same paths and we search
paths that are not very promising

We can make our search more efficient using informed search (also known as Dijkstra’s Algorithm):

e Instead of going depth-first, let’s look at more promising paths first, i.e., shorter
Instead of keeping track of visited cells, we will keep track of the shortest path to get to each of
them. If we visit a cell and the current distance is greater than or equal to the previous best, ignore

this path.

To prioritize shorter paths first, we will use a data structure known as a heap, which lets us find the
minimum element in it in O(log n) time.



import heapq

def dijkstra_shortest_path(start, goal):
rows, cols = len(grid), len(grid[@])
dist {start: 0}

pq = [(0, start[@], start[1])]

while pq:
d, r, ¢ = heapq.heappop(pq)
if (r, c) == goal:
return d
it dil=ndist (e e)l:
continue

for dr, dc in ((1, @), (-1, @), (0, 1), (0, -1)):
nr, nc =r + dr, ¢ + dc
inside = @ <= nr < rows and @ <= nc < cols
if inside and grid[nr] [nc] ==
nd =d+1
if nd < dist.get((nr, nc), float('inf')):
dist[(nr, nc)] =
heapq.heappush(pq, (nd, nr, nc))
return None







Packing a Truck

How many trucks do we need to carry all of the packages?
X9

X5 Truck size

X3




Informed Search for Packing a Truck

We will use a similar approach as before, but we need to encode the problem:

e Astateis atuple (i, bins), which means we have placed the first i packages and we have a list bins
with the remaining capacity of each non-empty bin

e Atransitionis placing one more item, so we can either place it in any bin that has capacity for it, or
we open a new bin

e The most promising states are the ones with less bins

Because the state space can be really large, we don’t keep track of the best way to get to each state



import heapq

def dijkstra_binpack(weights, C):
N = len(weights)
start = (0, ())
pq [(0, start)]

while pq:
g, (i, bins) = heapq.heappop(pq)
= -
return g

w = weights[il

for idx, free in enumerate(bins):
if free >= w:
new_bins = list(bins)
new_free = free - w
if new_free ==
new_bins.pop(idx)
else:
new_bins[idx] = new_free
new_state = (i + 1, tuple(new_bins))

heapq.heappush(pg, (g, new_state))

if w > C:
return None

new_bins = bins + (C - w,)

new_state = (i + 1, new_bins)

ng =g +1

heapq.heappush(pq, (ng, new_state))

return None




Heuristics



Heuristics

A heuristic is a non-optimal approximation to a problem
Often we use intuition about a problem to come up with heuristics
We can use heuristics in several ways:

e Topick which states to explore first
e Todiscard non promising solutions



A* Algorithm

The A* algorithm is an algorithm that combines heuristics with informed search



A" Algorithm for Bin Packing

See code demo



Hill Climbing



Hill Climbing

Hill climbing is a method to find a solution to a problem by always moving in the direction of a “better”
solution

e Startfromarandom states
e Move to a neighbor with better score (break ties randomly)
e Ifwe getstuck and didn’t find a solution, restart

A neighbor of a state is a state obtained by a local change: e.g., moving one queen in the n-queens
example



Hill Climbing for N-Queens

See code demo for N-queens



What's next?

Next class monday

No assignment sheet, study this week’s lectures and solve all remaining problems

Class 5: Introduction to Genetic Algorithms



