Class 3 - Python Programming Review li

Guiding Genetic Algorithms with Language Models for Combinatorial Optimization

MISE Research Program - July 2025

Pedro Paredes

B=
EE




Recursive Search



Generating all DNA Strings

Given a number n, generate all DNA strings with n elements, e.g. 2 -> AA, AC, AG, AT, CA, CC, ...

f gen strs(n):
if n == 0:

return ['']

sol = []

partial = gen strs(n - 1)

or base in ['A', 'C', 'G 7 ] |12
for dna in partial:
sol.append(base + dna)
rn sol




Permutations
Given a list, generate all of its permutations, e.g.[1, 2, 3]->[1, 2, 3],[1, 3, 2],[2, 1, 3],[2, 3, 1],[3, 1, 2], [3, 2, 1]

f all perms(items):
if len(items) <= 1:
return [items]
res = []

for i in range(len(items)):

first = items[1i]

rest = items[:1] + items[i+1:]

for p in all perms(rest):
res.append([first] + p)

irn res




Backtracking



What is backtracking?

Strategy where we enumerate all possible solutions to a problem by
incrementally building candidates to solutions

Very useful to find solutions to combinatorial problems (we'll see examples)



Alternate solution using backtracking

gen strs(current, n, sol):
if len(current) == n:
sol.append(current)

recurn

Fbasean [fAY, G2, G, T}
gen strs(base + current, n, sol)

Notice how we build partial solutions (the parameter ‘current’) incrementally



Counting problems: the n-queens problem

Consider a n by n chessboard where we want to place n queens such that they don't
attack other (example on the right)

How many different ways are there to do so?




- solve(board, placed):
n = len(board)
if placed

re 1t
recuri

ct =0

for i in range(n):
if isSafe(board, i, placed):
board[i] [placed] = 1
ct += solve(board, placed + 1)
board[i] [placed] = ©




isSafe(board, row, col):
n = len(board)
for j in range(col):

if board[row][j]:

R En TRl o

r, c=row -1, col -1
while r >= 0 and ¢ >= 0O:

if board[r]|[c]:

row + 1, col - 1
ile r < n a c >= 0:
if board[r][c]:
r+=1
c =1




Depth First Search



Depth First Search

Search by at every step you choosing one unexplored option, follow it all the way until you can’t continue,
then backtrack to the last branching point and pick the next option.

You always finish one complete branch before moving to its sibling branch, giving DFS a natural “deep
first, breadth later” behaviour.

When is DFS useful?

e Generating or solving puzzles (Sudoku, mazes, etc).
e Enumerating every possible arrangement or path.



Example: Finding a Path on a Grid

Suppose you have a grid and you want to find a path from point A to point B avoiding obstacles




Code

dfs paths(r, c, path, visited):

if (r; (len(grid)-1, len(grid[0])-1):
all paths.append(path[:])

returr

r dr, dc in ((1,0), (-1,0), (0,1), (0,-1)):

nr, nc r + dr, c + dc

inside = 0 <= nr < len(grid) and ® <= nc < len(grid[@])

if inside = grid[nr][nc] == ind (nr, nc) in visited:
visited.add((nr, nc))
path.append((nr, nc))
dfs paths(nr, nc, path, visited)
path.pop()
visited.remove((nr, nc))




Dynamic Programming (optional)



Avoiding repeating actions



Avoiding repeating actions

e When we write recursive code we subdivide a problem into smaller subproblems
e Oftenthere are alot of repeated subproblems (like in the previous example)
e We can avoid having to recompute the solution to subproblems by storing it

e Thisis called Dynamic Programming



Back to the Fibonacci example

1 dp = [-1 for 1 1in range(10)]

2

3~ def fib(n, dp):

4~ if dp[n] != -1:

5 return dp[n]

6 ~ if n <= 1:

7 dp[n] = n o

g~ Feas [0, 1.1, 2,3, 5. &, 13, 21, 34]
9 dp[n] = fib(n - 1, dp) + fib(n - 2, dp)

10 return dp[n]

1

12 print(fib(9, dp))
13 print(dp)



Challenge - Paths on a grid

e Let'ssuppose we have an by n grid with integers

e Westart at the top left corner of the grid and we want to go to the lower right
e We can move down or to the right

e Everytime we step on a grid cell we pay a cost equal to the cell’s value

e Whatis the minimum cost path?

o == o




Complete the following

1~ def path(grid, row, col):

2 n = len(grid)

3~ if row == n and col == n:

4 return gridfrow - 1][col - 1]
5

6 return grid{row - 1][col - 1] + min(path(???), path(???))



Solution

1~ def path(grid, row, col):

2
3~
4
5
6
T H
8
9~
10
11

n = len(grid)
if row == n and col ==
return gridfrow - 1][col - 1]

sol = 10000000000
if row < n:

sol = min(sol, path(grid, row + 1, col))
if col < n:

sol = min(sol, path(grid, row, col + 1))
return sol + grid[row - 1][col - 1]

this is correct, but ... what’s the problem with code?



How do we store repeated computation?

1 dp = [[-1 for i in range(n)] for j in range(n)]
2

3 - def path(grid, row, col):

< n = len(grid)

5~ if row == n and col == n:

6 return gridfrow - 1][col - 1]

7~ if dp[row - 1][col - 1] I= -1:

8 return dp[row - 1][col - 1]

9

10 sol = 10000000000

11~ if row < n:

12 sol = min(sol, path(grid, row + 1, col))
13~ if col < n:

14 sol = min(sol, path(grid, row, col + 1))
15 dp[row - 1][col - 1] = sol + grid[row - 1][col - 1]

16 return dp[row - 1][col - 1]



What's next?

Next class saturday

Another assignment sheet will be added to the website shortly

Class 4: Greedy Heuristics and Hill Climbing



