Class 2 - Python Programming Review |

Guiding Genetic Algorithms with Language Models for Combinatorial Optimization

MISE Research Program - July 2025

Pedro Paredes

B=
EE

Demo: Looking at assignment solutions

Object Oriented Programming

Objects and Classes

Variables in Python are all Objects (so an Object is the most generic data type)
In practice they are collections of attributes and methods

A class is a blueprint or template that defines the structure and behavior of objects

1+ class Person:

2 name = "* 1~ class Circle:

3 ;

4+~ def greet(self): Z radius = 1.0

5 print("Hello!™) 3 color = "Blue"

6 4

7 p = Person() = .

8 p.name = "Pedro" 5 cl1 = Circle()

9 print(p.name) 6 print(3:14 * cl.radius ** 2)
10 p.greet()

Why Classes?

e Encapsulation: Classes let us collect attributes and methods into a single unit

e Code Reusability: Once aclass is defined, we can use it to create multiple objects
e Abstraction: A way to represent real-world or abstract concepts in code

e Inheritance: Creating new classes based on existing ones

e Polymorphism: Ability of objects of different classes to respond to the same method
in different ways *(we are not going to need this)

Self and init

e selfis used to access attributes and methods of a class in python
e selfis aconvention and not a python keyword

e Class functions must have an extra first parameter in the method definition

e _init_(also called constructor) function of a class is invoked when we create an
object variable or an instance of the class

A longer Person example

1~ class Person:

2~ def __init_ (self, name):

3 self.name = name

4

5= def greet(self):

6 print("Hello! My name is", self.name)
7

8 p = Person("Pedro")
9 p.greet()

More examples

1~ class Car:

2~ def _ _init_ (self, make, model, year):
3 self.make = make

4 self.model = model

5 self.year = year

6

7= def display_info(self):

8 print("Car:", self.make, self.model, "(", self.year, ")")
9

10 ~ def start_engine(self):

11 print("Engine started!")

12

13 # Creating an object of the Car class

14 my_car = Car("Toyota", "Corolla", 2022)

15

16 my_car.display_info() # Output: Car: Toyota Corolla (2022)
17 my_car.start_engine() # Output: Engine started!

Inheritance

e Inheritance allows derived classes (child classes) to inherit attributes and
methods from a base class (parent class)

e Every class inherits from a built-in basic class called ‘object’

e Inheritance is achieved by specifying the base class name in parentheses after
the derived class name during class declaration

e If amethodis definedin both the base class and the derived class, the method in
the derived class overrides the one in the base class

1~ class Animal:
2~ def __init_ (self, name):
MOI‘e examples 3 self.name = name
4
5~ def speak(self):
6 print("The animal makes a sound.")
7
8 - class Dog(Animal):
) def speak(self):
10 print("Woof!")

12~ class Cat(Animal):
13~ def speak(self):

14 print("Meow!")
15

16 dog = Dog("Buddy")

17 cat = Cat("Whiskers")
18

19 dog.speak() # Output: Woof!
20 cat.speak() # Output: Meow!

More examples

1~ class Animal:

2~ def __init_ (self, name):

3 self.name = name

4

5~ def eat(self):

6 print("Animal", self.name, "is eating...")
7

8~ class Bird(Animal):

9~ def fly(self):

10 print("Bird", self.name, "is flying...")
11

12 canary = Bird("Tweety")

13

14 canary.eat() # Output: Animal is eating...
15 canary.fly() # Output: Bird is flying...

APIls and Libraries

What's a Python Library?

A library (also known as API) is a collection of modules (Python files) that contain functions and classes
We canimport a library into our program to be able to use classes/functions of the library

There is a lot of documentation online on what libraries provide, e.g.
https://docs.python.org/3/library/random.html

random — Generate pseudo-random numbers

https://docs.python.org/3/library/random.html

Anatomy of a library usage

import library

library.method()

we can use the library methods if we write its
name first followed by “dot” method

this imports the library into
our program, so we can use all
of its methods and classes

The random Library

We can use the random library to generate (pseudo-)random numbers and randomize things

print(random.random())
print(random.randint(1l, 6)
pets "hamster"

"doa
' VY

print(random.choice(pets))

cards = list(range(1l, 53))
m.shuffle(cards)

hand = random.sample(cards, 5)

print(hand)

Matplotlib

Matplotlib is a widely used data visualization
library in Python

It provides a comprehensive set of tools for
creating various types of plots, charts, and graphs

Y-axis

Line Plot

T
1.0

T
15

T
2.0

T
2.5

T
3.0
X-axis

T
3.5

T
4.0

T
4.5

T
5.0

Installing Packages with pip

Python comes with a few very useful libraries, but sometimes we want more, e.g. matplotlib
The Python Package Installer (known as pip) is a command-line tool to download and install libraries

Open aterminal (on VSCode go to Terminal > New Terminal), type the following and press enter

python -m pip install matplotlib

This will install matplotlib on your computer

Y-axis

import matplotlib.pyplot as plt

Data
X = [1: 2; 3, 4; 5]
y =1[3, 5, 2, 7, 4]

Example: Line Plot

Line Plot # Create a line plot

plt.plot(x, y, marker='o")

0 N O U W=

O

Customize labels and title
plt.xlabel('X-axis")
plt.ylabel('Y-axis")
plt.title('Line Plot')

ol ol
U B W N = O

Display the plot
plt.show()

b
(o]

1.0 15 2.0 25 3.0 3.5 4.0 45 5.0
X-axis

Values

Example: Bar Chart

Bar Chart

A B (A D
Categories

O NN O U B WN -

i G S e e e e
SO Ul AR W N - O W

import matplotlib.pyplot as plt

Data
categories = ['A', 'B', 'C', 'D']
values = [15, 7, 12, 9]

Create a bar chart
plt.bar(categories, values)

Customize labels and title
plt.xlabel('Categories"')
plt.ylabel('Values')
plt.title('Bar Chart')

Display the plot
plt.show()

Frequency

Example: Bar Chart

Histogram

Values

0 N O UL B W N =

N e T s Iy
v b W N = O VO

import matplotlib.pyplot as plt

Data
values = [2, 3, 5; 5; 7, 8; 8, 8, 9; 9, 10, 11, 11, 111

Create a histogram
plt.hist(values, bins=5, edgecolor='black')

Customize labels and title
plt.xlabel('Values')
plt.ylabel('Frequency')
plt.title('Histogram')

Display the plot
plt.show()

OpenAl

Connect to the OpenAl APl and prompt is
LLM. It needs to be installed (information
here:
https://platform.openai.com/docs/libraries)

from
client

completion completions.create(
model="gpt-4.1-na
max completion to =30,
messages=|

)

print(completion.choices[0].message.content)

https://platform.openai.com/docs/libraries

Recursion Recap

Recursion: What is it?

A problem solving approach where we break a problem into smaller
versions of the same problem.

Technically, we can think of recursion as being a function that calls
itself.

However, in reality, it turns out to be a powerful way to solve
problems.

RECURSION

REQQR;ION
RECURSION

Here we go again

RECURSION

Here we go again

Simple Recursive Functions: Example 1

Let us consider the problem of adding all the numbers in a list.

If we implement a iterative (i.e. nonrecursive) solution for the problem, it would look like this:

def listSum(nums):
numsum = 0
for num in nums:
numsum += num
return numsum

How would a recursive version of this function look like?

Simple Recursive Functions: Example 1

A recursive solution for the problem would look like:

def recListSum(nums):
if len(nums) == 0:
return 0
return nums[0] + recListSum(nums[1:])

H_/

L List slicing: all elements of

nums except the first one

Recursion: What is it?

We often divide a recursive function in two parts:

- Abase case: returns aresult for a known value;
- Arecursive case: computes a result calling the same function for a different value.

In other words, with recursion, we solve a problem by assuming it is already solved :)

Recursion: Code example

A template for simple recursive functions can be achieved as follows:

def recursiveTemplate(value):
if baseCase == True:
return knownValue
else:
return recursiveTemplate(modify(value))

Recursion: Code example

A template for simple recursive functions can be achieved as follows:

def recListSum(nums):
Base case { if len(nums) == 0:
return 0
return nums[0] + recListSum(nums[1:]) } Recursive case

Sorting

Suppose you have a list of integers and you want to sort it

Let’s try to use recursion by breaking the problem into smaller subproblems

Pick a number and move
numbers less than it to the left,
and greater than to the right

4

10

2

v

10

10

/

This process is
known as partition

Sorting - Code

- partition(nums):
pivot = nums[0O]
left = []
middle
right =
for num in nums:
if num < pivot:
left.append(num)
elif num > pivot:
right.append(num)
elif num == pivot:
middle.append(num)
(left, middle, right)

recursive sort(nums):
if len(nums) <= 1:
return nums
(left, middle, right) = partition(nums)

return recursive sort(left) + middle + recursive sort(right)

print(recursive sort([4, 10, 2, 7, 3, 1, 6, 8]))

/

This algorithm is
known as quicksort

What's next?

Next class tomorrow

Another assignment sheet will be added to the website shortly

Class 3: Python Programming Review ||

