Class 11 - Future Steps

Guiding Genetic Algorithms with Language Models for Combinatorial Optimization

MISE Research Program - July 2025

Pedro Paredes

B=
EE




Components of GA System



System Diagram

Test Case
Generator

Input Parser

GA Method

LLM Caller

Configuration
File

Python Sandbox




Genetic Algorithm Method

Goal: The main method
Description: Runs the genetic algorithm method

Libraries: imports all the other build libraries

Note how we can build our own classes to group together
logic components of our implementation, e.g. states or input

self.N [\

self.K K
self.L L
self.C = C.copy()

def genetic_llm_carr(N, K, L, C,

P=10,
n_gens=20,
generations=1,
seed=1234):

random. seed(seed)

sandbox = PythonSandbox()

client = OpenAI()

inp = Input(N, K, L, C)

initial_state = State(Config.initial_program)
initial_state.run(sandbox, inp)
population = [initial_ state]

best = population[0]

for generation in range(generations):
offspring = []
rep_prob = [s.score for s in population]
rep_prob = [sum(rep_prob) / s for s in rep_prob]

for _ in range(n_gens):
s1 = random.choices(population, weights=rep_prob) [0]
new_s = generate_new_state(sl, client)
new_s. run(sandbox, inp)
offspring.append(new_s)

new_population = population + offspring
new_population.sort(key=lambda a: a.score)
population = [s for s in new_population[:P] if s.score < Config.INF]

if population[@].score < best.score:
best = population[0]

return best.code, best.score




Input Parser

Goal: Read input files into Python

Description: Implements a function that given a filename, opens it and reads it into your specified format



LLM Caller

import backoff
import openai
import
Goal: Interfaces with some LLM
api_limit
e e . api_calls (/]
Description: Implements a function that sends a prompt to

an LLM and returns the result @backoff.on_exception(backoff.expo, openai.RateLimitError)
def call_llm(client, instructions, input, max_output_tokens=100):

Libraries- openai pal api_calls, api_limit

if api_calls >= api_limit:
raise RuntimeError("Exceeded max calls :(")
response = client.responses.create(
model="gpt-4.1-mini",
max_output_tokens=max_output_tokens,
instructions=instructions,
input=input

Calling an LLM requires an account (OpenAl website)

After creating an account, you need an APl key, which is a )
sort of password for you to call the LLM with your account. api-caus =1

. return response.output_text
Never share your APl keys with anyone!



https://platform.openai.com/docs/overview
https://platform.openai.com/docs/libraries?desktop-os=macOS#create_and_export_an_api_key

Choosing an LLM

Making an LLM call costs money, which depends on the number of tokens (i.e. words) your call produces
and the type of LLM used. You can see the list of OpenAl models here

For a project like this, you want to make lots of fast LLM calls, so you want a model that is quick and
cheap, like the GPT-4.1 mini or the GPT-4.1 nano, which cost $.2 and $ .6 per 1 million tokens

For reference, running the CARR implementation with ~100 API calls uses around 10 thousand tokens,
so less than 1 cent for the above models

To avoid going over budget, you want to make sure you control the number of calls by limiting the number
of times the method can be called, and by using the max_output_tokens option


https://platform.openai.com/docs/models

Python Sandbox

Goal: Run the Python codes in a safe environment

Description: To score a state we need to run the code associated to it. However, this is LLM generated code,
so it could be unsafe (e.g., the LLM could “hallucinate” and try to delete all files on your computer). So we need
to prevent it from running dangerous code.

One way of addressing this is by using a “sandbox” software: a special controlled virtual environment where
you can run unsafe code. The simplest one out there is called Piston. Setting it up requires installing a few
things and running a server that your Python program then connects to (using the requests library). This is
not easy at all to setup.



https://github.com/engineer-man/piston
https://pypi.org/project/requests/

Python Sandbox Alternative

An alternative is to tell the LLM prompt to not produce any unsafe code, and then check if the code contains
any of the following potentially unsafe keywords:

import, os, subprocess, sys, shutil, socket, ctypes, eval, exec, __import__,
open, __globals__, __dict__, __class__

You can then run Python code using the exec() function

However, note that this is still potentially unsafe. The LLMs are very unlikely to produce unsafe code, but it
could happen


https://docs.python.org/3/library/functions.html#exec

Configuration File

Goal: Store all the parameters of the system

Description: This is a simple file that contains all the parameters that are used in the code, like: the initial
code (for the 1st population), the values of size of population, number of offspring per generation, and
number of generations, the number of max tokens for LLM calls, the texts in the LLM prompts.

Using a file like this allows you to have control over all of the parameters of your system and makes it easier
to tune them. You can think of it as a control center of the whole system



Test Case Generator

Goal: Generates random inputs for testing

Description: Picks N+1 points at random in the plane, one per
location, and sets the costs Cij to the distance between the points

Libraries: random, writing to a file

A


https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files

Other Interesting Topics



List of Interesting Topics We Didn't Cover

e Simulated Annealing - a more complex Hill Climbing method
e Island Genetic Algorithms - a method to keep multiple populations to decrease similarity
e Multithreading - running multiple functions at once in different processors



Final Assignment - Report Due Sunday

Details will be on website soon



That's all!



