Class 1 - Project Overview

Guiding Genetic Algorithms with Language Models for Combinatorial Optimization

MISE Research Program - July 2025

Pedro Paredes

B=
EE

Who am I?

Call me Pedro

A

Teaching Professor at Princeton University

Pedro Paredes

PhD in Computer Science from CMU

Been teaching for MISE for 5 years

Class logistics

We bsite https://www.cs.princeton.edu/~pparedes/teaching/mise/summer25/

Emai I pparedes@cs.princeton.edu

Please ask questions during class! Raise your arm through zoom or unmute yourselves and talk!

Why this project?

Problems as Big Puzzles

A combinatorial problem can be viewed as an exceptionally large puzzle:

e We are given many discrete pieces and clear rules for how they may be arranged
e Ourgoalistodiscover avalid arrangement that is best according to some measure of quality

Combinatorial problems appear everywhere: packing delivery trucks, arranging playlists, balancing
sports teams, or routing thousands of packages through a warehouse, ...

What Are We Building?

We will create an algorithm that searches through arrangements of pieces to solve these “puzzles”

Our algorithm will use large language models to get advice on where to search next

Problem

/ Search Algorithm \
\ ‘ Solutions

LLM Hints

Combinatorial Optimization

A Big Puzzle - Packing a Truck

Problem: A courier arrives with a pile of packages that must all go into a single delivery truck. Some are
large, some small, some oddly shaped. Load everything so nothing gets crushed and no space is wasted.

Slightly technical framing:

e Puzzle pieces: a fixed set of packages, each with known dimensions.
e Clear rules (constraints): packages may not overlap and must fit in the truck (W x H x D size box)
e Measure of quality (objective): maximize the total packed volume.

Finding the optimal loading order and orientation for all packages - while obeying the constraints - is a
classic combinatorial optimization problem.

A Big Puzzle - Packing a Truck

X9

5 Fit as many as
possible here:

X3

A Big Puzzle - Packing a Truck

X9
Possible

X3 arrangement with: 3
large, 3 medium, 5
small

X3

A Big Puzzle - Packing a Truck

More than 1 million possible arrangements - computer finds best in ~10 seconds

Searching For Solutions

Search Algorithms

A search algorithm is a systematic way to explore the many possible arrangements:
e Generate acandidate arrangement
e Evaluate it with the objective function (score)
e Decide what to try next, based on a strategy - repeat until found best arrangement

The most straightforward strategy is exhaustive search:
e Enumerate every valid arrangement, evaluate each, and keep the best

Search Algorithms - Exhaustive Search

Search Algorithms - Heuristics

We make search more efficient using heuristics: rules of thumb that steer the search toward good
solutions. Examples:

e Check more promising solutions first

e Discard solutions that we can be sure won’t be the best

We will use a method known as a Genetic Algorithm:
e Keep apopulation of candidate solutions
e Evaluate fitness (i.e. who's more promising?) and select the stronger candidates
e Combine parts of two solutions (crossover) and mutate them randomly

Using Language Models

Large Language Models

A large language model (LLM) is an Al model trained on vast collections of text and code

Capabilities we care about:

e Text generation — produces coherent explanations or documentation.

e Code synthesis — writes or edits functions on demand.

e Pattern completion — given partial input, can propose plausible continuations (useful for
repairing or mutating programs).

What's on your mind today?

Ask anything

+ 3 Tools

LLM-Guided Evolution

Large language models can propose smarter mutations and even entire heuristic functions

This project is inspired by the following two works, by the Google DeepMind team

You will essentially build a simpler version of their method and apply it to some new problems

Article

prog et
AlphaEvolve: A coding agent for scientific and
searchwith large language models A coding

Romera-Paredes, Bernardino, et al. "Mathematical discoveries from program search with large Novikov, Alexander, et al. "AlphaEvolve: A coding agent for scientific and algorithmic discovery."
language models!" Nature 625.7995 (2024): 468-475.

Roadmap

Course Roadmap

Date

July 14
July 16
July 18
July 19
July 21
July 22
July 24
July 25
July 28
July 29
July 30

July 31

Topic

Project Overview

Python Programming Review |

Python Programming Review Il

Greedy Heuristics and Hill Climbing
Introduction to Genetic Algorithms
Implementing a Genetic Algorithm in Python
Analyzing and Plotting Results

Problem Focus: Conveyor Diverter Routing
Combining LLMs and GAs

Exploration & Comparison: GA vs GA+LLM
Report Writing & Analysis

Final Presentation

Note: schedule might change
slightly. I'll let you know a few
days in advance if so

Warmup Tasks

Basic Stats

- stats(nums):
total = ©
count 0

- n in nums:
total += n
count += 1

Write a function stats(nums) that returns a S caiint — 0
tuple (total, average) for a list of integers. return (0, ©)

average = total / count
return (total, average)

Second'LargeSt i:f_;gg{lirgest(nums):
Distinct Value

second = 0

in nums:
largest:

if largest == 0 or n > largest:
second = largest

Implement second_largest(nums) that returns
largest = n

the second-largest distinct integer in the list.
Assume that all elements are positive. ST second = 0 oFr N> decands
second = n

return second

Right Rotation by k

Given a list nums and non-negative integer k,
return a new list that is nums rotated to the right
by k positions (e.g., [1,2,3,4], k=1 —
[4,1,2,3]).

n = len(nums)

for i1 in range(n -
res.append(nums[i])

or i in

fn

range(n -

f rotate right(nums, k):

k,

k):

n):

res.append(nums[i])

wurn

res

f min diff sort(nums):
n = len(nums)

nums[1] - nums[@])

Minimum Absolute g

abs(nums[i] - nums[j])
f d < best:

Difference Pair]

Write min_diff (nums) that returns the smallest
absolute difference between any two distinct

numbers in nums.
- min diff sort fast(nums):

= sorted(nums)
abs(nums[1] - nums[0])

in range(2, len(nums)):
abs(nums[i] - nums[i - 1])
if d < best:
best = d
rn best

Extra Tasks

Solve by Next Class

1. Letter-Frequency Histogram
Write letter_histogram(text) that prints each alphabetic character (case-insensitive) and its count in text. Ignore
digits, punctuation, and spaces. Print the histogram in descending count order, and for ties, alphabetically.

2. Run-Length Encoder / Decoder
Implement two functions: compress(s) returns the run-length encoding of string s (e.g., "aaabbc"” — "a3b2c1").
decompress(rle) reverses the process. Assume runs never exceed 9.

3. Print Matrix in Spiral Order
Implement spiral_print(n) that returns a rectangular 2-D list with numbers 1 through n*n in clockwise spiral order.
Example: 3 -> [[1,2,3],[8,9,4],[7,6,5]].

Solve by Next Class

4. Tic-Tac-Toe Winner
Function winner (board) gets a 3 x 3 list of lists containing 'X', 'O, or ' ". Return 'X', '0", or None depending on
who has three in a row (rows, columns, or diagonals). No need to check invalid games.

5. Merge Overlapping Intervals
Given a list of half-open intervals [(start, end), ...]withstart < end, write merge(intervals) thatreturns a
new list where overlapping or touching intervals are combined. Sort the final list by start time.

6. Balanced Brackets
Implement is_balanced(expr) that returns True if every ' (' has a matching ') ' in the proper order, otherwise
False. Assume that expr is a string containing only parenthesis.

What's next?

Next class on Wednesday (no class tomorrow)

Write Python code to solve each of the extra tasks (we will discuss solutions next class)

Class 2: Python Programming Review |

Image References

Warehouse - Adobe Stock - Education License
Soccer - Adobe Stock - Education License

Van - Adobe Stock - Education License

Music - Adobe Stock - Education License
Boxes - Adobe Stock - Education License
Tetris - Adobe Stock - Education License

https://stock.adobe.com/enterprise-conditions
https://stock.adobe.com/enterprise-conditions
https://stock.adobe.com/enterprise-conditions
https://stock.adobe.com/enterprise-conditions
https://stock.adobe.com/enterprise-conditions
https://stock.adobe.com/enterprise-conditions

