
Class 1 - Project Overview
Guiding Genetic Algorithms with Language Models for Combinatorial Optimization

MISE Research Program - July 2025

Pedro Paredes

Who am I?

 Pedro Paredes

Teaching Professor at Princeton University

PhD in Computer Science from CMU

Been teaching for MISE for 5 years

Call me Pedro

Class logistics

Website https://www.cs.princeton.edu/~pparedes/teaching/mise/summer25/

Please ask questions during class! Raise your arm through zoom or unmute yourselves and talk!

Email pparedes@cs.princeton.edu

Why this project?

Problems as Big Puzzles
A combinatorial problem can be viewed as an exceptionally large puzzle:

● We are given many discrete pieces and clear rules for how they may be arranged

● Our goal is to discover a valid arrangement that is best according to some measure of quality

Combinatorial problems appear everywhere: packing delivery trucks, arranging playlists, balancing

sports teams, or routing thousands of packages through a warehouse, …

What Are We Building?

We will create an algorithm that searches through arrangements of pieces to solve these “puzzles”

Our algorithm will use large language models to get advice on where to search next

Problem

Search Algorithm

LLM Hints

Solutions

Combinatorial Optimization

A Big Puzzle - Packing a Truck

Problem: A courier arrives with a pile of packages that must all go into a single delivery truck. Some are
large, some small, some oddly shaped. Load everything so nothing gets crushed and no space is wasted.

Slightly technical framing:

● Puzzle pieces: a fixed set of packages, each with known dimensions.
● Clear rules (constraints): packages may not overlap and must fit in the truck (W × H × D size box)
● Measure of quality (objective): maximize the total packed volume.

Finding the optimal loading order and orientation for all packages - while obeying the constraints - is a
classic combinatorial optimization problem.

Just like a big game of tetris!

A Big Puzzle - Packing a Truck

x 9

x 5

x 3

Fit as many as
possible here:

A Big Puzzle - Packing a Truck

x 9

x 5

x 3

Possible
arrangement with: 3
large, 3 medium, 5
small

A Big Puzzle - Packing a Truck

More than 1 million possible arrangements - computer finds best in ~10 seconds

Searching For Solutions

Search Algorithms

A search algorithm is a systematic way to explore the many possible arrangements:

● Generate a candidate arrangement

● Evaluate it with the objective function (score)

● Decide what to try next, based on a strategy - repeat until found best arrangement

The most straightforward strategy is exhaustive search:

● Enumerate every valid arrangement, evaluate each, and keep the best

Search Algorithms - Exhaustive Search

…

…

…

…

…

…

…

Search Algorithms - Heuristics
We make search more efficient using heuristics: rules of thumb that steer the search toward good

solutions. Examples:

● Check more promising solutions first

● Discard solutions that we can be sure won’t be the best

We will use a method known as a Genetic Algorithm:
● Keep a population of candidate solutions

● Evaluate fitness (i.e. who’s more promising?) and select the stronger candidates

● Combine parts of two solutions (crossover) and mutate them randomly

Using Language Models

Large Language Models

A large language model (LLM) is an AI model trained on vast collections of text and code

Capabilities we care about:

• Text generation — produces coherent explanations or documentation.

• Code synthesis — writes or edits functions on demand.

• Pattern completion — given partial input, can propose plausible continuations (useful for

repairing or mutating programs).

LLM-Guided Evolution
Large language models can propose smarter mutations and even entire heuristic functions

This project is inspired by the following two works, by the Google DeepMind team

You will essentially build a simpler version of their method and apply it to some new problems

Novikov, Alexander, et al. "AlphaEvolve: A coding agent for scientific and algorithmic discovery."Romera-Paredes, Bernardino, et al. "Mathematical discoveries from program search with large
language models." Nature 625.7995 (2024): 468-475.

Roadmap

Course Roadmap

Note: schedule might change
slightly. I’ll let you know a few
days in advance if so

Warmup Tasks

Basic Stats

Write a function stats(nums) that returns a
tuple (total, average) for a list of integers.

Second-Largest
Distinct Value

Implement second_largest(nums) that returns
the second-largest distinct integer in the list.
Assume that all elements are positive.

Right Rotation by k

Given a list nums and non-negative integer k,
return a new list that is nums rotated to the right
by k positions (e.g., [1,2,3,4], k=1 →
[4,1,2,3]).

Minimum Absolute
Difference Pair

Write min_diff(nums) that returns the smallest
absolute difference between any two distinct
numbers in nums.

Extra Tasks

Solve by Next Class

1. Letter-Frequency Histogram
Write letter_histogram(text) that prints each alphabetic character (case-insensitive) and its count in text. Ignore
digits, punctuation, and spaces. Print the histogram in descending count order, and for ties, alphabetically.

2. Run-Length Encoder / Decoder
Implement two functions: compress(s) returns the run-length encoding of string s (e.g., "aaabbc" → "a3b2c1").
decompress(rle) reverses the process. Assume runs never exceed 9.

3. Print Matrix in Spiral Order
Implement spiral_print(n) that returns a rectangular 2-D list with numbers 1 through n*n in clockwise spiral order.
Example: 3 -> [[1,2,3],[8,9,4],[7,6,5]].

Solve by Next Class

4. Tic-Tac-Toe Winner
Function winner(board) gets a 3 × 3 list of lists containing 'X', 'O', or ''. Return 'X', 'O', or None depending on
who has three in a row (rows, columns, or diagonals). No need to check invalid games.

5. Merge Overlapping Intervals
Given a list of half-open intervals [(start, end), ...] with start < end, write merge(intervals) that returns a
new list where overlapping or touching intervals are combined. Sort the final list by start time.

6. Balanced Brackets
Implement is_balanced(expr) that returns True if every '(' has a matching ')' in the proper order, otherwise
False. Assume that expr is a string containing only parenthesis.

What’s next?

Next class on Wednesday (no class tomorrow)

Write Python code to solve each of the extra tasks (we will discuss solutions next class)

Class 2: Python Programming Review I

Image References

● Warehouse - Adobe Stock - Education License

● Soccer - Adobe Stock - Education License

● Van - Adobe Stock - Education License

● Music - Adobe Stock - Education License

● Boxes - Adobe Stock - Education License

● Tetris - Adobe Stock - Education License

https://stock.adobe.com/enterprise-conditions
https://stock.adobe.com/enterprise-conditions
https://stock.adobe.com/enterprise-conditions
https://stock.adobe.com/enterprise-conditions
https://stock.adobe.com/enterprise-conditions
https://stock.adobe.com/enterprise-conditions

