
MISE Summer Programming Camp
Class 7 Worksheet - Efficient Programming

This worksheet has 2 sections, which should take you around 1 hour to complete. Section 1
contains a series of questions about what we did in class. You’ll have to reason about code and
run some code in your IDE to see the result and write it down. In Section 2 you’ll have to write
some programs and submit them to CodeForces.

1. Review questions
1. For each function, write down the time complexity of each one (note, you don’t have to
understand what the code is doing, you only need to think about the time complexity using the
notion of big-O notation you learned in class):

A.
def maximum(arr):

max_so_far = None

for item in arr:

if max_so_far is None:

max_so_far = item

else:

max_so_far = max(item, max_so_far)

return max_so_far

B.
def insertion_sort(arr):

for i in range(len(arr)):

if i == 0:

continue

else:

curr = i

while curr > 0:

if arr[curr] < arr[curr-1]:

temp = arr[curr]

arr[curr] = arr[curr-1]

arr[curr-1] = temp

else:

break



curr-=1

return arr

C. (Challenge/Optional)
def binary_search(arr,item):

if len(arr) == 0:

return None

elif len(arr) == 1:

if arr[0] == item:

return 0

else:

return None

elif len(arr) == 2:

if arr[0] == item:

return 0

elif arr[1] == item:

return 1

else:

return None

else:

mid = len(arr)//2

if arr[mid] == item:

return mid

elif arr[mid] < item:

pos = binary_search(arr[mid:],item)

if pos:

return pos + mid

else:

return None

else:

pos = binary_search(arr[:mid],item)

if pos:

return pos

else:

return None

Hint: Don't worry if part C is hard! Determining the complexity of a recursive function can be
difficult. This function is a popular one for finding the index/position of an item in a sorted array.
The way it works is by first looking at the middle item. If the middle item happens to be the item



we are looking for, we are done. If on the other hand, the middle item is less than the item we
are looking for, then if the item is in the array, it will be to the right of the middle item since the
array is sorted. And if the middle item is less than the item we are looking for then we search in
the right half.
Tackle this problem by first doing a few simple examples to convince yourself that you
understand what the program is doing before you start trying to figure out the complexity.

2. Coding Questions
You should see a new problem set called “Class 7 Problems”
(https://codeforces.com/group/K1Fxw6skwV/contest/385740). You should solve at least the first
2 problems (Odd sums and Even products). The last 2 problems are much harder and are
intended to be challenge problems for the more experienced students (Colorful Stamp and
Maximum Crossings).

https://codeforces.com/group/K1Fxw6skwV/contest/385740

