
Class 6 - Recursion

MISE Summer Programming Camp 2023



Intro

Viknesh (“Vik”) Krishnan

Software Engineer @ Google

BS in Mathematics & Computer Science from UMichigan



Recap of Class 5

● Lists as “references” (will review again later)

○ A list variable “refers” to an actual list

○ Two variables can point to the same actual list

● 2 dimensional / multidimensional lists

○ Lists of lists to record tables of data

● Extra features of lists

○ List comprehension

○ List slicing



Recursion



Simple Recursive Functions: Example 1

Let us consider the problem of adding all the numbers in a list.

If we implement a iterative (i.e. nonrecursive) solution for the problem, it would look like this:

How would a recursive version of this function look like?



Simple Recursive Functions: Example 1

A recursive solution for the problem would look like:

List slicing: all elements of 
nums except the first one



Recursion: What is it?

A problem solving approach where we break a problem into smaller 
versions of the same problem.

Technically, we can think of recursion as being a function that calls 
itself.

However, in reality, it turns out to be a powerful way to solve 

problems.



Recursion: What is it?

We often divide a recursive function in two parts:

- A base case: returns a result for a known value;

- A recursive case: computes a result calling the same function for a different value.

In other words, with recursion, we solve a problem by assuming it is already solved :)



Recursion: Code example

A template for simple recursive functions can be achieved as follows:



Pop Quiz 1:

What is the output of the following code:

itempool.com/mise23/live

pythontutor

https://pythontutor.com/visualize.html#code=def%20f%28x%29%3A%0A%20%20%20%20if%20x%20%3D%3D%200%3A%0A%20%20%20%20%20%20%20%20return%200%0A%20%20%20%20return%201%20%2B%20f%28x%20-%201%29%0Aprint%28f%285%29%29&cumulative=false&heapPrimitives=nevernest&mode=edit&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false


Pop Quiz 2:

What is the output of the following code:

pythontutor

https://pythontutor.com/visualize.html#code=def%20f%28a,%20b%29%3A%0A%20%20%20%20if%20b%20%3D%3D%200%3A%0A%20%20%20%20%20%20%20%20return%201%0A%20%20%20%20return%20a%20*%20f%28a,%20b%20-%201%29%0Aprint%28f%283,%202%29%29&cumulative=false&heapPrimitives=nevernest&mode=edit&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false


On the previous example:

The previous pop quiz is a function that computes the power of a number!

Here is a better code:



Challenge: Fibonacci!

Now let us consider the problem of computing the nth Fibonacci number.

The Fibonacci numbers are defined as follows:

So, 

F2 = F0 + F1 = 1

F3 = F2 + F1 = 2

3, 5, 8, …



Challenge: Fibonacci!

Now let us consider the problem of computing the nth Fibonacci number.

The Fibonacci numbers are defined as follows:

Let’s try solving this problem two different ways, using iteration and using recursion.



Fibonacci: Solutions

Iterative Solution: Recursive Solution:

Visualize this in Python Tutor!

https://pythontutor.com/visualize.html#code=def%20fib%28n%29%3A%0A%20%20%20%20if%20n%20%3C%3D%201%3A%0A%20%20%20%20%20%20%20%20return%20n%0A%20%20%20%20return%20fib%28n%20-%201%29%20%2B%20fib%28n%20-%202%29%0A%20%20%20%20%0Aprint%28fib%283%29%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false


Recursion tree



Pop Quiz 3:

Which of the following mimics what the range() function does:



Backtracking



Review: List References

References are essentially pointers that allow variables to refer to an actual list

(reference) (not reference)

pythontutor

https://pythontutor.com/visualize.html#code=def%20f%28q%29%3A%0A%20%20%20%20q%5B0%5D%20%3D%205%0A%20%20%20%20print%28q%29%0A%0Amylist%20%3D%20%5B1,%202,%203,%204,%205%5D%0Af%28mylist%29%0Aprint%28mylist%29&cumulative=false&curInstr=8&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false


What is backtracking?

Strategy where we enumerate all possible solutions to a problem by 

incrementally building candidates to solutions

Very useful to find solutions to combinatorial problems (we’ll see examples)



Generating all DNA strings of length n



Alternate solution using backtracking

Notice how we build partial solutions (the parameter ‘current’) incrementally



Counting problems: the n-queens problem

Consider a n by n chessboard where we want to place n queens such that they don’t 

attack other (example on the right)

How many different ways are there to do so?







Dynamic Programming



Avoiding repeating actions



Avoiding repeating actions

● When we write recursive code we subdivide a problem into smaller subproblems

● Often there are a lot of repeated subproblems (like in the previous example)

● We can avoid having to recompute the solution to subproblems by storing it

● This is called Dynamic Programming



Back to the Fibonacci example



Challenge - Paths on a grid

● Let’s suppose we have a n by n grid with integers

● We start at the top left corner of the grid and we want to go to the lower right

● We can move down or to the right

● Everytime we step on a grid cell we pay a cost equal to the cell’s value

● What is the minimum cost path?



Complete the following



Solution

this is correct, but … what’s the problem with code?



How do we store repeated computation?


