Class 6 - Recursion

MISE Summer Programming Camp 2023
Intro

Viknesh ("Vik") Krishnan

Software Engineer @ Google

BS in Mathematics & Computer Science from UMichigan
Recap of Class 5

- Lists as “references” (will review again later)
 - A list variable “refers” to an actual list
 - Two variables can point to the same actual list
- 2 dimensional / multidimensional lists
 - Lists of lists to record tables of data
- Extra features of lists
 - List comprehension
 - List slicing
Recursion
Simple Recursive Functions: Example 1

Let us consider the problem of adding all the numbers in a list.

If we implement a iterative (i.e. nonrecursive) solution for the problem, it would look like this:

```python
def listSum(nums):
    numsum = 0
    for num in nums:
        numsum += num
    return numsum
```

How would a recursive version of this function look like?
Simple Recursive Functions: Example 1

A recursive solution for the problem would look like:

```python
def recListSum(nums):
    if len(nums) == 0:
        return 0
    return nums[0] + recListSum(nums[1:])
```

List slicing: all elements of `nums` except the first one
Recursion: What is it?

A problem solving approach where we break a problem into smaller versions of the same problem.

Technically, we can think of recursion as being a function that calls itself.

However, in reality, it turns out to be a powerful way to solve problems.
Recursion: What is it?

We often divide a recursive function in two parts:

- A **base case**: returns a result for a known value;
- A **recursive case**: computes a result calling the same function for a different value.

In other words, with recursion, we solve a problem by assuming it is already solved :)
Recursion: Code example

A template for simple recursive functions can be achieved as follows:

```python
def recursiveTemplate(value):
    if baseCase == True:
        return knownValue
    else:
        return recursiveTemplate(modify(value))
```
Pop Quiz 1:

What is the output of the following code:

```python
def f(x):
    if x == 0:
        return 0
    return 1 + f(x - 1)
print(f(5))
```
Pop Quiz 2:

What is the output of the following code:

```python
def f(a, b):
    if b == 0:
        return 1
    return a * f(a, b - 1)

print(f(3, 2))
```
On the previous example:

The previous pop quiz is a function that computes the power of a number!

Here is a better code:

```python
def recPower(base, exponent):
    if exponent == 0:
        return 1
    return base * recPower(base, exponent - 1)
```
Challenge: Fibonacci!

Now let us consider the problem of computing the nth Fibonacci number.

The Fibonacci numbers are defined as follows:

\[F_0 = 0, \quad F_1 = 1, \quad F_n = F_{n-1} + F_{n-2} \]

So,

\[F_2 = F_0 + F_1 = 1 \]
\[F_3 = F_2 + F_1 = 2 \]
\[3, 5, 8, ... \]
Challenge: Fibonacci!

Now let us consider the problem of computing the nth Fibonacci number.

The Fibonacci numbers are defined as follows:

\[F_0 = 0, \quad F_1 = 1, \quad F_n = F_{n-1} + F_{n-2} \]

Let’s try solving this problem two different ways, using iteration and using recursion.
Fibonacci: Solutions

Iterative Solution:

```python
1  def iterative_fibonacci(n):
2      if n <= 1:
3          return n
4      f_n_2 = 0
5      f_n_1 = 1
6      for i in range(n - 1):
7          f = f_n_2 + f_n_1
8          f_n_2, f_n_1 = f_n_1, f
9      return f_n_1
```

Recursive Solution:

```python
1  def recursive_fibonacci(n):
2      if n <= 1:
3          return n
4      return recursive_fibonacci(n - 1) + recursive_fibonacci(n - 2)
```

Visualize this in Python Tutor!
Recursion tree
Pop Quiz 3:

Which of the following mimics what the `range()` function does:

def my_range1(n):
 if n == 1:
 return []
 return my_range1(n - 1) + [n - 1]

def my_range2(n):
 if n == 1:
 return []
 return my_range2(n) + [n]

def my_range3(n):
 if n == 0:
 return []
 return my_range3(n - 1) + [n - 1]

def my_range4(n):
 if n <= 0:
 return []
 result = my_range4(n - 1)
 result.append(n)
 return result
Backtracking
Review: List References

```python
colors = ['red', 'blue', 'green']
b = colors
```

References are essentially pointers that allow variables to refer to an actual list.

```python
def f(l):
    l[0] = 5
    print(l)

l = [1, 2, 3, 4, 5]
f(l)
print(l)
```

```python
def f(l):
    l = 5
    print(l)

l = 1
f(l)
print(l)
```
What is backtracking?

Strategy where we enumerate all possible solutions to a problem by incrementally building candidates to solutions.

Very useful to find solutions to combinatorial problems (we’ll see examples).
Generating all DNA strings of length n

```python
def gen_strs(n):
    if n == 0:
        return ['']

    sol = []
    partial = gen_strs(n - 1)
    for base in ['A', 'C', 'G', 'T']:
        for dna in partial:
            sol.append(base + dna)

    return sol
```
Alternate solution using backtracking

```python
def gen_strs(current, n, sol):
    if n == 0:
        sol.append(current)
        return
    for base in ['A', 'C', 'G', 'T']:
        gen_strs(base + current, n - 1, sol)
```

Notice how we build partial solutions (the parameter ‘current’) incrementally
Counting problems: the n-queens problem

Consider a \(n \) by \(n \) chessboard where we want to place \(n \) queens such that they don’t attack other (example on the right)

How many different ways are there to do so?
```python
def solve(board, placed):
    n = len(board)
    if placed == n:
        return 1

    ct = 0
    for i in range(n):
        if isSafe(board, i, placed):
            board[i][placed] = 1
            ct += solve(board, placed + 1)
            board[i][placed] = 0
    return ct

n = 8
board = [[0 for j in range(n)] for i in range(n)]
print(solve(board, 0))
```
def isSafe(board, row, col):
 for i in range(col):
 if board[row][i] == 1:
 return False
 for i, j in zip(range(row, -1, -1), range(col, -1, -1)):
 if board[i][j] == 1:
 return False
 for i, j in zip(range(row, len(board), 1), range(col, -1, -1)):
 if board[i][j] == 1:
 return False
 return True
Dynamic Programming
Avoiding repeating actions
Avoiding repeating actions

- When we write recursive code we subdivide a problem into smaller subproblems.
- Often there are a lot of repeated subproblems (like in the previous example).
- We can avoid having to recompute the solution to subproblems by storing it.
- This is called Dynamic Programming.
Back to the Fibonacci example

def fib(n, dp):
 if dp[n] != -1:
 return dp[n]
 if n <= 1:
 dp[n] = n
 else:
 dp[n] = fib(n - 1, dp) + fib(n - 2, dp)
 return dp[n]

print(fib(9, dp))
print(dp)
Challenge - Paths on a grid

- Let's suppose we have an \(n \) by \(n \) grid with integers.
- We start at the top left corner of the grid and we want to go to the lower right.
- We can move down or to the right.
- Everytime we step on a grid cell we pay a cost equal to the cell's value.
- What is the minimum cost path?

\[
\begin{array}{ccc}
0 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 0 \\
\end{array}
\]
Complete the following

```python
1 - def path(grid, row, col):
2     n = len(grid)
3 -     if row == n and col == n:
4         return grid[row - 1][col - 1]
5
6     return grid[row - 1][col - 1] + min(path(??), path(??))
```
Solution

```python
def path(grid, row, col):
    n = len(grid)
    if row == n and col == n:
        return grid[row - 1][col - 1]
    sol = 10000000000
    if row < n:
        sol = min(sol, path(grid, row + 1, col))
    if col < n:
        sol = min(sol, path(grid, row, col + 1))
    return sol + grid[row - 1][col - 1]
```

this is correct, but ... what's the problem with code?
How do we store repeated computation?

```python
1  dp = [[-1 for i in range(n)] for j in range(n)]
2
3  def path(grid, row, col):
4      n = len(grid)
5  if row == n and col == n:
6      return grid[row - 1][col - 1]
7  if dp[row - 1][col - 1] != -1:
8      return dp[row - 1][col - 1]
9
10     sol = 10000000000
11     if row < n:
12         sol = min(sol, path(grid, row + 1, col))
13     if col < n:
14         sol = min(sol, path(grid, row, col + 1))
15     dp[row - 1][col - 1] = sol + grid[row - 1][col - 1]
16     return dp[row - 1][col - 1]
```