Class 2 - Functions and
Conditionals

MISE Summer Programming Camp 2023

Recap of Class 1

e Printstatements
o Printing text eg. print (“Hello World”) => ‘Hello World’ in the shell
o Printing the value of variables eg. x = “Hello”; print(x) => ‘Hello’ in the shell
o Doing simple math eg. print (2+ 3 *5) => ‘17’ in the shell
e Takinginput from the user
o Eg.name = input() => allows the user to type in something that gets stored in the
variable ‘name’ after the user hits enter.
e Basicdatatypes
o Integer, float, string and boolean.
o type() function - allows the user to know the type of an expression.

Some math operations

Comment!

Comparison Operators

e == (Equality)
o Note: Equality is == because = is used for assigning to variables
< (Less than)
<= (Less than or equal to)
> (Greater than)
>= (Greater than or equal to)
1= (Inequality)

These operators compare two things and evaluate to a boolean ie. either True or False.

Demo

Learning goals:

1.
2.

Comparison operators
Working with Booleans

main.py

O 00 N O Ul A W N =

print(3 == 3)

print(3 == 5)

a = 18; print(a)

print(a < 21)
print("Hello" == "Hello")
print("Hello" == "HellO")
print(2+5*3 >= 20)
print(7 != 42)

print(True == Falseﬂ

Shell

True
False
18
True
True
False
False
True
False

™

‘ itempool.com/mise23/live

Pop Quiz 1.

What is the output of the following program:

1 print("True" == True)
2 print("3+3" == 6)
3 print(int(False) == 0)

Boolean Operators (and, or, not)

Let X and Y be boolean expressions.

e XandY evaluates to True if X evaluates to True and Y evaluates to True. It
evaluates to False otherwise.

e XorY evaluates to True if either X evaluates to True or Y evaluates to True. It
evaluates to False otherwise.

e not X negates the value of X.

Demo

main.py

print(True and True)
print(True and False)
print(True or False)
print(False or False)
print(not True)
print(not not True)

o U b WN =

Learning goals:

1. Boolean operators
2. Using comparison and boolean

operators together main.py
1 print(3 < 5 and 8 > 2)
2 print(10 > 2 and False)
3 print("Hello" == "HellO" or 5
4 print(not("10" == 10))

Shell

True
False
True
False
False
True

Shell

True
False
False
True

o,

Pop Quiz 2:

Which of the following would result in an output of "True" for this program (possible multiple answers):

1 print((a < b) or (b > c and a > ¢) or a == d)

Control Flow

Statement 1 Statement 1

l

Statement 2 <>— True — Statement 2

\ sequential control flow ‘
[previous lecture]

A A

False conditional control flow
>tatement 3 [this lecture]

| |

Statement 4 Statement 3

If-Statements

If statements are responsible for allowing
certain lines of code to be run only when a
certain condition is met.

For example, code lines 1 and 2 will only be
run when ‘condition’ evaluates to True.

Note: The indentation (1 tab / 4 spaces) of the
code lines under the if statement is important!

Indented lines denote lines that are guarded
by the if statement.

Syntax:
if (condition):
Code line 1

Code line 2

If-Else Statements

if (condition): If-else statements can interpreted as follows:

Codeline 1 If condition is true, then run code line 1.

Otherwise, run code line 2.
else:
, Again, indentation here is important!
Codeline 2

main.py SRS m Shell

10 is bigger than 3

l= if (10 = 3):
We love math

2 print("10 is bigger than 3")
3» ifF (8 < 2): >
4 print("8 is smaller than 2")

5 print("We love math")

main.py i m Shell

1~ if (5 > 4): 5 is bigger than 4

2 print("5 is bigger than 4") We love math

3~ else: Math is working as expected
4 print("5 is smaller than 4") >

5 print("We love math")

6

7~ if (8 == 2):

8 print("8 is 100% equal to 2")

9 print("Anything is now possible")

10+ else:

11 print("Math is working as expected")

If-Elif-Else Statements

if (condition 1): If-elif-else statements can interpreted as follows:

Codeline 1 If condition 1 is true, then run code line 1. Otherwise, if

elif (condition 2): condition 2 is true, then run code line 2.

Code line 2 Otherwise, run code line 3

else: Again, indentation here is important!

Code line 3 Note: You can have as many elifs as you want!

main.py

1-1if (4 > 4):

2 print("4 must be bigger than 4")

3 print("My genius frightens me sometimes")
4~ elif (4 < 4):

5 print("4 must be smaller than 4")

6 print("IMO Gold medal here I come")

7~ else:

8 print("4 is equal to 4")

9 print("Makes sense I guess")

10 print("We love math")
1 |

Shell

4 is equal to 4
Makes sense I guess

We love math
>

o,

Pop Quiz 3:

Which of the following computes whether a variable a, which is always the integer O, 1, 2 or 3, is even or odd:

if not(a == 1 or a == 3): if a == 0 or a ==
print("odd") print("even")
Code 1 alce: Code 2 alea-
print("even") print(lloddu)
if a !=1o0r a != 3:
Code 3 print("even")

Code4 print("even" if a == 0 or a == 2 else "odd")
else:

print("odd")

Grouping code into functions

simpleFunction(x):
(X)
(Xx)

simpleFunction("Hello!")

Anatomy of a function

def func(parameters):

body °

return X |

indent

contains the actions
(statements) that the
function performs
returns a value (optional)

parameters are variables that
will be provided when the
function is called

Simple example of a function

def double(x):

print("Doubling a number!")

return 2 * X

print(double(4))

We define a function called double
that takes one parameter and
returns its double

To use the function, we use this
syntax, similar to how a functionin
math is used

return x .y + Z

print(f(1, 3, 2))
print(f(1, 2))

def g():
return 42

print(g())

1
2
3
4
5
6
7
8

h{x, ¥):

ifox =y
print("x

elif vy > x:

print("y 1is

else:

print("x and y are the same!"

Variable scope

(F(4))
(x)
(y)

Variables defined in the body of a function
definition are only defined inside the
indented block!

In the code on the left, the two last print
statements will crash because we never
defined a variable x or y in that scope.

o,

Pop Quiz 4:

What is the output of the following program:

1+ def max(a, b):

2w
3

~N o B

8

a
b

if a > b:
return b

b =2

return a

5
10

9 print(2 + max(2, 3))
10 print(a)

Another example

print(®“In & x =" X)
X += 7
return x - 1

hi(x)"

X += 3

return f(x+4)

X =5

print(x)
print(f(x))
print(h(x))

What's the output of the code on the left?

Visualize here: https://shorturl.at/etNS2

https://shorturl.at/etNS2

What's next?

Homework will be posted on Piazza by tomorrow!

Class 3: Loops

How to write code that repeats instructions

How to iterate through the input

