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Consider U(N) — the group of N × N unitary matrices

Question:

How to “efficiently” sample from measure on U(N)?

(or how to sample uniformly random quantum circuits)

Note that “morally” we need about Θ̃(N2) bits of entropy
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Goal:

A distribution ν on U(N) “efficiently” samplable

with � N bits of entropy, such that:

ν
first k

moments≈ U(N)

Formally we will consider:

Definition (ε-approximate unitary k-design):∥∥∥∥ E
X∼ν

[
X
⊗k ⊗ (X )⊗k

]
− E

X∼U(N)

[
X
⊗k ⊗ (X )⊗k

]∥∥∥∥
1

6 ε

Intuition: X⊗k ⊗ (X )⊗k is a N2k ×N2k matrix

entries are products of k entries of X and their conjugates

Intuition: entries are degree 2k monomials in entries of X
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Consider the notion of classical expanders

∥∥∥∥ E
π∼ν

[B(π)]− E
π∼Sym(N)

[B(π)]
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op

6 λ

Where B(π) := permutation matrix defined by π

d-regular graph ≡ Sum of d permutation matrices

Random walk step ≡ Picking a permutation uniformly at random
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• Definitions •
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• What is known? •

N = 2n

Method Bits of Entropy Efficient?

Randomized O(nk + log(1/ε)) 7

[BHH’19]

[HHJ’20]

[Haf’22]

O(kCn2 log(1/ε)) 3

Us O(nk + log(1/ε)) 3

(Note: our work also achieves designs for other groups, like O(N))
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Algorithmic Cryptographic Lower Bounds

Efficient state tomography Non-malleable encryption Quantum hypothesis selection

Fidelity estimation

Note: our work also has some classical applications

Let’s look at the motivation behind them
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• Classical Detour: Why Pseudorandom? •

1 Convert random algorithms to deterministic using similar time

Ex: Primes in P, Undirected Reachability

2 Construct explicit objects whose existence is only guaranteed by the

probabilistic method

Ex: Expanders, Efficient Codes
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f : {0, 1}n → {0, 1} if

∀f ∈ F , |Px∼Un [f (x) = 1]−Pz∼Ut [f (G (z)) = 1]| 6 ε
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• k-wise independence •

Consider the family of k-wise independent tests:

f ∈ F only looks at most k bits of the input

Example: k-wise uniform bits

G is k-wise independent if for x ∼ UN and all distinct i1, i2, . . . ik

i1th bit of G (x), . . . , ik th bit of G (x) are uniform

i.e. the probability of seeing any length k binary string is 1/2k

Theorem [ABI’85]

Such a G exists with t = O(kn)
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[N ]k → k distinct from 1 . . .N
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Part II: General Framework



• Our framework •

A Baby Distribution

1. Construct M, a set of matrices in U(N), such that:

I ∥∥∥∥E
M

[
M
⊗k,k

]
− E

U(N)

[
M
⊗k,k

]∥∥∥∥
op

6 1− 1

poly(k)n

I |M| really small → O(log n) bits of entropy

Error Reduction

2. Use M to obtain M̂, such that:

I ∥∥∥∥E
M̂

[
M
⊗k,k

]
− E

O(N)

[
M
⊗k,k

]∥∥∥∥
op

6 δ

I |M̂| small → O(kn+ log(1/δ)) bits of entropy
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• Some Facts About Tensors •

Fact

X⊗k,k is a representation of U(N): (XY )⊗k,k = X⊗k,kY⊗k,k

Fact

For X0 ∈ U(N) and X ∼ U(N), we have X0X ∼ XX0 ∼ U(N)

Fact

X⊗k,k
0 EU(N)

[
M
⊗k,k

]
= EU(N)

[
M
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]
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Eν

[
M
⊗k,k

]
EU(N)

[
M
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]
= EU(N)

[
M
⊗k,k

]
Fact

EU(N)

[
M
⊗k,k

]2
= EU(N)

[
M
⊗k,k

]
,

so it’s a projector matrix and ΠU(N) := EU(N)

[
M
⊗k,k

]



• Some Facts About Tensors •

Fact

X⊗k,k is a representation of U(N): (XY )⊗k,k = X⊗k,kY⊗k,k

Fact

For X0 ∈ U(N) and X ∼ U(N), we have X0X ∼ XX0 ∼ U(N)

Fact

X⊗k,k
0 EU(N)

[
M
⊗k,k

]
= EU(N)

[
M
⊗k,k

]
Fact

Eν

[
M
⊗k,k

]
EU(N)

[
M
⊗k,k

]
= EU(N)

[
M
⊗k,k

]
Fact

EU(N)

[
M
⊗k,k

]2
= EU(N)

[
M
⊗k,k

]
,

so it’s a projector matrix and ΠU(N) := EU(N)

[
M
⊗k,k

]



• Some Facts About Tensors •

Fact

X⊗k,k is a representation of U(N): (XY )⊗k,k = X⊗k,kY⊗k,k

Fact

For X0 ∈ U(N) and X ∼ U(N), we have X0X ∼ XX0 ∼ U(N)

Fact

X⊗k,k
0 EU(N)

[
M
⊗k,k

]
= EU(N)

[
M
⊗k,k

]

Fact

Eν

[
M
⊗k,k

]
EU(N)

[
M
⊗k,k

]
= EU(N)

[
M
⊗k,k

]
Fact

EU(N)

[
M
⊗k,k

]2
= EU(N)

[
M
⊗k,k

]
,

so it’s a projector matrix and ΠU(N) := EU(N)

[
M
⊗k,k

]



• Some Facts About Tensors •

Fact

X⊗k,k is a representation of U(N): (XY )⊗k,k = X⊗k,kY⊗k,k

Fact

For X0 ∈ U(N) and X ∼ U(N), we have X0X ∼ XX0 ∼ U(N)

Fact

X⊗k,k
0 EU(N)

[
M
⊗k,k

]
= EU(N)

[
M
⊗k,k

]
Fact

Eν

[
M
⊗k,k

]
EU(N)

[
M
⊗k,k

]
= EU(N)

[
M
⊗k,k

]

Fact

EU(N)

[
M
⊗k,k

]2
= EU(N)

[
M
⊗k,k

]
,

so it’s a projector matrix and ΠU(N) := EU(N)

[
M
⊗k,k

]



• Some Facts About Tensors •

Fact

X⊗k,k is a representation of U(N): (XY )⊗k,k = X⊗k,kY⊗k,k

Fact

For X0 ∈ U(N) and X ∼ U(N), we have X0X ∼ XX0 ∼ U(N)

Fact

X⊗k,k
0 EU(N)

[
M
⊗k,k

]
= EU(N)

[
M
⊗k,k

]
Fact

Eν

[
M
⊗k,k

]
EU(N)

[
M
⊗k,k

]
= EU(N)

[
M
⊗k,k

]
Fact

EU(N)

[
M
⊗k,k

]2
= EU(N)

[
M
⊗k,k

]
,

so it’s a projector matrix and ΠU(N) := EU(N)

[
M
⊗k,k

]



Lemma: Error reduction

If M̂ =Mt then:

∥∥∥∥E
M̂

[
M
⊗k,k

]
− E

U(N)

[
M
⊗k,k

]∥∥∥∥
op

6 εt
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1
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E
M

[
M
⊗k,k
2

]
= E

[
(M1M2)

⊗k,k
]
= E
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The given operator norm bound now gives the result
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• A Decent Reduction... •

Using error reduction, pick t = poly(logN, k) log(1/δ), we conclude:

I ∥∥∥∥E
M̂

[
M
⊗k,k

]
−ΠU(N)

∥∥∥∥
op

6 δ

I But... |M̂| = |M|t → O(poly(n, k) log(1/δ)) bits of entropy
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• Intuition for a Better Reduction •

Let G be a expander d-regular graph with |M| vertices

Label the vertices with matrices from M, so v ∈ V and Mv ∈ M

M̂ =MG ,t = {Mv1 ·Mv2 · . . . ·Mvt |vi ∼ vi+1}
Note: |M̂| = |M|d t

Challenge 1: Prove that this reduces the error, like the previous reduction

Challenge 2: Pick appropriate expander graphs

(derandomized squaring [RTV’05] [RV’05])
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• Technical Result •

Theorem: Operator Reduction

Let M = (M1, . . . ,Mc ) be a matrices in Rr×r satisfying ‖Mi‖op 6 1

for all i and
∥∥∥EM

[
M
⊗k,k

]
−Π

∥∥∥
op

6 1− ε

There is a strongly explicit, space-minimal algorithm that outputs a

sequence Q of N ′ = O(c/(ε11.25δ10)) monomials over M1, . . . ,Mc ,

each of length L = 8 log2(1/δ)/ε1.25, such that:∥∥∥EM̂

[
M
⊗k,k

]
−Π

∥∥∥
op

6 δ, for M̂ =MQ

Translation:

I ∥∥∥∥E
M̂

[
M
⊗k,k

]
−ΠU(N)
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op

6 δ

I |M̂| 6 poly(2nk/δ) → O(kn+ log(1/δ)) bits of entropy
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Part IV: A Baby Distribution



• Recall our Goal •

1. Construct M, a set of matrices in U(N), such that:

I ∥∥∥∥E
M

[
M
⊗k,k

]
−ΠU(N)

∥∥∥∥
op

6 1− 1

poly(k)n

I |M| 6 poly(n)

Actually, this is given in [BHH’19], [HHJ’20], [Haf’22]!
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• A Baby Distribution •

N = 2n

Let P ⊂ U(2`) be a finite set and E ⊆ [n]`

Define Me ∼ P × E : choose e ∼ E , M ∼ P and apply M to e substates

Theorem: Non-trivial gap construction

For a fixed small positive n0, suppose Pn0 is a universal set in U(N)

Then M = Pn0 ×
(
[n]

n0

)
satisfies:

∥∥∥∥E
M

[
M
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]
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poly(k)n
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• Proof Outline •

Pn0 universal

Abuse notation: let P1 . αP2 be∥∥∥∥E
P1
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⊗k,k

]
−ΠU(N)

∥∥∥∥
op

6 α
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op

Then:

Pn0 ×
(
[n]

n0

)
. κn0U(2n0)×

(
[n]

n0

)
From [BdS16] and [BG12]

. κn0 τk,n0+1U(2n0+1)×
(

[n]

n0 + 1

)
. κn0 τk,n0+1 . . . τk,nU(N)

.
(

1− 1

poly(k)n

)
U(N)
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• Proof Visualization •



Thanks!
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