
Pseudorandom Approximate Unitary Designs
Or one way to sample uniformly random quantum circuits

Pedro Paredes
PCMI Research Talk

July 24, 2023

Joint work with:
Ryan O’Donnell

CMU

Rocco Servedio

Columbia University

Consider U(N) — the group of N × N unitary matrices

Question:

How to “efficiently” sample from measure on U(N)?

(or how to sample uniformly random quantum circuits)

Note that “morally” we need about Θ̃(N2) bits of entropy

Consider U(N) — the group of N × N unitary matrices

Question:

How to “efficiently” sample from Haar measure on U(N)?

(or how to sample uniformly random quantum circuits)

Note that “morally” we need about Θ̃(N2) bits of entropy

Consider U(N) — the group of N × N unitary matrices

Question:

How to “efficiently” sample from uniform measure on U(N)?

(or how to sample uniformly random quantum circuits)

Note that “morally” we need about Θ̃(N2) bits of entropy

Consider U(N) — the group of N × N unitary matrices

Question:

How to “efficiently” sample from uniform measure on U(N)?

(or how to sample uniformly random quantum circuits)

Note that “morally” we need about Θ̃(N2) bits of entropy

Consider U(N) — the group of N × N unitary matrices

Question:

How to “efficiently” sample from uniform measure on U(N)?

(or how to sample uniformly random quantum circuits)

Note that “morally” we need about Θ̃(N2) bits of entropy

Consider Sym(N) — the group of N × N permutation matrices

Question:

How to “efficiently” sample uniformly from Sym(N)?

(or how to sample uniformly random classical circuits)

Note that “morally” we need about log(N !) = Θ̃(N) bits of entropy

Consider Sym(N) — the group of N × N permutation matrices

Question:

How to “efficiently” sample uniformly from Sym(N)?

(or how to sample uniformly random classical circuits)

Note that “morally” we need about log(N !) = Θ̃(N) bits of entropy

Goal:

A distribution ν on U(N) “efficiently” samplable

with � N bits of entropy, such that:

ν
first k

moments≈ U(N)

Formally we will consider:

Definition (ε-approximate unitary k-design):∥∥∥∥ E
X∼ν

[
X
⊗k ⊗ (X)⊗k

]
− E

X∼U(N)

[
X
⊗k ⊗ (X)⊗k

]∥∥∥∥
1

6 ε

Intuition: X⊗k ⊗ (X)⊗k is a N2k ×N2k matrix

entries are products of k entries of X and their conjugates

Intuition: entries are degree 2k monomials in entries of X

Goal:

A distribution ν on U(N) “efficiently” samplable

with � N bits of entropy, such that:

ν
first k

moments≈ U(N)

Formally we will consider:

Definition (ε-approximate unitary k-design):∥∥∥∥ E
X∼ν

[
X
⊗k ⊗ (X)⊗k

]
− E

X∼U(N)

[
X
⊗k ⊗ (X)⊗k

]∥∥∥∥
1

6 ε

Intuition: X⊗k ⊗ (X)⊗k is a N2k ×N2k matrix

entries are products of k entries of X and their conjugates

Intuition: entries are degree 2k monomials in entries of X

Goal:

A distribution ν on U(N) “efficiently” samplable

with � N bits of entropy, such that:

ν
first k

moments≈ U(N)

Formally we will consider:

Definition (ε-approximate unitary k-design):∥∥∥∥ E
X∼ν

[
X
⊗k ⊗ (X)⊗k

]
− E

X∼U(N)

[
X
⊗k ⊗ (X)⊗k

]∥∥∥∥
1

6 ε

Intuition: X⊗k ⊗ (X)⊗k is a N2k ×N2k matrix

entries are products of k entries of X and their conjugates

Intuition: entries are degree 2k monomials in entries of X

Consider the notion of classical expanders

∥∥∥∥ E
π∼ν

[B(π)]− E
π∼Sym(N)

[B(π)]

∥∥∥∥
op

6 λ

Where B(π) := permutation matrix defined by π

d-regular graph ≡ Sum of d permutation matrices

Random walk step ≡ Picking a permutation uniformly at random

Consider the notion of classical expanders

∥∥∥∥ E
π∼ν

[B(π)]− E
π∼Sym(N)

[B(π)]

∥∥∥∥
op

6 λ

Where B(π) := permutation matrix defined by π

d-regular graph ≡ Sum of d permutation matrices

Random walk step ≡ Picking a permutation uniformly at random

Consider the notion of classical expanders

∥∥∥∥∥∥∥∥∥ E
π∼ν

[B(π)]︸ ︷︷ ︸
Adjacency Matrix

− E
π∼Sym(N)

[B(π)]︸ ︷︷ ︸
1-eigenspace

∥∥∥∥∥∥∥∥∥
op

6 λ

Where B(π) := permutation matrix defined by π

d-regular graph ≡ Sum of d permutation matrices

Random walk step ≡ Picking a permutation uniformly at random

Consider the notion of classical expanders

∥∥∥∥∥∥∥∥∥ E
π∼ν

[B(π)]︸ ︷︷ ︸
Adjacency Matrix

− E
π∼Sym(N)

[B(π)]︸ ︷︷ ︸
1-eigenspace

∥∥∥∥∥∥∥∥∥
op

6 λ

Where B(π) := permutation matrix defined by π

d-regular graph ≡ Sum of d permutation matrices

Random walk step ≡ Picking a permutation uniformly at random

Consider the notion of classical expanders

∥∥∥∥∥∥∥∥∥ E
π∼ν

[B(π)]︸ ︷︷ ︸
Adjacency Matrix

− E
π∼Sym(N)

[B(π)]︸ ︷︷ ︸
1-eigenspace

∥∥∥∥∥∥∥∥∥
op

6 λ

Where B(π) := permutation matrix defined by π

d-regular graph ≡ Sum of d permutation matrices

Random walk step ≡ Picking a permutation uniformly at random

• Definitions •

Definition (ε-approximate unitary k-design):∥∥∥∥ E
X∼ν

[
X
⊗k ⊗ (X)⊗k

]
− E

X∼U(N)

[
X
⊗k ⊗ (X)⊗k

]∥∥∥∥
1

6 ε

Definition ((N, ε, k)-tensor-product-expander):∥∥∥∥E
ν

[
X
⊗k,k

]
− E

U(N)

[
X
⊗k,k

]∥∥∥∥
op

6 ε

Fact

A (N, ε/Nk , k)-TPE is an ε-approximate unitary k-design

• Definitions •

Definition (ε-approximate unitary k-design):∥∥∥∥E
ν

[
X
⊗k,k

]
− E

U(N)

[
X
⊗k,k

]∥∥∥∥
1

6 ε

Definition ((N, ε, k)-tensor-product-expander):∥∥∥∥E
ν

[
X
⊗k,k

]
− E

U(N)

[
X
⊗k,k

]∥∥∥∥
op

6 ε

Fact

A (N, ε/Nk , k)-TPE is an ε-approximate unitary k-design

• Definitions •

Definition (ε-approximate unitary k-design):∥∥∥∥E
ν

[
X
⊗k,k

]
− E

U(N)

[
X
⊗k,k

]∥∥∥∥
1

6 ε

Definition ((N, ε, k)-tensor-product-expander):∥∥∥∥E
ν

[
X
⊗k,k

]
− E

U(N)

[
X
⊗k,k

]∥∥∥∥
op

6 ε

Fact

A (N, ε/Nk , k)-TPE is an ε-approximate unitary k-design

• Definitions •

Definition (ε-approximate unitary k-design):∥∥∥∥E
ν

[
X
⊗k,k

]
− E

U(N)

[
X
⊗k,k

]∥∥∥∥
1

6 ε

Definition ((N, ε, k)-tensor-product-expander):∥∥∥∥E
ν

[
X
⊗k,k

]
− E

U(N)

[
X
⊗k,k

]∥∥∥∥
op

6 ε

Fact

A (N, ε/Nk , k)-TPE is an ε-approximate unitary k-design

Part I: Motivation

• What is known? •

N = 2n

Method Bits of Entropy Efficient?

Randomized O(nk + log(1/ε)) 7

[BHH’19]

[HHJ’20]

[Haf’22]

O(kCn2 log(1/ε)) 3

Us O(nk + log(1/ε)) 3

(Note: our work also achieves designs for other groups, like O(N))

• What is known? •

N = 2n

Method Bits of Entropy Efficient?

Randomized O(nk + log(1/ε)) 7

[BHH’19]

[HHJ’20]

[Haf’22]

O(kCn2 log(1/ε)) 3

Us O(nk + log(1/ε)) 3

(Note: our work also achieves designs for other groups, like O(N))

• What is known? •

N = 2n

Method Bits of Entropy Efficient?

Randomized O(nk + log(1/ε)) 7

[BHH’19]

[HHJ’20]

[Haf’22]

O(kCn2 log(1/ε)) 3

Us O(nk + log(1/ε)) 3

(Note: our work also achieves designs for other groups, like O(N))

• What is known? •

N = 2n

Method Bits of Entropy Efficient?

Randomized O(nk + log(1/ε)) 7

[BHH’19]

[HHJ’20]

[Haf’22]

O(kCn2 log(1/ε)) 3

Us O(nk + log(1/ε)) 3

(Note: our work also achieves designs for other groups, like O(N))

• Some applications •

Algorithmic Cryptographic Lower Bounds

Efficient state tomography Non-malleable encryption Quantum hypothesis selection

Fidelity estimation

Note: our work also has some classical applications

Let’s look at the motivation behind them

• Some applications •

Algorithmic Cryptographic Lower Bounds

Efficient state tomography Non-malleable encryption Quantum hypothesis selection

Fidelity estimation

Note: our work also has some classical applications

Let’s look at the motivation behind them

• Classical Detour: Why Pseudorandom? •

1 Convert random algorithms to deterministic using similar time

Ex: Primes in P, Undirected Reachability

2 Construct explicit objects whose existence is only guaranteed by the

probabilistic method

Ex: Expanders, Efficient Codes

• Classical Detour: Why Pseudorandom? •

1 Convert random algorithms to deterministic using similar time

Ex: Primes in P, Undirected Reachability

2 Construct explicit objects whose existence is only guaranteed by the

probabilistic method

Ex: Expanders, Efficient Codes

• Pseudorandom Generators •

Definition: Pseudorandom Generator G

G : {0, 1}t → {0, 1}n ε-fools a family of tests F , where f ∈ F is

f : {0, 1}n → {0, 1} if

∀f ∈ F , |Px∼Un [f (x) = 1]−Pz∼Ut [f (G (z)) = 1]| 6 ε

• Pseudorandom Generators •

Definition: Pseudorandom Generator G

G : {0, 1}t → {0, 1}n ε-fools a family of tests F , where f ∈ F is

f : {0, 1}n → {0, 1} if

∀f ∈ F , |Px∼Un [f (x) = 1]−Pz∼Ut [f (G (z)) = 1]| 6 ε

• k-wise independence •

Consider the family of k-wise independent tests:

f ∈ F only looks at most k bits of the input

Example: k-wise uniform bits

G is k-wise independent if for x ∼ UN and all distinct i1, i2, . . . ik

i1th bit of G (x), . . . , ik th bit of G (x) are uniform

i.e. the probability of seeing any length k binary string is 1/2k

Theorem [ABI’85]

Such a G exists with t = O(kn)

• k-wise independence •

Consider the family of k-wise independent tests:

f ∈ F only looks at most k bits of the input

Example: k-wise uniform bits

G is k-wise independent if for x ∼ UN and all distinct i1, i2, . . . ik

i1th bit of G (x), . . . , ik th bit of G (x) are uniform

i.e. the probability of seeing any length k binary string is 1/2k

Theorem [ABI’85]

Such a G exists with t = O(kn)

• k-wise independence •

Consider the family of k-wise independent tests:

f ∈ F only looks at most k bits of the input

Example: k-wise uniform bits

G is k-wise independent if for x ∼ UN and all distinct i1, i2, . . . ik

i1th bit of G (x), . . . , ik th bit of G (x) are uniform

i.e. the probability of seeing any length k binary string is 1/2k

Theorem [ABI’85]

Such a G exists with t = O(kn)

• k-wise independent permutations •

[N]k → k distinct from 1 . . .N

Definition: k-wise independent permutations

Π ⊆ SN is k-independent if for π ∈ Π

for all distinct i1, . . . , ik , π(i1), . . . , π(ik) is uniform on [N]k

Theorem [KNR’05] [K’08]

Such a G exists with seed length O(kn+ log(1/δ))

Many applications, e.g. cryptography, coding theory, expanders . . .

• (δ, k)-wise independent permutations •

[N]k → k distinct from 1 . . .N

Definition: (δ, k)-wise independent permutations

Π ⊆ SN is (δ, k)-independent if for π ∈ Π

for all distinct i1, . . . , ik , π(i1), . . . , π(ik) is δ-close to uniform on [N]k

Theorem [KNR’05] [K’08]

Such a G exists with seed length O(kn+ log(1/δ))

Many applications, e.g. cryptography, coding theory, expanders . . .

• (δ, k)-wise independent permutations •

[N]k → k distinct from 1 . . .N

Definition: (δ, k)-wise independent permutations

Π ⊆ SN is (δ, k)-independent if for π ∈ Π

for all distinct i1, . . . , ik , π(i1), . . . , π(ik) is δ-close to uniform on [N]k

Theorem [KNR’05] [K’08]

Such a G exists with seed length O(kn+ log(1/δ))

Many applications, e.g. cryptography, coding theory, expanders . . .

• (δ, k)-wise independent permutations •

[N]k → k distinct from 1 . . .N

Definition: (δ, k)-wise independent permutations

Π ⊆ SN is (δ, k)-independent if for π ∈ Π

for all distinct i1, . . . , ik , π(i1), . . . , π(ik) is δ-close to uniform on [N]k

Theorem [KNR’05] [K’08]

Such a G exists with seed length O(kn+ log(1/δ))

Many applications, e.g. cryptography, coding theory, expanders . . .

Part II: General Framework

• Our framework •

A Baby Distribution

1. Construct M, a set of matrices in U(N), such that:

I ∥∥∥∥E
M

[
M
⊗k,k

]
− E

U(N)

[
M
⊗k,k

]∥∥∥∥
op

6 1− 1

poly(k)n

I |M| really small → O(log n) bits of entropy

Error Reduction

2. Use M to obtain M̂, such that:

I ∥∥∥∥E
M̂

[
M
⊗k,k

]
− E

O(N)

[
M
⊗k,k

]∥∥∥∥
op

6 δ

I |M̂| small → O(kn+ log(1/δ)) bits of entropy

• Our framework •

A Baby Distribution

1. Construct M, a set of matrices in U(N), such that:

I ∥∥∥∥E
M

[
M
⊗k,k

]
− E

U(N)

[
M
⊗k,k

]∥∥∥∥
op

6 1− 1

poly(k)n

I |M| really small → O(log n) bits of entropy

Error Reduction

2. Use M to obtain M̂, such that:

I ∥∥∥∥E
M̂

[
M
⊗k,k

]
− E

O(N)

[
M
⊗k,k

]∥∥∥∥
op

6 δ

I |M̂| small → O(kn+ log(1/δ)) bits of entropy

Part III: Error Reduction

• Intuition •

M̂ =Mt , where Mt = {M1 ·M2 · . . . ·Mt |Mi ∈ M}

• Intuition •

M̂ =Mt , where Mt = {M1 ·M2 · . . . ·Mt |Mi ∈ M}

• Intuition •

M̂ =Mt , where Mt = {M1 ·M2 · . . . ·Mt |Mi ∈ M}

• Some Facts About Tensors •

Fact

X⊗k,k is a representation of U(N): (XY)⊗k,k = X⊗k,kY⊗k,k

Fact

For X0 ∈ U(N) and X ∼ U(N), we have X0X ∼ XX0 ∼ U(N)

Fact

X⊗k,k
0 EU(N)

[
M
⊗k,k

]
= EU(N)

[
M
⊗k,k

]
Fact

Eν

[
M
⊗k,k

]
EU(N)

[
M
⊗k,k

]
= EU(N)

[
M
⊗k,k

]
Fact

EU(N)

[
M
⊗k,k

]2
= EU(N)

[
M
⊗k,k

]
,

so it’s a projector matrix and ΠU(N) := EU(N)

[
M
⊗k,k

]

• Some Facts About Tensors •

Fact

X⊗k,k is a representation of U(N): (XY)⊗k,k = X⊗k,kY⊗k,k

Fact

For X0 ∈ U(N) and X ∼ U(N), we have X0X ∼ XX0 ∼ U(N)

Fact

X⊗k,k
0 EU(N)

[
M
⊗k,k

]
= EU(N)

[
M
⊗k,k

]
Fact

Eν

[
M
⊗k,k

]
EU(N)

[
M
⊗k,k

]
= EU(N)

[
M
⊗k,k

]
Fact

EU(N)

[
M
⊗k,k

]2
= EU(N)

[
M
⊗k,k

]
,

so it’s a projector matrix and ΠU(N) := EU(N)

[
M
⊗k,k

]

• Some Facts About Tensors •

Fact

X⊗k,k is a representation of U(N): (XY)⊗k,k = X⊗k,kY⊗k,k

Fact

For X0 ∈ U(N) and X ∼ U(N), we have X0X ∼ XX0 ∼ U(N)

Fact

X⊗k,k
0 EU(N)

[
M
⊗k,k

]
= EU(N)

[
M
⊗k,k

]

Fact

Eν

[
M
⊗k,k

]
EU(N)

[
M
⊗k,k

]
= EU(N)

[
M
⊗k,k

]
Fact

EU(N)

[
M
⊗k,k

]2
= EU(N)

[
M
⊗k,k

]
,

so it’s a projector matrix and ΠU(N) := EU(N)

[
M
⊗k,k

]

• Some Facts About Tensors •

Fact

X⊗k,k is a representation of U(N): (XY)⊗k,k = X⊗k,kY⊗k,k

Fact

For X0 ∈ U(N) and X ∼ U(N), we have X0X ∼ XX0 ∼ U(N)

Fact

X⊗k,k
0 EU(N)

[
M
⊗k,k

]
= EU(N)

[
M
⊗k,k

]
Fact

Eν

[
M
⊗k,k

]
EU(N)

[
M
⊗k,k

]
= EU(N)

[
M
⊗k,k

]

Fact

EU(N)

[
M
⊗k,k

]2
= EU(N)

[
M
⊗k,k

]
,

so it’s a projector matrix and ΠU(N) := EU(N)

[
M
⊗k,k

]

• Some Facts About Tensors •

Fact

X⊗k,k is a representation of U(N): (XY)⊗k,k = X⊗k,kY⊗k,k

Fact

For X0 ∈ U(N) and X ∼ U(N), we have X0X ∼ XX0 ∼ U(N)

Fact

X⊗k,k
0 EU(N)

[
M
⊗k,k

]
= EU(N)

[
M
⊗k,k

]
Fact

Eν

[
M
⊗k,k

]
EU(N)

[
M
⊗k,k

]
= EU(N)

[
M
⊗k,k

]
Fact

EU(N)

[
M
⊗k,k

]2
= EU(N)

[
M
⊗k,k

]
,

so it’s a projector matrix and ΠU(N) := EU(N)

[
M
⊗k,k

]

Lemma: Error reduction

If M̂ =Mt then:

∥∥∥∥E
M̂

[
M
⊗k,k

]
− E

U(N)

[
M
⊗k,k

]∥∥∥∥
op

6 εt

Proof. Assume t = 2 (general case follows from this).

Note:(
E
M

[
M
⊗k,k

]
−ΠU(N)

)2

= E
M

[
M
⊗k,k

]2
− 2 E

M

[
M
⊗k,k

]
ΠU(N) + Π2

U(N)

= E
M

[
M
⊗k,k

]2
−ΠU(N)

Lemma: Error reduction

If M̂ =Mt then:

∥∥∥∥E
M̂

[
M
⊗k,k

]
−ΠU(N)

∥∥∥∥
op

6 εt

Proof. Assume t = 2 (general case follows from this).

Note:(
E
M

[
M
⊗k,k

]
−ΠU(N)

)2

= E
M

[
M
⊗k,k

]2
− 2 E

M

[
M
⊗k,k

]
ΠU(N) + Π2

U(N)

= E
M

[
M
⊗k,k

]2
−ΠU(N)

Lemma: Error reduction

If M̂ =Mt then:

∥∥∥∥E
M̂

[
M
⊗k,k

]
−ΠU(N)

∥∥∥∥
op

6 εt

Proof. Assume t = 2 (general case follows from this).

Note:(
E
M

[
M
⊗k,k

]
−ΠU(N)

)2

= E
M

[
M
⊗k,k

]2
− 2 E

M

[
M
⊗k,k

]
ΠU(N) + Π2

U(N)

= E
M

[
M
⊗k,k

]2
−ΠU(N)

Lemma: Error reduction

If M̂ =Mt then:

∥∥∥∥E
M̂

[
M
⊗k,k

]
−ΠU(N)

∥∥∥∥
op

6 εt

Proof. Assume t = 2 (general case follows from this).

Note:(
E
M

[
M
⊗k,k

]
−ΠU(N)

)2

= E
M

[
M
⊗k,k

]2
− 2 E

M

[
M
⊗k,k

]
ΠU(N) + Π2

U(N)

= E
M

[
M
⊗k,k

]2
−ΠU(N)

Lemma: Error reduction

If M̂ =Mt then:

∥∥∥∥E
M̂

[
M
⊗k,k

]
−ΠU(N)

∥∥∥∥
op

6 εt

Proof. Assume t = 2 (general case follows from this).

Note:(
E
M

[
M
⊗k,k

]
−ΠU(N)

)2

= E
M

[
M
⊗k,k

]2
− 2 E

M

[
M
⊗k,k

]
ΠU(N) + Π2

U(N)

= E
M

[
M
⊗k,k

]2
−ΠU(N)

Proof. Assume t = 2 (general case follows from this).

Note:(
E
M

[
M
⊗k,k

]
−ΠU(N)

)2

= E
M

[
M
⊗k,k

]2
− 2 E

M

[
M
⊗k,k

]
ΠU(N) + Π2

U(N)

= E
M

[
M
⊗k,k

]2
−ΠU(N)

Also:

E
M

[
M
⊗k,k

]2
= E
M

[
M
⊗k,k
1

]
E
M

[
M
⊗k,k
2

]
= E

[
(M1M2)

⊗k,k
]
= E
M2

[
(M)⊗k,k

]

Putting it all together:(
EM

[
M
⊗k,k

]
−ΠU(N)

)2
= EM2

[
M
⊗k,k

]
−ΠU(N)

The given operator norm bound now gives the result

Proof. Assume t = 2 (general case follows from this).

Note:(
E
M

[
M
⊗k,k

]
−ΠU(N)

)2

= E
M

[
M
⊗k,k

]2
− 2 E

M

[
M
⊗k,k

]
ΠU(N) + Π2

U(N)

= E
M

[
M
⊗k,k

]2
−ΠU(N)

Also:

E
M

[
M
⊗k,k

]2
= E
M

[
M
⊗k,k
1

]
E
M

[
M
⊗k,k
2

]

= E
[
(M1M2)

⊗k,k
]
= E
M2

[
(M)⊗k,k

]

Putting it all together:(
EM

[
M
⊗k,k

]
−ΠU(N)

)2
= EM2

[
M
⊗k,k

]
−ΠU(N)

The given operator norm bound now gives the result

Proof. Assume t = 2 (general case follows from this).

Note:(
E
M

[
M
⊗k,k

]
−ΠU(N)

)2

= E
M

[
M
⊗k,k

]2
− 2 E

M

[
M
⊗k,k

]
ΠU(N) + Π2

U(N)

= E
M

[
M
⊗k,k

]2
−ΠU(N)

Also:

E
M

[
M
⊗k,k

]2
= E
M

[
M
⊗k,k
1

]
E
M

[
M
⊗k,k
2

]
= E

[
(M1M2)

⊗k,k
]
= E
M2

[
(M)⊗k,k

]

Putting it all together:(
EM

[
M
⊗k,k

]
−ΠU(N)

)2
= EM2

[
M
⊗k,k

]
−ΠU(N)

The given operator norm bound now gives the result

Proof. Assume t = 2 (general case follows from this).

Note:(
E
M

[
M
⊗k,k

]
−ΠU(N)

)2

= E
M

[
M
⊗k,k

]2
− 2 E

M

[
M
⊗k,k

]
ΠU(N) + Π2

U(N)

= E
M

[
M
⊗k,k

]2
−ΠU(N)

Also:

E
M

[
M
⊗k,k

]2
= E
M

[
M
⊗k,k
1

]
E
M

[
M
⊗k,k
2

]
= E

[
(M1M2)

⊗k,k
]
= E
M2

[
(M)⊗k,k

]

Putting it all together:(
EM

[
M
⊗k,k

]
−ΠU(N)

)2
= EM2

[
M
⊗k,k

]
−ΠU(N)

The given operator norm bound now gives the result

Proof. Assume t = 2 (general case follows from this).

Note:(
E
M

[
M
⊗k,k

]
−ΠU(N)

)2

= E
M

[
M
⊗k,k

]2
− 2 E

M

[
M
⊗k,k

]
ΠU(N) + Π2

U(N)

= E
M

[
M
⊗k,k

]2
−ΠU(N)

Also:

E
M

[
M
⊗k,k

]2
= E
M

[
M
⊗k,k
1

]
E
M

[
M
⊗k,k
2

]
= E

[
(M1M2)

⊗k,k
]
= E
M2

[
(M)⊗k,k

]

Putting it all together:(
EM

[
M
⊗k,k

]
−ΠU(N)

)2
= EM2

[
M
⊗k,k

]
−ΠU(N)

The given operator norm bound now gives the result

• A Decent Reduction... •

Using error reduction, pick t = poly(logN, k) log(1/δ), we conclude:

I ∥∥∥∥E
M̂

[
M
⊗k,k

]
−ΠU(N)

∥∥∥∥
op

6 δ

I But... |M̂| = |M|t → O(poly(n, k) log(1/δ)) bits of entropy

• A Decent Reduction... •

Using error reduction, pick t = poly(logN, k) log(1/δ), we conclude:

I ∥∥∥∥E
M̂

[
M
⊗k,k

]
−ΠU(N)

∥∥∥∥
op

6 δ

I But... |M̂| = |M|t → O(poly(n, k) log(1/δ)) bits of entropy

• Intuition for a Better Reduction •

Let G be a expander d-regular graph with |M| vertices

Label the vertices with matrices from M, so v ∈ V and Mv ∈ M

M̂ =MG ,t = {Mv1 ·Mv2 · . . . ·Mvt |vi ∼ vi+1}
Note: |M̂| = |M|d t

Challenge 1: Prove that this reduces the error, like the previous reduction

Challenge 2: Pick appropriate expander graphs

(derandomized squaring [RTV’05] [RV’05])

• Intuition for a Better Reduction •

Let G be a expander d-regular graph with |M| vertices

Label the vertices with matrices from M, so v ∈ V and Mv ∈ M

M̂ =MG ,t = {Mv1 ·Mv2 · . . . ·Mvt |vi ∼ vi+1}
Note: |M̂| = |M|d t

Challenge 1: Prove that this reduces the error, like the previous reduction

Challenge 2: Pick appropriate expander graphs

(derandomized squaring [RTV’05] [RV’05])

• Intuition for a Better Reduction •

Let G be a expander d-regular graph with |M| vertices

Label the vertices with matrices from M, so v ∈ V and Mv ∈ M

M̂ =MG ,t = {Mv1 ·Mv2 · . . . ·Mvt |vi ∼ vi+1}
Note: |M̂| = |M|d t

Challenge 1: Prove that this reduces the error, like the previous reduction

Challenge 2: Pick appropriate expander graphs

(derandomized squaring [RTV’05] [RV’05])

• Technical Result •

Theorem: Operator Reduction

Let M = (M1, . . . ,Mc) be a matrices in Rr×r satisfying ‖Mi‖op 6 1

for all i and
∥∥∥EM

[
M
⊗k,k

]
−Π

∥∥∥
op

6 1− ε

There is a strongly explicit, space-minimal algorithm that outputs a

sequence Q of N ′ = O(c/(ε11.25δ10)) monomials over M1, . . . ,Mc ,

each of length L = 8 log2(1/δ)/ε1.25, such that:∥∥∥EM̂

[
M
⊗k,k

]
−Π

∥∥∥
op

6 δ, for M̂ =MQ

Translation:

I ∥∥∥∥E
M̂

[
M
⊗k,k

]
−ΠU(N)

∥∥∥∥
op

6 δ

I |M̂| 6 poly(2nk/δ) → O(kn+ log(1/δ)) bits of entropy

• Technical Result •

Theorem: Operator Reduction

Let M = (M1, . . . ,Mc) be a matrices in Rr×r satisfying ‖Mi‖op 6 1

for all i and
∥∥∥EM

[
M
⊗k,k

]
−Π

∥∥∥
op

6 1− ε

There is a strongly explicit, space-minimal algorithm that outputs a

sequence Q of N ′ = O(c/(ε11.25δ10)) monomials over M1, . . . ,Mc ,

each of length L = 8 log2(1/δ)/ε1.25, such that:∥∥∥EM̂

[
M
⊗k,k

]
−Π

∥∥∥
op

6 δ, for M̂ =MQ

Translation:

I ∥∥∥∥E
M̂

[
M
⊗k,k

]
−ΠU(N)

∥∥∥∥
op

6 δ

I |M̂| 6 poly(2nk/δ) → O(kn+ log(1/δ)) bits of entropy

Part IV: A Baby Distribution

• Recall our Goal •

1. Construct M, a set of matrices in U(N), such that:

I ∥∥∥∥E
M

[
M
⊗k,k

]
−ΠU(N)

∥∥∥∥
op

6 1− 1

poly(k)n

I |M| 6 poly(n)

Actually, this is given in [BHH’19], [HHJ’20], [Haf’22]!

• Recall our Goal •

1. Construct M, a set of matrices in U(N), such that:

I ∥∥∥∥E
M

[
M
⊗k,k

]
−ΠU(N)

∥∥∥∥
op

6 1− 1

poly(k)n

I |M| 6 poly(n)

Actually, this is given in [BHH’19], [HHJ’20], [Haf’22]!

• A Baby Distribution •

N = 2n

Let P ⊂ U(2`) be a finite set and E ⊆ [n]`

Define Me ∼ P × E : choose e ∼ E , M ∼ P and apply M to e substates

Theorem: Non-trivial gap construction

For a fixed small positive n0, suppose Pn0 is a universal set in U(N)

Then M = Pn0 ×
(
[n]

n0

)
satisfies:

∥∥∥∥E
M

[
M
⊗k,k

]
−ΠU(N)

∥∥∥∥
op

6 1− 1

poly(k)n

• A Baby Distribution •

N = 2n

Let P ⊂ U(2`) be a finite set and E ⊆ [n]`

Define Me ∼ P × E : choose e ∼ E , M ∼ P and apply M to e substates

Theorem: Non-trivial gap construction

For a fixed small positive n0, suppose Pn0 is a universal set in U(N)

Then M = Pn0 ×
(
[n]

n0

)
satisfies:

∥∥∥∥E
M

[
M
⊗k,k

]
−ΠU(N)

∥∥∥∥
op

6 1− 1

poly(k)n

• A Baby Distribution •

N = 2n

Let P ⊂ U(2`) be a finite set and E ⊆ [n]`

Define Me ∼ P × E : choose e ∼ E , M ∼ P and apply M to e substates

Theorem: Non-trivial gap construction

For a fixed small positive n0, suppose Pn0 is a universal set in U(N)

Then M = Pn0 ×
(
[n]

n0

)
satisfies:

∥∥∥∥E
M

[
M
⊗k,k

]
−ΠU(N)

∥∥∥∥
op

6 1− 1

poly(k)n

• Proof Outline •

Pn0 universal

Abuse notation: let P1 . αP2 be∥∥∥∥E
P1

[
M
⊗k,k

]
−ΠU(N)

∥∥∥∥
op

6 α

∥∥∥∥E
P2

[
M
⊗k,k

]
−ΠU(N)

∥∥∥∥
op

Then:

Pn0 ×
(
[n]

n0

)
. κn0U(2n0)×

(
[n]

n0

)
From [BdS16] and [BG12]

. κn0 τk,n0+1U(2n0+1)×
(

[n]

n0 + 1

)
. κn0 τk,n0+1 . . . τk,nU(N)

.
(

1− 1

poly(k)n

)
U(N)

• Proof Outline •

Pn0 universal

Abuse notation: let P1 . αP2 be∥∥∥∥E
P1

[
M
⊗k,k

]
−ΠU(N)

∥∥∥∥
op

6 α

∥∥∥∥E
P2

[
M
⊗k,k

]
−ΠU(N)

∥∥∥∥
op

Then:

Pn0 ×
(
[n]

n0

)
. κn0U(2n0)×

(
[n]

n0

)
From [BdS16] and [BG12]

. κn0 τk,n0+1U(2n0+1)×
(

[n]

n0 + 1

)
. κn0 τk,n0+1 . . . τk,nU(N)

.
(

1− 1

poly(k)n

)
U(N)

• Proof Outline •

Pn0 universal

Abuse notation: let P1 . αP2 be∥∥∥∥E
P1

[
M
⊗k,k

]
−ΠU(N)

∥∥∥∥
op

6 α

∥∥∥∥E
P2

[
M
⊗k,k

]
−ΠU(N)

∥∥∥∥
op

Then:

Pn0 ×
(
[n]

n0

)
. κn0U(2n0)×

(
[n]

n0

)
From [BdS16] and [BG12]

. κn0 τk,n0+1U(2n0+1)×
(

[n]

n0 + 1

)

. κn0 τk,n0+1 . . . τk,nU(N)

.
(

1− 1

poly(k)n

)
U(N)

• Proof Outline •

Pn0 universal

Abuse notation: let P1 . αP2 be∥∥∥∥E
P1

[
M
⊗k,k

]
−ΠU(N)

∥∥∥∥
op

6 α

∥∥∥∥E
P2

[
M
⊗k,k

]
−ΠU(N)

∥∥∥∥
op

Then:

Pn0 ×
(
[n]

n0

)
. κn0U(2n0)×

(
[n]

n0

)
From [BdS16] and [BG12]

. κn0 τk,n0+1U(2n0+1)×
(

[n]

n0 + 1

)
. κn0 τk,n0+1 . . . τk,nU(N)

.
(

1− 1

poly(k)n

)
U(N)

• Proof Outline •

Pn0 universal

Abuse notation: let P1 . αP2 be∥∥∥∥E
P1

[
M
⊗k,k

]
−ΠU(N)

∥∥∥∥
op

6 α

∥∥∥∥E
P2

[
M
⊗k,k

]
−ΠU(N)

∥∥∥∥
op

Then:

Pn0 ×
(
[n]

n0

)
. κn0U(2n0)×

(
[n]

n0

)
From [BdS16] and [BG12]

. κn0 τk,n0+1U(2n0+1)×
(

[n]

n0 + 1

)
. κn0 τk,n0+1 . . . τk,nU(N)

.
(

1− 1

poly(k)n

)
U(N)

• Proof Visualization •

Thanks!

	Part I: Motivation
	Part II: General Framework
	Part III: Error Reduction
	Part IV: A Baby Distribution

