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Why scale up object detection”
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Algorithms
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How to scale up object detection?

Algorithms

Traditionally, computer vision
mostly focused on algorithms

| claim data is at least as important



Year 2012

State of object detection

PASCAL VOC
20 object classes 22,591 images

. Motorcycle

aPerson ! T
T:

[Everingham et al. [JCV 2010]

Algorithms

Viola-Jones 01,
Fergus 03
Torralba 04,
Dalal-Triggs 05,
Chum 07,
Lampert 08,
Gall 09,

Maji 09,
Harzallah 09,
Felzenszwalb 10,
vanDeSande 11,
Song 11,
Malisiewicz 11,



“State-of-the-art” results

[DPM, Felzenszwalb 2010]



Year 2012

Upper bound given available data

!

Person
-

[Objects from PASCAL VOC, Everingham 10
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2) Develop and analyze
the algorithms

1) Scale up the data

3) Combine insights from both
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Detail of annotation

Scaling up the data

PASCAL VOC
20 classes
22,591 images
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20 classes
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21,841 classes
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Detail of annotation

Scaling up the data

PASCAL VOC
20 classes
22,591 images

{ ILSVRC object detection \

200 object classes
120,931 images

\ [CHI14, IJCV15] j

ImageNet
21,841 classes
14,197,122 images

Dalmatian

Scale of dataset



ILSVRC object detection annotation

Step 1: Image collection

b by
L |

O Russakovsky* and J Deng* et al. ImageNet Large Scale Visual Recognition Challenge. IJCV 2015.
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ILSVRC object detection annotation

Step 1: Image collection

Step 2: Annotation

?

powered by

amazon mechanicalturk™

Artificial Artificial Intelligence

O Russakovsky* and J Deng* et al. ImageNet Large Scale Visual Recognition Challenge. [JCV 2015.



ILSVRC object detection annotation

Step 1: Image collection
| Attempt a)

Draw bounding boxes
around all objects and
name them

Step 2: Annotation

powered by

amazon mechanicalturk™

Artificial Artificial Intelligence

O Russakovsky* and J Deng* et al. ImageNet Large Scale Visual Recognition Challenge. [JCV 2015.



ILSVRC object detection annotation

Step 1: Image collection

Attempt a)

Draw bounding boxes
around all objects and

name them

Step 2: Annotation difficult to use the data

e | E’," L

C |
B PEEsE J-; t

powered by

amazon mechanicalturk™

Artificial Artificial Intelligence

O Russakovsky* and J Deng* et al. ImageNet Large Scale Visual Recognition Challenge. [JCV 2015.



ILSVRC object detection annotation

Step 1: Image collection

Attempt b)

Draw bounding boxes
around all instances of:
accordion, airplane, ant, antelope,

apple, armadillo, artichoke, axe,
baby bed, ... zebra

Step 2: Annotation

powered by

amazon mechanicalturk™

Artificial Artificial Intelligence

O Russakovsky* and J Deng* et al. ImageNet Large Scale Visual Recognition Challenge. [JCV 2015.



ILSVRC object detection annotation

Step 1: Image collection

Attempt b)

Draw bounding boxes
around all instances of:

accordion, airplane, ant, antelope,
apple, armadillo, artichoke, axe,
baby bed, ... zebra

Step 2: Annotation

very unnatural for annotators

powered by

amazon mechanicalturk™

Artificial Artificial Intelligence

O Russakovsky* and J Deng* et al. ImageNet Large Scale Visual Recognition Challenge. [JCV 2015.



ILSVRC object detection annotation

Step 1: Image collection Step 2a: Binary annotation

Labels

Input Table Chair Bowl Dog Cat

+ +

Step 2: Annotation

Decompose into
short, focused tasks

powered by

amazon mechanicalturk™

Artificial Artificial Intelligence

O Russakovsky* and J Deng* et al. ImageNet Large Scale Visual Recognition Challenge. [JCV 2015.



ILSVRC object detection annotation

Step 1: Image collection Step 2a: Binary annotation

W u& Labels
Input Table Chair Bowl Dog Cat

+ +

+ - + - +

Step 2: Annotation

Decompose into
short, focused tasks

powered by

amazon mechanicalturk™

Artificial Artificial Intelligence

O Russakovsky* and J Deng* et al. ImageNet Large Scale Visual Recognition Challenge. IJCV 2015.
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Scale of ILSVRC detection annotation

Scale of MAGE annotation

ImageNet:
14M images x 1 class/image = 14M binary questions



Scale of ILSVRC detection annotation

Scaleof M/AAGE annotation

ImageNet:
14M images x 1 class/image = 14M binary questions

ILSVRC detection:
120K images x 200 classes/image = 24M binary questions



Multi-label annotation

Labels

Input Table  Chair Bowl Dog Cat (200 objects)

(120K images)

J Deng, O. Russakovsky et al. Scalable multi-label annotation. CHI, 2014



Multi-label annotation

Labels
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- - - + -
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J Deng, O. Russakovsky et al. Scalable multi-label annotation. CHI, 2014
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Multi-label annotation

Labels
Input Table Chair Bowl Dog Cat
+ + - - -
+ - + - +
+- +- - - -
- - - + -

(120K images)
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Multi-label annotation

Labels
Input Table Chair Bowl Dog Cat
+ + - - -
+ - + - +
+ + - - -
- - - + -

(120K images)

Label correlation

J Deng, O. Russakovsky et al. Scalable multi-label annotation. CHI, 2014

(200 objects)

Label
sparsity



Man-made objects

Animals Label
Labels Fumiturle(\ /\ hierarchy
¥ N |
Input Table  Chair  Bowl Dog Cat (200 objects)

+ + - - -
+ - + - +

Label

sparsity

+ + - - -
- - - f= -

(120K images) | abhel correlation

J Deng, O. Russakovsky et al. Scalable multi-label annotation. CHI, 2014



Selecting the Right Question

Goal:
Get as much utility (new labels) as possible,
for as little cost (worker time) as possible,
given a desired level of accuracy

J Deng, O. Russakovsky et al. Scalable multi-label annotation. CHI, 2014
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Selecting the Right Question

Goal: U(Q) = El|y||x

Get as much utility (new labels) as possible,
for as little cost (worker time) as possible,
given a desired level of accuracy

Number of workers:
. on+1 > .
min{n : Y2 () pi(1— )2t > 1)

1 — € = acceptable accuracy

p = worker accuracy

J Deng, O. Russakovsky et al. Scalable multi-label annotation. CHI, 2014



Multi-label annotation can be efficient

* Dataset:
« 20K images from ILSVRC2013, split evenly into train/test
* 200 classes (dog, table, ...)
* 64 internal nodes in hierarchy

* Baseline: Naive approach

J Deng, O. Russakovsky et al. Scalable multi-label annotation. CHI, 2014



Multi-label annotation can be efficient

* Dataset:
« 20K images from ILSVRC2013, split evenly into train/test
* 200 classes (dog, table, ...)
* 64 internal nodes in hierarchy

* Baseline: Naive approach

* Result: 6.2x savings in human annotation time

J Deng, O. Russakovsky et al. Scalable multi-label annotation. CHI, 2014



ILSVRC object detection data

200 object classes, 120,931 images

person

chair

person
‘person

flower pot Helmet
elme
power drill

motorcycle

O Russakovsky* and J Deng* et al. ImageNet Large Scale Visual Recognition Challenge. [JCV 2015.



Impact of I[LSVRC

UNIVERSITY OF AMSTERDAM

MIT ~EUVISION

Technology C/ Ci;hﬁiféf

T Andrew Howard
Co Ogle” Mlcrosoft Research rew How
IBM Research 3 crapnc
NEC Laboratories orange o
Relentless pasénrfonrgnc\lla%g @ Decaf/ Caﬂ:e

4 a Berkeley Vision Project

O Russakovsky* and J Deng* et al. ImageNet Large Scale Visual Recognition Challenge. IJCV 2015.

Number of entries

467

400

300

200

100
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Algorithms

1) Scaled up the data by formulating data
annotation as an optimization [CHI14, [JCV15]

2) Develop and analyze
the algorithms

3) Combine insights from both



Sidebar

Some object detection
algorithmic work

Improving Improving
efficiency accuracy

==
— I —

T T e ——————— T

B3R ?&

s o =N =t
[l A ——

® Russakovsky and Ng. CVPR10

e Klingbeil, Carpenter,
Russakovsky, Ng. ICRA10

e Russakovsky, Lin, Yu, Fei-Fel.
ECCV12

e Modolo, Vezhnevets,
Russakovsky, Ferrari. CVPR15



Let's come back to this image:




“State-of-the-art” results in 2012
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[DPM, Felzenszwalb 2010]



“State-of-the-art” results in 2014

[RCNN, Girshick 2014]




But why not better?




(Highest average

—asiest and hardest classes  pecson i percen

ILSVRC 2013-2014)

rabbit (83) frog (82)

"e

= L

Easiest pird (78)
e a
horizontal bar (14) spatula (13) nail (13)
Hardest

O Russakovsky* and J Deng* et al. ImageNet Large Scale Visual Recognition Challenge. [JCV 2015.



Object detection results per-class

- 1 ® * Each dot is an object class
O Hasketball ° .
[ *volleyball o* :0: o ® lion . X-axis: average fraction of
8 image area occupied by an
o instance of that class on
O the validation set
o o . o
g s oéQ::f‘: . L ot * Y-axis: highest average
> e 2T e precision achieved by any
< D erase® method in ILSVRC2013 and

0 ILSVRC2014

0.5

Average scale of object

O Russakovsky* and J Deng* et al. ImageNet Large Scale Visual Recognition Challenge. [JCV 2015.



Variety of object classes in [LSVRC

Orange Airliner

Mask Parachute

Real-world Size

Amount of Texture

Canoe _ Pill BottleHorse-cart Mnke

g "3 g ) -
Deformability R IR

Low High

O Russakovsky et al. Detecting avocados to zucchinis: what have we done, and where are we going? ICCV 2013.



Impact of object texture

0.6

Average precision

0.2
None Low Medium High

J

Screwdniver Hatchet

Amount of Texture

O Russakovsky* and J Deng* et al. ImageNet Large Scale Visual Recognition Challenge. IJCV 2015.



Textured objects are easier

0.6

Average precision

0.2

None Low Medium High

Screwdriver Hatchet Ladybug Honeycomb
— o] 0

.
- / o
- . ” . 3 o
y » »*
A/ -

Amount of Texture

O Russakovsky* and J Deng* et al. ImageNet Large Scale Visual Recognition Challenge. IJCV 2015.



Deformable objects are easier (?!)

0.6

Average precision

0.2
Rigid Deformable

Canoe ‘ Mo

.

Low High

O Russakovsky* and J Deng* et al. ImageNet Large Scale Visual Recognition Challenge. IJCV 2015.



Actually, natural objects are easier

0.6 ¢

-

O

K%

Q

o

oN

Q

& 0.4

)]

=~

<

0.2 Rig Def Rig Def
Man-made Natural

O Russakovsky* and J Deng* et al. ImageNet Large Scale Visual Recognition Challenge. [JCV 2015.



Next frontier:
untextured, man-made objects?

0.6 L4
c c
Re) o)
. w
Q 5]
o o
Q o
()] ()] ;
< 2 0.4
Q )
= >
< &
None Low Medium High 02 Rig  Def Rig  Def
Man-made Natural

... Texture

O Russakovsky* and J Deng* et al. ImageNet Large Scale Visual Recognition Challenge. [JCV 2015.
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Scaling up object detection

Algorithms

1) Scaled up the data by formulating data
annotation as an optimization [CHI14, [JCV15]

2) Developed algorithms [CVPR10,
ECCV12, CVPR15b] and performed
large-scale analysis to gain insight into
the state of the field [ICCV13, [JCV15]

3) Combine insights from both
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Cost

The accuracy/cost tradeoff

Crowd engineering
IS Improving

High accuracy  Huge cost

Dense manual annotation
\l/ Many objects

Fully automatic object detection
Low cost Low accuracy
Few objects

Label quantity and quality per image



The accuracy/cost tradeoff

Crowd engineering
IS Improving

High accuracy  Huge cost

Dense manual annotation
\l/ Many objects

Humans need short, focused
annotation tasks

Cost

Fully automatic object detection
Low cost Low accuracy
Few objects

Label quantity and quality per image



Cost

The accuracy/cost tradeoff

Crowd engineering
IS Improving

High accuracy  Huge cost

Dense manual annotation
\l/ Many objects

Object detectors
are improving

>

Fully automatic object detection
Low cost Low accuracy
Few objects

Label quantity and quality per image



The accuracy/cost tradeoff

A C d : : Dense manual annotation
_ r,OW er.lglneerlng High accuracy  Huge cost
IS Improving Many objects
Object detectors

1% are improving

O

O >

Fully autom

Low cost Object detectors are reasonably
Algorithms
accurate on some classes
butterfly (93) dog (84) voIIeybaII (83)  rabbit (83)

6 W, /W,

basketball (80) snowplow (80

o

frog (82

bird (78)




The accuracy/cost tradeoff

A C d : : Dense manual annotation
_ rPW er.mglneerlng High accuracy  Huge cost
IS Improving Many objects
Object detectors

1%, are improving
O
O >

Fully automatic object detection

Low cost Low accuracy

Few objects

Label quantity and quality per image

O Russakovsky et al. Best of both worlds: human-machine collaboration for object annotation. CVPR 2015.
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Human-machine collaboration
for object annotation

Input iImage
and constraints

O Russakovsky et al. Best of both worlds: human-machine collaboration for object annotation. CVPR 2015.




Human-machine collaboration
for object annotation

and constraints
Detections

l Input iImage

For every box B, class C:
P(det(B,C) | Image)

W“ e
A i’ !
vm

Pillow (0.8)

Bed (0.5) §

O Russakovsky et al. Best of both worlds: human-machine collaboration for object annotation. CVPR 2015.




Human-machine collaboration
for object annotation

Multiple types of human input

Input Image .
and constraints sthisabed? = )0 ihere
: more pillows?
Detections .
For every box B, class C: SO”Cit feed back
P(det(B,C) | Image) =

Outline another
bed, if any

o
s }]
-

| T 10

Pillow (0.8)

Name another
object: pillow,
Is this an object? bed, what else?

=

& (N
Bed (0.5)

O Russakovsky et al. Best of both worlds: human-machine collaboration for object annotation. CVPR 2015.




Human-machine collaboration
for object annotation

Multiple types of human input

Input iImage .
and constraints sthisabed? = )0 ihere
: more pillows?
Detections v
For every box B, class C: Solicit feedback
P(det(B,C) | Image, User input) >

Outline another
bed, if any

.Wg Ul e g
— = Update state
<

Pillow (0.9)

Name another
object: pillow,
Is this an object? bed, what else?

=

& (N
Bed (0.6)

O Russakovsky et al. Best of both worlds: human-machine collaboration for object annotation. CVPR 2015.




Human-machine collaboration
for object annotation

Input iImage
and constraints

Detections

Solicit feedback

>

For every box B, class C:
P(det(B,C) | Image, User input)

"
} }]
"u

|

Update state
<

Pillow (0.9)

& (N
Bed (0.6) §

lOutput detections

Multiple types of human input

Is this a bed?

Are there
more pillows?
=N,

a

]
w

Is there a fan?

[ : Outline another
w W bed, if any

.
: ) () .
Name this object

Name another
object: pillow,
bed, what else?

=

|s this an object?

O Russakovsky et al. Best of both worlds: human-machine collaboration for object annotation. CVPR 2015.




Human-machine collaboration
for object annotation

Input iImage
and constraints

Detections

Solicit feedback

>

For every box B, class C:
P(det(B,C) | Image, User input)

"
} }]
"u

Update state
<

Pillow (0.9)

Multiple types of human input

Is this a bed?

Are there
more pillows?
=N,

]
w

Outline another
bed, if any

Name another

& (N
Bed (0.6) §

HCI in computer vision

Branson ECCV2010
Kovashka ICCV2011
Wah ICCV2011
Parkash ECCV2012
Biswas CVPR2013

lOutput 4

Jain ICCV2013
Vondrick IJCV 2013
Wah CVPR2014

Vijayanarasimhan IJCV2014

Branson CVPR2014

object: pillow,
pbject?  bed, what else?

=

O Russakovsky et al. Best of both worlds: human-machine collaboration for object annotation. CVPR 2015.




Some gualitative results

Computer
Object Detection

O Russakovsky et al. Best of both worlds: human-machine collaboration for object annotation. CVPR 2015.



Some gualitative results

Computer Computer

Object Detection Verify-box: Is the yellow box
tight around a car

Human
Answer: No

O Russakovsky et al. Best of both worlds: human-machine collaboration for object annotation. CVPR 2015.



Some gualitative results

Computer Computer

Object Detection Verify-box: Is the yellow box
tight around a car

Human
Answer: No

Computer Human

Draw-box: Draw a box

Answer: Yellow box below
around a person

O Russakovsky et al. Best of both worlds: human-machine collaboration for object annotation. CVPR 2015.



Some gualitative results

Computer Computer

Object Detection Verify-box: Is the yellow box
tight around a car

Human
Answer: No

—_—
Computer Computer Human
. . Draw-box: Draw a box
Final Labeling around a person Answer: Yellow box below
Person
—

O Russakovsky et al. Best of both worlds: human-machine collaboration for object annotation. CVPR 2015.



Human-machine collaboration
for object annotation

Input iImage
and constraints

Detections

Solicit feedback

>

For every box B, class C:
P(det(B,C) | Image, User input)

"
} }]
"u

|

Update state
<

Pillow (0.9)

& (N
Bed (0.6) §

lOutput detections

Multiple types of human input

Is this a bed?

Are there
more pillows?
=N,

a

]
w

Is there a fan?

[ : Outline another
w W bed, if any

.
: ) () .
Name this object

Name another
object: pillow,
bed, what else?

=

|s this an object?

O Russakovsky et al. Best of both worlds: human-machine collaboration for object annotation. CVPR 2015.




Human-machine collaboration
for object annotation

Input image Multiple types of human input
l and constraints ey | Aothore
Detections .
For every box B, class C: SOIICIt fEEdbaCk v ﬁ

P(det(B,C) | Image, User input)

o
s }]
-

- Update state
<

> Is there a fan?

=N

[ : Outline another
w W bed, if any

Pillow (0.9)

& (N
Bed (0.6) §

lOutput detections

S
: ) () .
Name this object

Name another
object: pillow,
Is this an object? bed, what else?

=

O Russakovsky et al. Best of both worlds: human-machine collaboration for object annotation. CVPR 2015.




What question to ask?

Current estimates Decide which question to ask
> out of (infinitely) many options

Is this a bed?

Are there
more pillows?

. E

g

Pillow (0.8)

Is there a fan?

=

w : .
I Outline another

bed, if any

Name another
object: pillow,
Is this an object? bed, what else?

=N. Y

O Russakovsky et al. Best of both worlds: human-machine collaboration for object annotation. CVPR 2015.



What question to ask?

Current estimates

=N.

. ¥

- TE e

Pillow (0.8)
Bed (.5)

Update estimates
depending on:

User answers (A)
or

User answers (B)
or
User answers (C)

or

>

Decide which question to ask

out of (infinitely) many options

Is this a bed?

Are there
more pillows?
=N,

w

Is there a fan?

=

w : .
- Outline another

bed, if any

=N

3

Name another
object: pillow,
Is this an object? bed, what else?

. al

O Russakovsky et al. Best of both worlds: human-machine collabaration for object annotation. CVPR 2015.



What question to ask?

O Russakovsky et al. Best of both worlds:

Update estimates
depending on:

User answers (A)
or

User answers (B)
or
User answers (C)

or

>

Decide which question to ask

out of (infinitely) many options

Is this a bed?

Are there
more pillows?
EY

w

Is there a fan?

=

- Outline another

bed, if any

Name another
object: pillow,
Is this an object? bed, what else?

=

human-machine collabaration for object annotation. CVPR 2015.



What question to ask?

Update estimates
depending on:

User answers (A)
or

User answers (B)
or
User answers (C)

or

Need to decide
on an action

Outline another
bed, if any

Name another
object: pillow,
Is this an object? bed, what else?

=

O Russakovsky et al. Best of both worlds: human-machine collabaration for object annotation. CVPR 2015.



What question to ask?

Probabilistic
transitions to
new states

User answers (B)

or Is this an object?
User answers (C) "

or

Need to decide
on an action

Outline another
bed, if any

=N

Name another
object: pillow,
bed, what else?

=

O Russakovsky et al. Best of both worlds: human-machine collabaration for object annotation. CVPR 2015.




Model: Markov Decision Process (MDP)

POMDP in vision Karayev CVPR2014, sensor placemen t Vaisenberg PMC2013, HCI Dai AAAI2010, Kamar AAMAS2012



Model: Markov Decision Process (MDP)

el/l/
bab\\'\W ra
Action a; Y s \‘ 3 s
Pl v 2

Probability
P(s4, a4, S3)

Reward

R(sy, a;, 83)

POMDP in vision Karayev CVPR2014, sensor placement Vaisenberg PMC2013, HCI Dai AAAI2010, Kamar AAMAS2012



Model: Markov Decision Process (MDP)

. \®
Action a; ¢©°

pley

Probability
P(s, a4, s3)

Reward
R(s4, a1, S3)

POMDP in vision Karayev CVPR2014, sensor placement Vaisenberg PMC2013, HCI Dai AAAI2010, Kamar AAMAS2012



Model: Markov Decision Process (MDP)

G /% Varg
Action a; ngaa\‘sfb &
pley
Probability Reward

State s,

P(s1,82:52) P(s4,82,5,)
Probability .
P(s,. ay, 5) Action a,
,opf%
/S/ %y,
,% //y
&
Reward
R(s4, a4, S3)

POMDP in vision Karayev CVPR2014, sensor placement Vaisenberg PMC2013, HCI Dai AAAI2010, Kamar AAMAS2012



Model: Markov Decision Process (MDP)

State: set of object detections, with probabilities

Computer+human

Pillow (0.9)

Bed (0.6)

=
s

O Russakovsky et al. Best of both worlds: human-machine collaboration for object annotation. CVPR 2015.



Model: Markov Decision Process (MDP)

State: set of object detections, with probabilities

Action: a question to ask humans

1) Is there a fan? 2) Is this a bed? 3) Is this an object? 4) Name this object.
< =N

B &

=N

-

Cost: 9.67 sec
Error rates: .13/.02 Error rates: .23/.07 Error rates: .29/.04 Error rates: .25/.08/.06
5) Are there 6) Outline another 7) Name another object:

Cost: 5.34 sec Cost: 5.89 sec Cost: 5.71 sec

more pillows? bed, if any. pillow, bed, what else?

=N

-

Cost: 7.57 sec Cost: 10.21 sec Cost: 9.46 sec
Error rates: .25/.26 Error rates: .28/.16/.29 Error rates: .02/.12/.05
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Model: Markov Decision Process (MDP)

State: set of object detections, with probabilities
Action: a question to ask humans

Transition probability: probability distribution over

user responses
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Computing the transition probability

Given:
An action/question A (e.qg., “is there a fan in this image?”)
Possible truths Ty, T», ... (e.g., T1 = “there is a fan”, T2 = “there is no fan”)
Image appearance land all user responses so far U
Goal:
Compute the probability of user answer u (e.g., u = user says “yes”)
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Computing the transition probability

Given:

An action/question A (e.qg., “is there a fan in this image?”)
Possible truths Ty, T», ... (e.g., T1 = “there is a fan”, T2 = “there is no fan”)

Image appearance land all user responses so far U
Goal:

Compute the probability of user answer u (e.g., u = user says “yes”)

Pu|ll,U)=) . P|T;,1,U)P(T;|1,U)

Simplifying assumptions of [Branson ECCV10]: user’s answer
is independent of (1) other users, and (2) image appearance

> P(u|T;) P(T;|I,U)

Precomputed Current estimate of
error rates the correct answer
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Computing the correct answer

Given:
Image appearance land all user responses so far U
Goal:
Compute the probability of truth T (e.g., T = there is a fan in the image)

P(T|1,U) = P(T|D) [] PlwlT)

Current estimate of Computer kK  Precomputed
the correct answer vision model error rates

Simplifying assumptions of [Branson ECCV10]: user’'s answer
is independent of (1) other users, and (2) image appearance
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Given:
Image appearance land all user responses so far U
Goal:
Compute the probability of truth T (e.g., T = there is a fan in the image)

P(T|1,U) = P(T|D) [] PlwrlT)

Current estimate of Computer k Precom puted
the correct answer vision model error rates

Simplifying assumptions of [Branson ECCV10]: user’'s answer
is independent of (1) other users, and (2) image appearance
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Multiple computer vision models

Computer+human

Objects in image: curtains (prob 0.7),
fan (0,3), plant (0.8), cow (0.1), ...

Another bed in image (0.2)
bl Another pillow in image (0.9)
o «. 1519

An object (0.1)

Pillow (0.9)

An object (0.9) MR - (.) TH

Image classifiers:
200-way CNN classifiers released with LSDA
Probabilities from Platt scaling
[Hoffman NIPS14, Yangqging Jia’s Caffe, Platt99]

Object detectors:
200 object RCNN detectors + Platt scaling
[Girshick CVPR14, Yangqing Jia’s Caffe, Platt99]

Probability of object in region:
Objectness measure [Alexe PAMI2012]

Probability of another instance of same class,
probability of another class in image:
Statistics from ILSVRC2014 val-DET data
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Human-machine collaboration
for object annotation

Input iImage
and constraints

Detections

Solicit feedback

>

For every box B, class C:
P(det(B,C) | Image, User input)

"
} }]
"u

|

Update state
<

Pillow (0.9)

& (N
Bed (0.6) §

lOutput detections

Multiple types of human input

Is this a bed?

Are there
more pillows?
=N,

a

]
w

Is there a fan?

[ : Outline another
w W bed, if any

.
: ) () .
Name this object

Name another
object: pillow,
bed, what else?

=

|s this an object?
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Results

2K images of ILSVRC2014 detection val set with at least 4 object instances

Human error rates computed from AMT experiments
Annotation experiments in simulation

Avg. objects labeled

0 B | |

0 30 60 90
Budget (seconds)
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Takeaways

1) CV and humans are mutually beneficial
2) CV models are not perfectly calibrated
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Takeaways
1) CV and humans are mutually beneficial
2) CV models are not perfectly calibrated
3) Complex human tasks are necessary
4) An MDP is effective for selecting tasks
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)
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)

CV and humans are mutually beneficial
2) CV models are not perfectly calibrated
Complex human tasks are necessary

4) An MDRP is effective for selecting tasks
5) More efficient than ILSVRC annotation

Takeaways
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What if humans were better?

Avg. objects labeled
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What if humans were better?

1
e

Avg. objects labeled

O = NN W kA O O
- T

| i

240 360 480 600
Budget (seconds)
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Scaling up object detection

Algorithms

1) Scaled up the data by formulating data
annotation as an optimization [CHI14, [JCV15]

2) Developed algorithms [CVPR10,
ECCV12, CVPR15b] and performed
large-scale analysis to gain insight into
the state of the field [ICCV13, [JCV15]

3) Combine insights from both
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1) Scaled up the data by formulating data
annotation as an optimization [CHI14, [JCV15]

2) Developed algorithms [CVPR10,
ECCV12, CVPR15b] and performed
large-scale analysis to gain insight into
the state of the field [ICCV13, [JCV15]

Algorithms

3) Created a principled framework for image
understanding using crowd engineering insights
and state-of-the-art vision algorithms [CVPR154]



Bird's-eye view of my research

A. Computer vision (& machine learning)

1. Object recognition: scale and analysis [Iccv13, IJCV15],
accuracy [ICRA10, ECCV12 CVPR15b], efficiency [CVPR10],
attributes [ECCVW10]

2. Holistic scene understanding: scene classification
[UnderReviewA], sSemantic segmentation [UnderReviewB],

3. Video understanding: human action detection
[TechReport15, UnderReviewC]
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Bird's-eye view of my research

A. Computer vision (& machine learning)

1. Object recognition: scale and analysis [Iccv13, IJCV15],
accuracy [ICRA10, ECCV12, CVPR15b], efficiency [CVPR10],
attributes [ECCVW10]

2. Holistic scene understanding: scene classification

[UnderReviewA], Semantic segmentation [UnderReviewB],

3. Video understanding: human action detection
[TechReport15, UnderReview(C]

B. Human-in-the-loop machine learning
1. Teaching: crowd engineering [CHI14, 1Jcv15], tradeoft

between annotation cost and accuracy [UnderReviewB]
2. Active learning

3. Practical human-and-CV collaborations [cvPR15a]
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Questions?

http://cs.cmu.edu/~orussako olgarus@cmu.edu

Scaling up object detection

Algorithms

1) Scaled up the data by formulating data
annotation as an optimization [CHI14, [JCV15]

2) Developed algorithms [CVPR10, ECCV12, CVPR15D]
and performed large-scale analysis to gain insight
into the state of the field [ICCV13, I[JCV15]

3) Created a principled framework for image understanding using crowd
engineering insights and state-of-the-art vision algorithms [CVPR15]

Bird's-eye view

A. Computer vision (& machine learning): Pixel-level image understanding [CVPR10, ECCVW10,
ECCV12, ICCV13, CVPR15b, [JCV15, UnderReviewA, UnderReviewB] , video understanding,
[TechReport15, UnderReviewC]

B. Human-in-the-loop machine learning: Crowd engineering [CHI14, |[JCV15], tradeoff between
human cost and accuracy [UnderReviewB], practical human-and-CV collaborations [CVPR154a]




