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How to scale up object detection?

Traditionally, computer vision 
mostly focused on algorithms

I claim data is at least as important



Year 2012

AlgorithmsData

Person

Motorcycle

[Everingham et al. IJCV 2010]

PASCAL VOC
20 object classes    22,591 images

Viola-Jones 01, 
Fergus 03 
Torralba 04, 
Dalal-Triggs 05, 
Chum 07, 
Lampert 08, 
Gall 09, 
Maji 09, 
Harzallah 09, 
Felzenszwalb 10,
vanDeSande 11, 
Song 11,  
Malisiewicz 11, 
…

State of object detection



“State-of-the-art” results
Year 2012

Person
Person

Chair

[DPM, Felzenszwalb 2010]



Upper bound given available data
Year 2012

Person

Person

TV/monitor

Chair

Potted plant

Dining table

Sofa

Chair

[Objects from PASCAL VOC, Everingham 10



Year 2012

Nowhere near this…
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Scale of dataset

Person

Motorcycle

PASCAL VOC
20 classes 

22,591 images

Dalmatian

ImageNet
21,841 classes 

14,197,122 images

ILSVRC object detection
200 object classes 

120,931 images

[CHI14, IJCV15][Everingham10]

[Deng09]
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ILSVRC object detection annotation
Step 1: Image collection

O Russakovsky* and J Deng* et al. ImageNet Large Scale Visual Recognition Challenge. IJCV 2015.

Step 2: Annotation

?

powered by

Attempt b)

Draw bounding boxes 
around all instances of:
accordion, airplane, ant, antelope, 
apple, armadillo, artichoke, axe, 
baby bed, … zebra

very unnatural for annotators
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Table Chair Bowl Dog Cat …

Labels

Input

Multi-label annotation
(200 objects)

(120K images)

J Deng, O. Russakovsky et al. Scalable multi-label annotation. CHI, 2014
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Table Chair Bowl Dog Cat …
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Input (200 objects)
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Table Chair Bowl Dog Cat …

+ + - - - -

+ - + - + -

+ + - - - -

- - - + - -

Label correlation

Label 
sparsity

Labels

Input (200 objects)

(120K images)

Multi-label annotation

J Deng, O. Russakovsky et al. Scalable multi-label annotation. CHI, 2014



Table Chair Bowl Dog Cat …

+ + - - - -

+ - + - + -

+ + - - - -

- - - + - -

Label 
hierarchyLabels

Input

Animals

Furniture

Man-made objects

(200 objects)

(120K images) Label correlation

Label 
sparsity

J Deng, O. Russakovsky et al. Scalable multi-label annotation. CHI, 2014
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Goal: 
Get as much utility (new labels) as possible, 

 for as little cost (worker time) as possible, 
 given a desired level of accuracy

J Deng, O. Russakovsky et al. Scalable multi-label annotation. CHI, 2014



Selecting the Right Question

Goal: 
Get as much utility (new labels) as possible, 

 for as little cost (worker time) as possible, 
 given a desired level of accuracy

J Deng, O. Russakovsky et al. Scalable multi-label annotation. CHI, 2014



Selecting the Right Question

Goal: 
Get as much utility (new labels) as possible, 

 for as little cost (worker time) as possible, 
 given a desired level of accuracy

J Deng, O. Russakovsky et al. Scalable multi-label annotation. CHI, 2014



Selecting the Right Question

Goal: 
Get as much utility (new labels) as possible, 

 for as little cost (worker time) as possible, 
 given a desired level of accuracy

J Deng, O. Russakovsky et al. Scalable multi-label annotation. CHI, 2014



• Dataset: 
• 20K images from ILSVRC2013, split evenly into train/test  
• 200 classes (dog, table, …) 
• 64 internal nodes in hierarchy 

• Baseline: Naïve approach

Multi-label annotation can be efficient

J Deng, O. Russakovsky et al. Scalable multi-label annotation. CHI, 2014



• Dataset: 
• 20K images from ILSVRC2013, split evenly into train/test  
• 200 classes (dog, table, …)  
• 64 internal nodes in hierarchy 

• Baseline: Naïve approach 

• Result: 6.2x savings in human annotation time

Multi-label annotation can be efficient

J Deng, O. Russakovsky et al. Scalable multi-label annotation. CHI, 2014



ILSVRC object detection data
200 object classes, 120,931 images 

O Russakovsky* and J Deng* et al. ImageNet Large Scale Visual Recognition Challenge. IJCV 2015.



Year 2010

400 

300 

200 

100 

0

Year 2012

Year 2013

Year 2014

Number of entries

Impact of ILSVRC

ILSVRC 2013

O Russakovsky* and J Deng* et al. ImageNet Large Scale Visual Recognition Challenge. IJCV 2015.

Year 2011

Year 2015

467
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2) Develop and analyze 
the algorithms

3) Combine insights from both

 1) Scaled up the data by formulating data 
annotation as an optimization [CHI14, IJCV15]



Improving 
efficiency

Improving 
accuracy

• Russakovsky and Ng. CVPR10

Some object detection 
algorithmic work

Sidebar

• Klingbeil, Carpenter, 
Russakovsky, Ng. ICRA10 

• Russakovsky, Lin, Yu, Fei-Fei. 
ECCV12 

• Modolo, Vezhnevets, 
Russakovsky, Ferrari. CVPR15



Let’s come back to this image:



“State-of-the-art” results in 2012

Person
Person

Chair

[DPM, Felzenszwalb 2010]



“State-of-the-art” results in 2014

Person

Person

Chair

TV/monitor

Table

Table

Backpack

[RCNN, Girshick 2014]



But why not better?



Easiest and hardest classes
(Highest average 
precision in percent 
of any method in 
ILSVRC 2013-2014) 

Easiest

Hardest

O Russakovsky* and J Deng* et al. ImageNet Large Scale Visual Recognition Challenge. IJCV 2015.



Object detection results per-class
• Each dot is an object class 

• X-axis: average fraction of 
image area occupied by an 
instance of that class on 
the validation set 

• Y-axis: highest average 
precision achieved by any 
method in ILSVRC2013 and 
ILSVRC2014

sofa

lion
basketball 
volleyball

rubber eraser

O Russakovsky* and J Deng* et al. ImageNet Large Scale Visual Recognition Challenge. IJCV 2015.



O Russakovsky et al. Detecting avocados to zucchinis: what have we done, and where are we going? ICCV 2013.

Variety of object classes in ILSVRC



Impact of object texture

O Russakovsky* and J Deng* et al. ImageNet Large Scale Visual Recognition Challenge. IJCV 2015.



Textured objects are easier

O Russakovsky* and J Deng* et al. ImageNet Large Scale Visual Recognition Challenge. IJCV 2015.



Deformable objects are easier (?!)

O Russakovsky* and J Deng* et al. ImageNet Large Scale Visual Recognition Challenge. IJCV 2015.



Actually, natural objects are easier

O Russakovsky* and J Deng* et al. ImageNet Large Scale Visual Recognition Challenge. IJCV 2015.



Next frontier: 
untextured, man-made objects?

O Russakovsky* and J Deng* et al. ImageNet Large Scale Visual Recognition Challenge. IJCV 2015.

Texture
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Scaling up object detection

2) Developed algorithms [CVPR10, 
ECCV12, CVPR15b] and performed 
large-scale analysis to gain insight into 
the state of the field [ICCV13, IJCV15]

3) Combine insights from both

 1) Scaled up the data by formulating data 
annotation as an optimization [CHI14, IJCV15]



What would it take to detect all objects here?
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Fully automatic object detection
Low cost  Low accuracy 
                          Few objects

Crowd engineering 
is improving

☺

Object detectors 
are improving

Object detectors are reasonably 
accurate on some classesAlgorithms
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The accuracy/cost tradeoff

Label quantity and quality per image

Dense manual annotation
High accuracy    Huge cost 
Many objects

Fully automatic object detection
Low cost  Low accuracy 
                          Few objects

O Russakovsky et al. Best of both worlds: human-machine collaboration for object annotation. CVPR 2015.

Crowd engineering 
is improving

Object detectors 
are improving

☺
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Bed (0.5)

Pillow (0.8)

Detections
For every box B, class C: 

P(det(B,C) | Image)

Human-machine collaboration 
for object annotation

O Russakovsky et al. Best of both worlds: human-machine collaboration for object annotation. CVPR 2015.

Input image 
and constraints
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HCI in computer vision

Human-machine collaboration 
for object annotation

Bed (0.6)

Pillow (0.9)

Detections
For every box B, class C: 

P(det(B,C) | Image, User input)

Multiple types of human input

Is this an object?

Is there a fan?

Is this a bed?

Name this object

Outline another 
bed, if any

Are there 
more pillows?

Name another 
object: pillow,  

bed, what else?

O Russakovsky et al. Best of both worlds: human-machine collaboration for object annotation. CVPR 2015.

Input image 
and constraints

Output detections

Update state

Solicit feedback

Branson ECCV2010 Jain ICCV2013 
Kovashka ICCV2011 Vondrick IJCV 2013 
Wah ICCV2011  Wah CVPR2014 
Parkash ECCV2012 Vijayanarasimhan IJCV2014 
Biswas CVPR2013      Branson CVPR2014   



Computer

Some qualitative results

Answer: Yellow box below Final LabelingDraw-box: Draw a box 
around a dog

Verify-box: Is the yellow box
          tight around a car Answer: No

Object Detection

Object Detection

Name-image: 
Name a new object Answer: SofaObject Detection Verify-image: Does the 

image contain a sofa Answer: Yes

... ... ...

... ... ...

... ... ......

Dog

Car
Person

Draw-box: Draw a box 
around a dog Answer: Yellow box below

Draw-box: Draw a box 
around a person Answer: Yellow box below

Draw-box: Draw a  
box around a sofa Answer: Yellow box below

Final Labeling

Final Labeling
Remote 
Control
Person
Table
Sofa

O Russakovsky et al. Best of both worlds: human-machine collaboration for object annotation. CVPR 2015.
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State: set of object detections, with probabilities

Model: Markov Decision Process (MDP)

Bed (0.6)

Pillow (0.9)

Computer+human
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State: set of object detections, with probabilities 

Action: a question to ask humans

Model: Markov Decision Process (MDP)

1) Is there a fan?

Cost: 5.34 sec 
Error rates:  .13/.02

2) Is this a bed?

Cost: 5.89 sec 
Error rates:  .23/.07 

3) Is this an object?

Cost: 5.71 sec 
Error rates:  .29/.04 

4) Name this object.

Cost: 9.67 sec 
Error rates:  .25/.08/.06 

5) Are there
more pillows?

Cost: 7.57 sec 
Error rates:  .25/.26

6) Outline another
bed, if any.

Cost: 10.21 sec 
Error rates:  .28/.16/.29

7) Name another object: 
pillow, bed, what else?

Cost: 9.46  sec 
Error rates:  .02/.12/.05

…

O Russakovsky et al. Best of both worlds: human-machine collaboration for object annotation. CVPR 2015.
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Given: 
- An action/question A  (e.g., “is there a fan in this image?”) 
- Possible truths T1, T2, … (e.g., T1 = “there is a fan”, T2 = “there is no fan”) 
- Image appearance I and all user responses so far U 
Goal: 
- Compute the probability of user answer u (e.g., u = user says “yes”)
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Bed (0.6)

Objects in image: curtains (prob 0.7), 
fan (0,3), plant (0.8), cow (0.1), …

An object (0.9)

Another bed in image (0.2) 
Another pillow in image (0.9)

Pillow (0.9)An object (0.1)

Computer+human
Image classifiers:
 200-way CNN classifiers released with LSDA 
 Probabilities from Platt scaling 
 [Hoffman NIPS14, Yangqing Jia’s Caffe, Platt99] 

Object detectors:
 200 object RCNN detectors + Platt scaling 
 [Girshick CVPR14, Yangqing Jia’s Caffe, Platt99] 

Probability of object in region:
 Objectness measure [Alexe PAMI2012] 

Probability of another instance of same class,
probability of another class in image:
 Statistics from ILSVRC2014 val-DET data

O Russakovsky et al. Best of both worlds: human-machine collaboration for object annotation. CVPR 2015.

Multiple computer vision models



Human-machine collaboration 
for object annotation

Bed (0.6)

Pillow (0.9)

Detections
For every box B, class C: 

P(det(B,C) | Image, User input)

Multiple types of human input

Is this an object?

Is there a fan?

Is this a bed?

Name this object

Outline another 
bed, if any

Are there 
more pillows?

Name another 
object: pillow,  

bed, what else?

O Russakovsky et al. Best of both worlds: human-machine collaboration for object annotation. CVPR 2015.

Input image 
and constraints

Output detections

Update state

Solicit feedback
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Human error rates computed from AMT experiments 
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Only Human

Full m
odel

CV + binary questions

Computer vision only
ILSVRC annotation

Takeaways
1) CV and humans are mutually beneficial 
2) CV models are not perfectly calibrated 
3) Complex human tasks are necessary 
4) An MDP is effective for selecting tasks 
5) More efficient than ILSVRC annotation

O Russakovsky et al. Best of both worlds: human-machine collaboration for object annotation. CVPR 2015.

Random order of questions



What if humans were better?
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Current error rates



2x higher error rates

Current error rates
2x lower error rates

8x lower error rate
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What if humans were better?



AlgorithmsData

Scaling up object detection

3) Combine insights from both

 1) Scaled up the data by formulating data 
annotation as an optimization [CHI14, IJCV15]

2) Developed algorithms [CVPR10, 
ECCV12, CVPR15b] and performed 
large-scale analysis to gain insight into 
the state of the field [ICCV13, IJCV15]
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3) Created a principled framework for image 
understanding using crowd engineering insights 
and state-of-the-art vision algorithms [CVPR15a]
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Bird’s-eye view of my research
A. Computer vision (& machine learning)

1. Object recognition: scale and analysis [ICCV13, IJCV15], 
accuracy [ICRA10, ECCV12 CVPR15b], efficiency [CVPR10], 
attributes [ECCVW10] 

2. Holistic scene understanding: scene classification 
[UnderReviewA], semantic segmentation [UnderReviewB], 

3. Video understanding: human action detection 
[TechReport15, UnderReviewC] 

B. Human-in-the-loop machine learning
1. Teaching: creating the data [CHI14, IJCV15], different 

annotation types [UnderReviewB] 
2. Active learning 
3. Practical human-and-CV collaborations [CVPR15a]
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2. Holistic scene understanding: scene classification 
[UnderReviewA], semantic segmentation [UnderReviewB], 

3. Video understanding: human action detection 
[TechReport15, UnderReviewC] 

B. Human-in-the-loop machine learning
1. Teaching: crowd engineering [CHI14, IJCV15], tradeoff 

between annotation cost and accuracy [UnderReviewB] 
2. Active learning 
3. Practical human-and-CV collaborations [CVPR15a]
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AlgorithmsData

 1) Scaled up the data by formulating data 
annotation as an optimization [CHI14, IJCV15]

2) Developed algorithms [CVPR10, ECCV12, CVPR15b] 
and performed large-scale analysis to gain insight 
into the state of the field [ICCV13, IJCV15]

3) Created a principled framework for image understanding using crowd 
engineering insights and state-of-the-art vision algorithms [CVPR15]

Scaling up object detection

Bird’s-eye view
A. Computer vision (& machine learning): Pixel-level image understanding [CVPR10, ECCVW10, 

ECCV12, ICCV13, CVPR15b, IJCV15, UnderReviewA, UnderReviewB] , video understanding, 
[TechReport15, UnderReviewC]

B. Human-in-the-loop machine learning: Crowd engineering [CHI14, IJCV15], tradeoff between 
human cost and accuracy [UnderReviewB], practical human-and-CV collaborations [CVPR15a]


