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Large scale  fair representation≠

[Shreya Shankar et al. NeurIPS 2017 Workshop]

Geographic diversity
(in ImageNet and OpenImages)Race diversity in face datasets

[Joy Buolamwini & Timnit Gebru. FAT* 2018] 

Diversity in image search results

[Matthew Kay et al. CHI 2015]

CEO
Stereotyped representation in datasets

person+flower

[Angelina Wang et al. ECCV 2020]



Counteracting the disparities by
annotating demographics

[“Towards Fairer Datasets: Filtering and Balancing the Distribution of the People Subtree in the ImageNet Hierarchy.”
Kaiyu Yang, Klint Qinami, Li Fei-Fei, Jia Deng, Olga Russakovsky. FAT* 2020. http://image-net.org/filtering-and-balancing]

Annotated demographics on 139 people synsets (categories) in ImageNet 
13,900 images; 109,545 worker judgments.



Counteracting the disparities by
annotating demographics

Annotated demographics on 139 people synsets (categories) in ImageNet 
13,900 images; 109,545 worker judgments.

Subtleties: 
- Rebalancing  removing data, changing the original distribution 
- Accuracy/validity of these labels 
- The implication of including people categories in a dataset (cf. the FAT* paper) 
- Privacy of subjects, esp. minors; consent of content creators (working on this) 
- The representation of folks of different genders (skin colors, ages) within a synset

⟹

[“Towards Fairer Datasets: Filtering and Balancing the Distribution of the People Subtree in the ImageNet Hierarchy.”
Kaiyu Yang, Klint Qinami, Li Fei-Fei, Jia Deng, Olga Russakovsky. FAT* 2020. http://image-net.org/filtering-and-balancing]



Revealing and mitigating dataset biases with
REVISE: REvealing VIsual biaSEs tool

[“REVISE: A Tool for Measuring and Mitigating Bias in Visual Datasets.”
Angelina Wang, Arvind Narayanan, Olga Russakovsky. ECCV 2020 (spotlight). https://github.com/princetonvisualai/revise-tool]

Key contributions:  
- Goes beyond underrepresentation to analyzing differences in portrayal 
- Allows for semi-automatic analysis of large-scale datasets 
- Aids dataset creators&users: fairness ultimately requires manual intervention 
- Integrates bias mitigation throughout the dataset construction process



Inner workings of the
REVISE tool

Implementation: 
- Freely available Python notebooks 
- Analyzes portrayal of objects, people and geographic regions 
- Uses provided annotations, pre-trained models, and models trained on the data 

In this talk: 
- Focus specifically on portrayal of different genders 
- Caveat: use of binarized socially-perceived gender expression  
- Analysis on COCO [T. Y. Lin et al. ECCV ‘14] and OpenImages [I. Krasin et al. ‘17]  
- Gender annotations derived from image captions [J. Zhao et al. EMNLP’17] 

[“REVISE: A Tool for Measuring and Mitigating Bias in Visual Datasets.”
Angelina Wang, Arvind Narayanan, Olga Russakovsky. ECCV 2020 (spotlight). https://github.com/princetonvisualai/revise-tool]



Co-occurrence of males and females
with different objects and in different scenes

Analysis: correlate the presence of different genders in COCO with

Scene categories, computed with pre-trained 
Places network [B. Zhou et al. TPAMI ’17]

Object categories, using ground truth object 
annotations grouped manually into super-categories 

Actionable insight: collect images of the underrepresented gender with 
the corresponding objects and scenes

[“REVISE: A Tool for Measuring and Mitigating Bias in Visual Datasets.”
Angelina Wang, Arvind Narayanan, Olga Russakovsky. ECCV 2020 (spotlight). https://github.com/princetonvisualai/revise-tool]



Interaction between objects and
people of different genders

Analysis: use the person-object distance as a proxy for interaction

Actionable insight: consider equalizing the level of interaction with the 
object (if warranted)
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male

male

female

female

female

[“REVISE: A Tool for Measuring and Mitigating Bias in Visual Datasets.”
Angelina Wang, Arvind Narayanan, Olga Russakovsky. ECCV 2020 (spotlight). https://github.com/princetonvisualai/revise-tool]



Differences in portrayal of different genders
Analysis: 
•  for each object class, learn visual classifiers for recognizing this 

object when it’s present with females vs present with males 
•  identify classes with most stark differences between genders

Actionable insight: collect more images of each gender with the 
particular object in more diverse situations

Male

Sports Uniforms Flowers

Female

[“REVISE: A Tool for Measuring and Mitigating Bias in Visual Datasets.”
Angelina Wang, Arvind Narayanan, Olga Russakovsky. ECCV 2020 (spotlight). https://github.com/princetonvisualai/revise-tool]



Annotated gender in datasets defaults to “male”

Analysis: investigate occurrences where gender is annotated but the 
person is too small or no face is detected in the image

Actionable insight: prune these gender labels

Man and boats on the sand in low tide. The group of buses are parked along the city street 
as a man crosses the street in the background.

A man riding a kiteboard on top of a 
wave in the ocean.

A man is kiteboarding in the open ocean.

[“REVISE: A Tool for Measuring and Mitigating Bias in Visual Datasets.”
Angelina Wang, Arvind Narayanan, Olga Russakovsky. ECCV 2020 (spotlight). https://github.com/princetonvisualai/revise-tool]
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Re-visiting many existing problems in this context

Learning with constraints

Interpretability

Long tail distributions

Domain adaptation



Our problem: teaching a classifier to ignore a 
known spurious correlation in the data

Toy illustration on CIFAR, to temporarily simplify the exploration

[“Towards Fairness in Visual Recognition: Effective Strategies for Bias Mitigation.” Zeyu Wang, Klint Qinami, Ioannis Christos Karakozis, 
Kyle Genova, Prem Nair, Kenji Hata, Olga Russakovsky. CVPR 2020. https://github.com/princetonvisualai/DomainBiasMitigation]

Training: skewed distributions 
(correlates class with color/grayscale)

Testing: classifying images into one of 
10 object classes (no correlation)

Testing on color images 

Training on skewed data: 
89% accuracy 

 Training on all-grayscale: 
93% accuracy



Our problem: teaching a classifier to ignore a 
known spurious correlation in the data

Toy illustration on CIFAR, to temporarily simplify the exploration

[“Towards Fairness in Visual Recognition: Effective Strategies for Bias Mitigation.” Zeyu Wang, Klint Qinami, Ioannis Christos Karakozis, 
Kyle Genova, Prem Nair, Kenji Hata, Olga Russakovsky. CVPR 2020. https://github.com/princetonvisualai/DomainBiasMitigation]

Classes primarily in 
color during training

{Testing on color images
Training: skewed distributions 

(correlates class with color/grayscale)

Testing: classifying images into one of 
10 object classes (no correlation)



Domain-independent training works very well

N = 10 D = 2

[“Towards Fairness in Visual Recognition: Effective Strategies for Bias Mitigation.” Zeyu Wang, Klint Qinami, Ioannis Christos Karakozis, 
Kyle Genova, Prem Nair, Kenji Hata, Olga Russakovsky. CVPR 2020. https://github.com/princetonvisualai/DomainBiasMitigation]

s = pre-softmax score

Inference:

arg maxy ∑d s(y, d, x)
CNN

10-way softmax 10-way softmax

ℒ = − ∑i logP(yi |di, xi)

xi = image i
yi = object class for image i
di = domain (c or g) for image i



Domain-independent training works very well,
especially with high class/domain correlation

[“Towards Fairness in Visual Recognition: Effective Strategies for Bias Mitigation.” Zeyu Wang, Klint Qinami, Ioannis Christos Karakozis, 
Kyle Genova, Prem Nair, Kenji Hata, Olga Russakovsky. CVPR 2020. https://github.com/princetonvisualai/DomainBiasMitigation]

Every object class is either 99% 
color images or 99% grayscale 

images during training

Training data: 
CIFAR-10, skewed 
color/grayscale 
distribution 
Architecture: 
ResNet-18 
Testing metric: Mean 
per-class per-domain 
accuracy (i.e., equal 
color/grayscale 
distribution within 
classes) 



CNN

10-way softmax

xi = image i
yi = object class for image i

2-way softmax

di = domain (c or g) for image i

Adversarial de-biasing does not work
Want to classify the 

object classes
But not be able to 

classify the domain

N = 10 D = 2

Lcls = − ∑
i

logP(yi |xi) − α
1
2 ∑

d=1,2
logP(d |xi)

†[Alvi et al. “Explicit removal of biases…” ECCVW’ 18] 

Ldomain = − ∑
i

logP(di |xi)

[“Towards Fairness in Visual Recognition: Effective Strategies for Bias Mitigation.” Zeyu Wang, Klint Qinami, Ioannis Christos Karakozis, 
Kyle Genova, Prem Nair, Kenji Hata, Olga Russakovsky. CVPR 2020. https://github.com/princetonvisualai/DomainBiasMitigation]



Adversarial de-biasing does not work

N = 10 D = 2

[“Towards Fairness in Visual Recognition: Effective Strategies for Bias Mitigation.” Zeyu Wang, Klint Qinami, Ioannis Christos Karakozis, 
Kyle Genova, Prem Nair, Kenji Hata, Olga Russakovsky. CVPR 2020. https://github.com/princetonvisualai/DomainBiasMitigation]
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- It is very difficult to train a visual representation that can’t classify the domain (visual 
representations are powerful!) 

- In cases of high correlation between classes and domains, one can be inferred from the 
other during training so adversarial de-biasing may not be appropriate 

- Beware of fairness literature that reports equal error rates but not overall accuracy



These findings hold across a variety of settings

N = 10 D = 2

[“Towards Fairness in Visual Recognition: Effective Strategies for Bias Mitigation.” Zeyu Wang, Klint Qinami, Ioannis Christos Karakozis, 
Kyle Genova, Prem Nair, Kenji Hata, Olga Russakovsky. CVPR 2020. https://github.com/princetonvisualai/DomainBiasMitigation]

Training data: 
CIFAR-10, skewed 
color/grayscale 
distribution 
Architecture: 
ResNet-18 
Testing metric: Mean 
per-class per-
domain accuracy 
(i.e., equal color/
grayscale 
distribution within 
classes) 

Same, except more 
subtle domain shift 
(substituting in 
images of similar 
classes from 
ImageNet instead 
of converting to 
grayscale) 

Task: multi-label face 
attribute recognition, where 
presence&appearance of 
an attribute may be 
correlated with gender 
Architecture: ResNet-50, 
pre-trained on ImageNet 
Testing metric: Weighted 
mean average precision 
(i.e., equal gender 
distribution within classes) 



Coming soon: can we generate the data we need?

N = 10 D = 2

[“Fair Attribute Classification through Latent Space De-Biasing.” Vikram Ramaswamy and Olga Russakovsky. In preparation.]
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AI will change the world. 
Who will change AI?

[K. Yang et al. FAT*2020.
http://image-net.org/filtering-and-balancing]

[A. Wang et al. ECCV2020.
https://github.com/princetonvisualai/revise-tool]



Insights on COCO 
(* caveat: gender binary here)

AI4ALL: a non-profit dedicated to
increasing diversity and inclusion in AI

- Celebrated our 3rd birthday on March 8, 2020 

- Partnered with 16 universities to run summer 
programs for high school students from 
underrepresented groups 

- https://ai-4-all.org/summer-programs/ 

- Launched a free online OpenLearning 
platform 

- https://ai-4-all.org/open-learning 

- Summer program alumni have started AI 
research projects, internships, working 
groups, panels, clubs, … (while still in high 
school/early college) 

- https://medium.com/ai4allorg/alumni/ 

- Long-term vision is to foster a community of 
diverse leaders in AI

“Until this program, I never thought 
that people who look like me could 
succeed in computer science and AI.” 

- AI4ALL 2016 student
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