1. Is there a faithful functor $F: \mathcal{C} \to \mathcal{D}$ such that there exist distinct arrows f, g in \mathcal{C} with $F(f) = F(g)$? Provide an example, or prove that no example exists.

2. Let \mathcal{C} be a category and \mathcal{C}_g its associated groupoid. Define a faithful functor $\mathcal{C}_g \to \mathcal{C}$. Hence, or otherwise, prove that if \mathcal{C} is equivalent to \mathcal{C}_g then \mathcal{C} is also a groupoid.

3. Let $F: \mathcal{C} \to \mathcal{D}$ be a full and faithful functor.
 (a) Show that F is conservative: For any arrow $f: a \to b$, if Ff is an isomorphism then f is an isomorphism.
 (b) Show that F creates isomorphisms: For any objects a, b in \mathcal{C}, if $Fa \cong Fb$ then $a \cong b$.

4. Riehl, Exercise 1.1.iii (p.8)

5. Let (\mathbb{P}, \leq) be a partially ordered set (“poset”).
 (a) Describe a category structure on \mathbb{P} such that there is an arrow between any $a, b \in \mathbb{P}$ iff $a \leq b$.
 (b) Hence, define a category \textbf{Poset} with objects posets and morphisms the order-preserving maps between posets. (Given posets (\mathbb{P}_1, \prec) and (\mathbb{P}_2, \leq) a map $f: \mathbb{P}_1 \to \mathbb{P}_2$ is order preserving iff $a \prec b \Rightarrow f(a) \leq f(b)$).
 (c) Use your previous construction to define a full functor $\textbf{Poset} \to \textbf{Cat}$.
 (d) Prove that \textbf{Poset} is equivalent to the category of (small) categories that have at most one arrow between any two of their objects.

6. Find a set A such that $\textbf{Set}(A, -)$ is naturally isomorphic to the identity functor on \textbf{Set}.

7. Let \mathcal{C} be a locally small category. Prove that $f: a \to b$ is an isomorphism if and only if for any c in \mathcal{C} the “precomposition” function

$$\begin{align*}
\mathcal{C}(b, c) & \longrightarrow \mathcal{C}(a, c) \\
g & \mapsto g \circ f
\end{align*}$$

is a bijection.