Previously on COS 433...
Message Integrity
Limitations of CPA security

How?
Message Integrity

We cannot stop adversary from changing the message in route to Bob

However, we can hope to have Bob perform some check on the message he receives to ensure it was sent by Alice and not modified
 • If check fails, Bob rejects the message

For now, we won’t care about message secrecy
 • We will add it back in later
Message Authentication

Goal: If Eve changed m, Bob should reject
Message Authentication Codes

Syntax:
• Key space K_λ
• Message space M_λ
• Tag space T_λ
• $MAC(k,m) \to \sigma$
• $Ver(k,m,\sigma) \to 0/1$

Correctness:
• $\forall m,k, Ver(k,m, MAC(k,m)) = 1$
1-time Security For MACs

Output 1 iff:
- \(m^* \neq m \)
- \(\text{Ver}(k, m^*, \sigma^*) = 1 \)

\[\text{1CMA-Adv}(\cdot, \lambda) = \Pr[\text{outputs 1}] \]
Definition: \((\text{MAC,Ver})\) is 1-time statistically secure under a chosen message attack (statistically 1CMA-secure) if, for all \(\lambda\), \(\exists\) negligible \(\varepsilon\) such that:

\[1\text{CMA-Adv}(\text{\#}, \lambda) \leq \varepsilon(\lambda)\]
A Simple 1-time MAC

Suppose H_λ is a family of pairwise independent functions from M_λ to T_λ.

For any $m_0 \neq m_1 \in M_\lambda$, $\sigma_0, \sigma_1 \in T_\lambda$,

$$\Pr_{h \leftarrow H_\lambda} [h(m_0) = \sigma_0 \land h(m_1) = \sigma_1] = 1/|T_\lambda|^2$$

$K = H_\lambda$

$MAC(h, m) = h(m)$

$Ver(h, m, \sigma) = (h(m) == \sigma)$
Theorem: If $|T_\lambda|$ is super-polynomial, then (MAC,Ver) is 1-time secure

Intuition: after seeing one message/tag pair, adversary learns nothing about tag on any other message

So to have security, just need $|T_\lambda|$ to be large
Ex: $T_\lambda = \{0,1\}^{128}$
Constructing Pairwise Independent Functions

\(T_\lambda = F \) (finite field of size \(\approx 2^\lambda \))

- Example: \(\mathbb{Z}_p \) for some prime \(p \)

Easy case: let \(M_\lambda = F \)
- \(H_\lambda = \{ h(x) = a \cdot x + b: a, b \in F \} \)

Slightly harder case: Embed \(M_\lambda \subseteq F^n \)
- \(H_\lambda = \{ h(x) = \langle a, x \rangle + b: a \in F^n, b \in F \} \)
Today

Message integrity, continued
Multiple Use MACs?

Just like with OTP, if use 1-time twice, no security

Why?
q-Time MACs

q times

$m_i \in M_\lambda$ σ (m^*, σ^*)

$k \leftarrow K_\lambda$

$\sigma \leftarrow \text{MAC}(k, m)$

Output 1 iff:
- $m^* \notin \{m_1, \ldots, m_q\}$
- $\text{Ver}(k, m^*, \sigma^*) = 1$

$q\text{CMA-Adv}(\lambda) = \text{Pr}[\text{outputs 1}]$
Definition: \((\text{MAC,Ver})\) is \(q\)-time statistically secure under a chosen message attack (statistically \(q\text{CMA-secure}\)) if, for all \(\exists\) making at most \(q\) queries, \(\exists\) negligible \(\epsilon\) such that:

\[
\text{CMA-Adv}(\epsilon, \lambda) \leq \epsilon(\lambda)
\]
Constructing q-time MACs

Ideas?

Limitations?
Impossibility of Large q

Theorem: Any qCMA-secure MAC must have $q \leq \log |K_{\lambda}|$
Proof Idea

Idea:
• By making $q \gg \log |K_\lambda|$ queries, you *should* be able to uniquely determine key
• Once key is determined, can forge any message

Problem:
• What if certain bits of the key are ignored
• Intuition: ignoring bits of key shouldn’t help
• With care, proof can be formalized
Computational Security

Definition: \((\text{MAC}, \text{Ver})\) is computationally secure under a chosen message attack (\(\text{CMA-secure}\)) if, for all \(\mathcal{A}\) running in polynomial time (and making a polynomial number of queries), \(\exists\) negligible \(\varepsilon\) such that

\[\text{CMA-Adv}(\mathcal{A}, \lambda) \leq \varepsilon(\lambda) \]
Constructing MACs

Use a PRF

\[F: K_\lambda \times M_\lambda \rightarrow T_\lambda \]

\[MAC(k,m) = F(k,m) \]
\[Ver(k,m,\sigma) = (F(k,m) == \sigma) \]
Theorem: If F is a secure PRF and $|T_\lambda|$ is super-polynomial, then (MAC, Ver) is CMA secure.
Security Proof

Assume toward contradiction polynomial time 🖖

Hybrids!
Security Proof

Hybrid 0

\[m_i \in M_\lambda \]

\[\sigma_i \]

\[(m^*, \sigma^*) \]

\[k \leftarrow K_\lambda \]

\[\sigma \leftarrow F(k, m_i) \]

Output 1 iff:

- \[m^* \notin \{m_1, \ldots\} \]
- \[F(k, m^*) = \sigma^* \]

CMA Experiment
Security Proof

Hybrid 1

Output 1 iff:
- \(m^* \notin \{m_1, \ldots \} \)
- \(H(m^*) = \sigma^* \)
Security Proof

Claim: in Hybrid 1, output 1 with probability $1/|T_\lambda|$

• sees values of H on points m_i

• Value on m^* independent of ‘s view

• Therefore, probability $\sigma^* = H(m^*) = 1/|T_\lambda|$
Security Proof

Claim: $|\Pr[1 \leftarrow \text{Hyb1}] - \Pr[1 \leftarrow \text{Hyb2}]| \leq \varepsilon(\lambda)$

Suppose not, construct PRF adversary
MACs/PRFs for Larger Domains

We saw that block ciphers are good PRFs

However, the input length is generally fixed
• For example, AES maximum block length is 128 bits

How do we handle larger messages?
Block-wise Authentication?

Why is this insecure?
Theorem: CBC-MAC is a secure PRF for fixed-length messages
Timing Attacks on MACs

How do you implement check $F(k,m) == \sigma$?

String comparison often optimized for performance

Compare(A,B):
- For $i = 1,...,A.length$
 - If $A[i] != B[i]$, abort and return False;
- Return True;

Time depends on number of initial bytes that match
Timing Attacks on MACs

To forge a message m:

For each candidate first byte σ_0:
- Query server on (m, σ) where first byte of σ is σ_0
- See how long it takes to reject

First byte is σ_0 that causes the longest response
- If wrong, server rejects when comparing first byte
- If right, server rejects when comparing second
Timing Attacks on MACs

To forge a message m:

Now we have first byte σ_0

For each candidate second byte σ_1:
• Query server on (m, σ) where first two bytes of σ are σ_0, σ_1
• See how long it takes to reject

Second byte is σ_1 that causes the longest response
Holiwudd Criptoe!

Most likely not what was meant by Hollywood, but conceivable
Thwarting Timing Attacks

Possibility:
• Use a string comparison that is guaranteed to take constant time
• Unfortunately, this is hard in practice, as optimized compilers could still try to shortcut the comparison

Possibility:
• Choose random block cipher key \(k' \)
• Compare by testing \(F(k', A) == F(k', B) \)
• Timing of \("==" \) independent of how many bytes \(A \) and \(B \) share
Alternate security notions
Strongly Secure MACs

\[k \leftarrow K \]
\[\sigma \leftarrow \text{MAC}(k, m_i) \]
\[\text{Output 1 iff:} \]
- \((m^*, \sigma^*) \notin \{(m_1, \sigma_1), \ldots\}\)
- \(\text{Ver}(k, m^*, \sigma^*) = 1\)

\[\text{SCMA-Adv} = \text{Pr}[\text{outputs 1}] \]
Strongly Secure MACs

Useful when you don’t want to allow the adversary to change *any* part of the communication.

If there is only a single valid tag for each message (such as in the PRF-based MAC), then (weak) security also implies strong security.

In general, though, strong security is stronger than weak security.
Adding Verification Queries

Output 1 iff:
- \(m^* \notin \{m_1, \ldots \} \)
- \(\text{Ver}(k, m^*, \sigma^*) = 1 \)

\[
\text{CMA}'-\text{Adv}(\cdot) = \Pr[\text{inputs outputs 1}]
\]

\[
k \leftarrow K
\]

\[
\sigma_i \leftarrow \text{MAC}(k, m_i)
\]

\[
b \leftarrow \text{Ver}(k, m, \sigma)
\]
Theorem: \((\text{MAC,Ver})\) is strongly CMA secure if and only if it is strongly CMA’ secure
Improving efficiency
Limitations of CBC-MAC

Many block cipher evaluations

Sequential
Carter Wegman MAC

\[k' = (k, h) \] where:
- \(k \) is a PRF key for \(F : K \times R \rightarrow Y \)
- \(h \) is sampled from a pairwise independent function family

MAC\((k', m)\):
- Choose a random \(r \leftarrow R \)
- Set \(\sigma = (r, F(k, r) \oplus h(m)) \)
Theorem: If F is secure and $|T|, |R|$ are super-polynomial, then the Carter Wegman MAC is strongly CMA secure.
Efficiency of CW MAC

MAC(k',m):
- Choose a random $r \leftarrow R$
- Set $\sigma = (r, F(k, r) \oplus h(m))$

h much more efficient than PRFs

PRF applied only to small nonce r

h applied to large message m
PMAC: A Parallel MAC

\[
\begin{align*}
(p_0 &\oplus k'_p) \\
(p_1 &\oplus k'_p) \\
(p_2 &\oplus k'_p) \\
(p_3 &\oplus k'_p) \\
(p_4 &\oplus k'_p)
\end{align*}
\]

\[
\begin{align*}
(k &\rightarrow F) \\
(k &\rightarrow F) \\
(k &\rightarrow F) \\
(k &\rightarrow F) \\
(k &\rightarrow F)
\end{align*}
\]

\[
\begin{align*}
\oplus \\
\oplus \\
\oplus \\
\oplus \\
\oplus
\end{align*}
\]

\[
\begin{align*}
(k &\rightarrow F) \\
\rightarrow \sigma
\end{align*}
\]
Authenticated Encryption
Authenticated Encryption

Goal: Eve cannot learn nor change plaintext
- Authenticated Encryption will satisfy two security properties
Syntax

Syntax:
• Enc: $K \times M \rightarrow C$
• Dec: $K \times C \rightarrow M \cup \{\perp\}$

Correctness:
• For all $k \in K$, $m \in M$,
 $$\Pr[\text{Dec}(k, \text{Enc}(k,m)) = m] = 1$$
Unforgeability

\[m_i \in M \]
\[c_i \]
\[c^* \]

Output 1 iff:
- \(c^* \notin \{c_1, \ldots \} \)
- \(\text{Dec}(k, c^*) \neq \bot \)
Definition: An encryption scheme \((\text{Enc},\text{Dec})\) is an authenticated encryption scheme if it is unforgeable and CPA secure.
Constructing Authenticated Encryption

Three possible generic constructions:

1. MAC-then-Encrypt (SSL)

\[
k = (k_{Enc}, k_{MAC})
\]
Constructing Authenticated Encryption

Three possible generic constructions:

2. Encrypt-then-MAC (IPsec)

\[k = (k_{Enc}, k_{MAC}) \]

\[\text{Enc}(k_{Enc}, m) \]

\[\text{MAC}(k_{MAC}, c') \]

\[c \]
Constructing Authenticated Encryption

Three possible generic constructions:

3. Encrypt-and-MAC (SSH)

\[k = (k_{Enc}, k_{MAC}) \]

\[\text{MAC}(k_{MAC}, m) \]

\[\text{Enc}(k_{Enc}, m) \]

\[c' \]

\[c \]
Constructing Authenticated Encryption

1. MAC-then-Encrypt
2. Encrypt-then-MAC
3. Encrypt-and-MAC

Which one(s) **always** provides authenticated encryption (assuming strongly secure MAC)?
Constructing Authenticated Encryption

MAC-then-Encrypt?
• Encryption not guaranteed to provide authentication
• May be able to modify ciphertext to create a new ciphertext
• Toy example:
 \[\text{Enc}(k,m) = (0,\text{Enc}'(k,m)) \]
 \[\text{Dec}(k, (b,c)) = \text{Dec}'(k,c) \]
Constructing Authenticated Encryption

Encrypt-then-MAC?
• Inner encryption scheme guarantees secrecy, regardless of what MAC does
• (strongly secure) MAC provides integrity, regardless of what encryption scheme does

Theorem: Encrypt-then-MAC is an authenticated encryption scheme for any CPA-secure encryption scheme and *strongly* CMA-secure MAC
Constructing Authenticated Encryption

Encrypt-and-MAC?

• MAC not guaranteed to provide secrecy
• Even though message is encrypted, MAC may reveal info about message
• Toy example: $MAC(k,m) = (m, MAC'(k,m))$
Constructing Authenticated Encryption

1. MAC-then-Encrypt ✗
2. Encrypt-then-MAC ✓
3. Encrypt-and-MAC ✗

Which one(s) always provides authenticated encryption (assuming strongly secure MAC)?
Constructing Authenticated Encryption

Just because MAC-then-Encrypt and Encrypt-and-MAC are insecure for *some* MACs/encryption schemes, they may be secure in some settings

Ex: MAC-then-Encrypt with CTR or CBC encryption
• For CTR, any one-time MAC is actually sufficient
Theorem: MAC-then-Encrypt with any one-time MAC and CTR-mode encryption is an authenticated encryption scheme
Chosen Ciphertext Attacks
Chosen Ciphertext Attacks

Often, adversary can fool server into decrypting certain ciphertexts

Even if adversary only learns partial information (e.g. whether ciphertext decrypted successfully), can use info to decrypt entire message

Therefore, want security even if adversary can mount decryption queries
Chosen Plaintext Security

$$c \leftarrow \text{Enc}(k,m)$$
$$c \leftarrow \text{Enc}(k,m_b)$$
$$c \leftarrow \text{Enc}(k,m)$$

$$\text{CPA-Exp}_b(\text{Bob}, \lambda)$$
Chosen Ciphertext Security?

\[m \xrightarrow{c} \quad c \xleftarrow{m} \quad c \xrightarrow{m} \quad m \xleftarrow{c} \quad b \]

\[k \xleftarrow{K} \quad c \xleftarrow{Enc(k,m)} \quad m \xleftarrow{Dec(k,c)} \quad c^* \xleftarrow{Enc(k,m_b^*)} \]

\[m_0^*, m_1^* \]
Lunch-time CCA (CCA1)

\[k \leftarrow K \]
\[c \leftarrow \text{Enc}(k,m) \]
\[m \leftarrow \text{Dec}(k,c) \]
\[c^{*} \leftarrow \text{Enc}(k,m_{b}^{*}) \]
Full CCA (CCA2)

\[
\begin{align*}
 k & \leftarrow K \\
 c & \leftarrow Enc(k, m) \\
 m & \leftarrow Dec(k, c) \\
 c^* & \leftarrow Enc(k, m_b^*)
\end{align*}
\]
Theorem: If \((Enc, Dec)\) is an authenticated encryption scheme, then it is also CCA secure.
Proof Sketch

For any decryption query, two cases

1. Was the result of a CPA query
 • In this case, we know the answer already!

2. Was not the result of an encryption query
 • In this case, we have a ciphertext forgery