COS433/Math 473: Cryptography

Mark Zhandry
Princeton University
Fall 2020
Announcements/Reminders

Last day to turn in HW5
HW6 released soon

PR2 due Dec 5
Previously on COS 433...
Zero Knowledge
Interactive Proof

Statement ✗

Witness \(w \)
Zero Knowledge

For every malicious verifier V^*, \exists “simulator” \exists s.t. for every true statement x, valid witness w, $P(x, w) \approx_c V^*(x)$
QR Protocol

Statements: x is a Q.R. mod N
Witness: w s.t. $w^2 \mod N = x$

Protocol:

$u \leftarrow Z_N^*$
$y \leftarrow u^2 \mod N$

$z \leftarrow w^b u \mod N$

$b \leftarrow \{0, 1\}$

$z^2 \equiv x^b y \mod N$?
Today

Zero knowledge proofs of knowledge
Crypto from minimal assumptions
Proofs of Knowledge

Sometimes, not enough to prove that statement is true, also want to prove “knowledge” of witness

Ex:
• Identification protocols: prove knowledge of key
• Discrete log: always exists, but want to prove knowledge of exponent.
Proofs of Knowledge

We won’t formally define, but here’s the intuition:

Given any (potentially malicious) PPT prover P^* that causes V to accept, it is possible to “extract” from P^* a witness w.
Schnorr PoK for DLog

Statement: \((g,h)\)
Witness: \(w\) s.t. \(h=g^w\)

Protocol:
\[
\begin{align*}
 r & \leftarrow \mathbb{Z}_p \\
 a & \leftarrow g^r \\
 b & \leftarrow \mathbb{Z}_p \\
 c & = r + wb
\end{align*}
\]
\[a \times h^b = g^c?\]
Schnorr PoK for DLog

Completeness:
• $g^c = g^{r+wb} = a \times h^b$

Honest Verifier ZK:
• Transcript = (a, b, c) where $a = g^c / h^b$ and (b, c) random in \mathbb{Z}_p
• Can easily simulate. How?
Schnorr PoK for DLog

Proof of Knowledge?

Idea: once Alice commits to $a = g^r$, show must be able to compute $c = r + bw$ for any b of Bob’s choosing

• Intuition: only way to do this is to know w

• Run Alice on two challenges, obtain:

$$c_0 = r_0 + b_0 w, \ c_1 = r_1 + b_1 w$$

(Can solve linear equations to find w)
Deniability

Zero Knowledge proofs provide deniability:

• Alice proves statement \Box is true to Bob
• Bob goes to Charlie, and tries to prove \Box by providing transcript
• Charlie not convinced, as Bob could have generated transcript himself
• Alice can later deny that she knows proof of \Box
\[\text{protocols}\]

(fancy name for 3-round “public coin” protocols)
Fiat-Shamir Transform

Idea: set $b = H(a)$
• Since H is a random oracle, a is a random output

Notice: now prover can compute b for themselves!
• No need to actually perform interaction

$w \quad a, b = H(a), c$
Theorem: If \((P,V)\) was a secure ZKPoK for honest verifiers, and if \(H\) is a random oracle, then compiled protocol is a ZKPoK

Proof idea: second message is exactly what you’d expect in original protocol

Complication: adversary can query \(H\) to learn second message, and throw it out if she doesn’t like it
Signatures from Σ Protocols

Idea: what if set $b = H(m,a)$
- Challenge b is message specific
- Intuition: proves that someone who knows sk engaged in protocol depending on m
- Can use resulting transcript as signature on m

Schnorr PoK \rightarrow Schnorr Signatures
Applications of ZK (PoK)

Identification protocols: prove that you know the secret without revealing the secret

Signatures: prove that you know the secret in a “message dependent” way

Protocol Design:
- E.g. CCA secure PKE
 - To avoid mauling attacks, provide ZK proof that ciphertext is well formed
 - Problem: ZK proof might be malleable
 - With a bit more work, can be made CCA secure
- Example: multiparty computation
 - Prove that everyone behaved correctly
Crypto from Minimal Assumptions
Many ways to build crypto

We’ve seen many ways to build crypto
• SPN networks
• LFSR’s
• Discrete Log
• Factoring

Questions:
• Can common techniques be abstracted out as theorem statements?
• Can every technique be used to build every application?
One-way Functions

The minimal assumption for crypto

Syntax:
• Domain \mathbb{D}
• Range \mathbb{R}
• Function $F : \mathbb{D} \rightarrow \mathbb{R}$

No correctness properties other than deterministic
Security?

Definition: F is One-Way if, for all polynomial time t, there exists negligible ε such that:

$$\Pr[x \leftarrow (F(x)), x \leftarrow D] < \varepsilon$$

Trivial example:

$F(x) =$ parity of x

Given $F(x)$, impossible to predict x
Security

Definition: F is One-Way if, for all polynomial time, \exists negligible ε such that:

$$\Pr[F(x)=F(y): y \leftarrow (F(x)), x \leftarrow D] < \varepsilon$$
Examples

Any PRG

Any Collision Resistant Hash Function (with sufficient compression)

\[F(p, q) = pq \]

\[F(g, a) = (g, g^a) \]

\[F(N, x) = (N, x^3 \mod N) \text{ or } F(N, x) = (N, x^2 \mod N) \]
What’s Known

CRH

CPA - PKE
CCA - PKE

TDP

OWF
PRG
Com

PRF
MAC

SKE

Auth
Enc

Sig

ZK

CPA-PKE

OWF

PRG

Com

PRF
MAC

SKE

Auth
Enc

Sig

ZK
Theory vs Practice

Most arrows are “feasibility” results
• Can build A from B in principle
• But sometimes horribly inefficient

In practice, typically start from powerful building blocks, e.g.
• PRPs
• TDPs
• Discrete log/DDH
Roadmap

We will just prove a subset of implications

- PRGs \rightarrow PRFs
- One-way permutation \rightarrow PRGs
- OWF \rightarrow One-time Signatures (if time)
PRGs \rightarrow PRFs
First: Expanding Length of PRGs
A Different Approach
Advantage of Tree-based Approach

To expand λ bits into $2^{h\lambda}$ bits, need h levels

Can compute output locally:
• To compute ith chunk of λ bits, only need h PRG evaluations

In other words, can locally compute in logarithmic time
Theorem: For any logarithmic h, if G is a secure PRG, then so is the tree-based PRG
Proof

Hybrid 0:
Proof

Hybrid 1:
Proof

Hybrid 2:
Proof

Hybrid 3:
Proof

Hybrid \dagger:
Proof

What is \(t \) in terms of \(h \)?

PRG adversary distinguishes Hybrid 0 from Hybrid \(t \) with advantage \(\varepsilon \)

- \(\exists i \) such that adversary distinguishes Hybrid \(i-1 \) from Hybrid \(i \) with advantage \(\varepsilon/t \)
- Can use to construct adversary for \(G \) with advantage \(\varepsilon/t \)
A PRF

Domain $\{0,1\}^n$

Set $h = n$

$F(k, x)$ is the xth block of λ bits
- Computation involves h evals of G, so efficient
Problem with Security Proof

Suppose we have a PRF adversary with advantage ε. In the proof, what is the advantage of the derived PRG adversary?
A Better Proof

Hybrid 0:
A Better Proof

Hybrid 1:
A Better Proof

Hybrid 2:
A Better Proof

Hybrid 3:
A Better Proof

Hybrid $h=n$:

\[\downarrow \]
A Better Proof

Now if PRF adversary distinguishes Hybrid 0 from Hybrid $h=n$ with advantage ε, $\exists i$ such that adversary distinguishes Hybrid $i-1$ from Hybrid i with advantage ε/n
- Non-negligible advantage

Not quite done: Distinguishing Hybrid $i-1$ from Hybrid i does not immediately give a PRG distinguisher
- Exponentially many PRG values changed!
A Better Proof

Hybrid $i-1$

Hybrid i
Key Observation:

Hybrid $i-1$

Adversary only queries polynomially many outputs
⇒ Only need to worry about polynomially many PRG instances in level i
A Better Proof

More Formally:

Given distinguisher A for Hybrid $i-1$ and Hybrid i, can construct distinguisher B for the following two oracles from $\{0,1\}^{i-1} \rightarrow \{0,1\}^{2\lambda}$

- H_0: each output is a fresh random PRG sample
- H_1: each output is uniformly random

If A makes q queries, B makes at most q queries
A Better Proof

Now we have a distinguisher B with advantage $\frac{\varepsilon}{n}$ that sees at most q values, where either

- Each value is a random output of the PRG, or
- Each value is uniformly random

By introducing q hybrids, can construct a PRG distinguisher with advantage $\frac{\varepsilon}{qn}$

\Rightarrow non-negligible