Announcements/Reminders

Last day to turn in HW3

HW4 due Oct 27
Previously on COS 433...
Number Theory and Crypto

(Handout on course website with basic number theory primer)
Number-theory Constructions

Goal: base security on hard problems of interest to mathematicians

• Wider set of people trying to solve problem
• Longer history
• Ultimately, new applications
Number Theory

\(\mathbb{Z}_N \): integers mod \(N \)

\(\mathbb{Z}_N^* \): integers mod \(N \) that are relatively prime to \(N \)

\(x \in \mathbb{Z}_N^* \) iff \(x \) has an “inverse” \(y \) s.t. \(xy \mod N = 1 \)

\(\Rightarrow \mathbb{Z}_N^* \) is a multiplicative group

\(\bullet \) For prime \(N \), \(\mathbb{Z}_N^* = \mathbb{Z}_N \setminus \{0\} = \{1, \ldots, N-1\} \)

\(\Rightarrow \mathbb{Z}_N \) for prime \(N \) is a field

Totient function: \(\Phi(N) := |\mathbb{Z}_N^*| \)

Euler’s theorem: for any \(x \in \mathbb{Z}_N^* \), \(x^{\Phi(N)} \mod N = 1 \)
Today

Number theory continued
Cyclic Groups

For prime p, \mathbb{Z}_p^* is cyclic, meaning

\[
\exists \; g \; \text{s.t.} \; \mathbb{Z}_p^* = \{1, g, g^2, \ldots, g^{p-2}\}
\]

(we call such a g a generator)

However, not all g are generators

- If g_0 is a generator, then $g = g_0^2$ is not:
 \[
 g_0^{(p-1)/2} = g^{p-1} = 1, \; \text{so} \; |\{1, g, \ldots\}| \leq (p-1)/2
 \]

- How to test for generator?
Discrete Log
Discrete Log

Let p be a large number (usually prime)

Given $g \in \mathbb{Z}_p^*$, $a \in \mathbb{Z}$, “easy” to compute $g^a \mod p$

• Time $\text{poly}(\log a, \log p)$
• How?

However, no known efficient ways to recover $a \pmod{\Phi(p)=p-1}$ from g and $g^a \mod p$
Hardness of DLog

For prime p, best know algorithms:
- Brute force: $O(p)$
- Better algs based on birthday paradox: $O(p^{1/2})$
- Even better heuristic algorithms:
 \[
 \exp\left(C \left(\log p \right)^{1/3} \left(\log \log p \right)^{2/3} \right)
 \]
 (super polynomial in $\log p$)

For non-prime p, some cases are easy
Sampling Large Random Primes

Prime Number Theorem: A random λ-bit number is prime with probability $\approx 1/\lambda$

Primality Testing: It is possible in polynomial time to decide if an integer is prime

Fermat Primality Test (randomized, some false positives):
- Choose a random integer $a \in \{0, \ldots, N-1\}$
- Test if $a^N = a \mod N$
- Repeat many times
Discrete Log Assumption: For any discrete log algorithm running in time polynomial time, there exists negligible ε such that:

$$\Pr[a \leftarrow (p, g, g^a \mod p): p \leftarrow \text{random } \lambda\text{-bit prime, } g \leftarrow \text{random generator of } \mathbb{Z}_p^*, a \leftarrow \mathbb{Z}_{p-1}] \leq \varepsilon(\lambda)$$
Collision Resistance from DLog

Let p be a prime

- Key space = \mathbb{Z}_p^2
- Domain: \mathbb{Z}_{p-1}^2
- Range: \mathbb{Z}_p
- $H((g,h), (x,y)) = g^x h^y$

To generate key, choose random $p, g, h \in \mathbb{Z}_p^*$

- Require g a generator
Collision Resistance from Discrete Log

\[H((g,h), (x,y)) = g^x h^y \]

Theorem: If discrete log assumption holds, then \(H \) is collision resistant

k(\(p, g, h\))

(\(x_0, y_0\), \(x_1, y_1\))

(\(p, g, h = g^a\))

?
Collision Resistance from Discrete Log

Proof idea:

• Input to H is equation for a line $\text{line}(a) = ay + x$

• $H(\text{line}) = g^{\text{line}(a)}$ (evaluation “in the exponent”)

• A collision is two different lines that intersect at a

• Use equations for two lines to solve for a:

$$a = -(x_1-x_0)/(y_1-y_0) \pmod{p-1}$$
Problem

For $p > 2$, $p-1$ is not a prime, so has some factors

Therefore, $(y_1 - y_0)$ not necessarily invertible mod $p-1$

However, possible to show that if this is the case, either:
• $(y_1 - y_0)$ and $(x_1 - x_0)$ have common factor, so can remove factor and try again, or
• g is not a generator (which isn’t allowed)
Blum-Micali PRG

Let p be a prime

Let $g \in \mathbb{Z}_p^*$

Let $h : \mathbb{Z}_p^* \rightarrow \{0, 1\}$ be $h(x) = 1$ if $0 < x < (p - 1)/2$

Seed space: \mathbb{Z}_p^*

Algorithm:

• Let x_0 be seed

• For $i = 0, \ldots$
 • Let $x_{i+1} = g^{x_i} \mod p$
 • Output $h(x_i)$
Theorem: If the discrete log assumption holds on \mathbb{Z}_p^*, then the Blum-Micali generator is a secure PRG

We will prove this eventually (if time)
Another PRG

p a prime
Let *g* be a generator

Seed space: \mathbb{Z}_{p-1}^2
Range: \mathbb{Z}_p^3

PRG(*a*,*b*) = (*g^a*,*g^b*,*g^{ab}*)

Don’t know how to prove security from DLog
Stronger Assumptions on Groups

Sometimes, the discrete log assumption is not enough

Instead, define stronger assumptions on groups

Computational Diffie-Hellman:
• Given \((g, g^a, g^b)\), compute \(g^{ab}\)

Decisional Diffie-Hellman:
• Distinguish \((g, g^a, g^b, g^c)\) from \((g, g^a, g^b, g^{ab})\)
DLog:
• Given \((g, g^a)\), compute \(a\)

CDH:
• Given \((g, g^a, g^b)\), compute \(g^{ab}\)

DDH:
• Distinguish \((g, g^a, g^b, g^c)\) from \((g, g^a, g^b, g^{ab})\)

Increasing Difficulty

Stronger Assumptions
Computational Diffie Hellman: For any algorithm running in polynomial time, there exists negligible \(\varepsilon \) such that:

\[
\Pr[g^{ab} \leftarrow (p, g, g^a, g^b): \begin{align*}
p &\leftarrow \text{random } \lambda\text{-bit prime} \\
g &\leftarrow \text{random generator of } \mathbb{Z}_p^* \\
a, b &\leftarrow \mathbb{Z}_{p-1} \end{align*}] \leq \varepsilon(\lambda)
\]
Decisional Diffie-Hellman: For any algorithm running in polynomial time, there exists negligible ε such that:

$$\left| \Pr[1 \leftarrow (p, g, a, g^a, g^b, g^{ab}): a, b \leftarrow \mathbb{Z}_{p-1}] - \Pr[1 \leftarrow (p, g, a, g^b, g^c): a, c \leftarrow \mathbb{Z}_{p-1}] \right| \leq \varepsilon(\lambda)$$
Hardness of DDH

Need to be careful about DDH

Turns out that DDH as described is usually easy:

• For prime $p>2$, $\Phi(p)=p-1$ will have small factors
• Can essentially reduce solving DDH to solving DDH over a small factor
Fixing DDH

Let g_0 be a generator

Suppose $p - 1 = qr$ for prime q, integer r

Let $g = g_0^r$

$g^q \mod p = 1$, but $g^{q'} \mod p \neq 1$ for any $q' < q$

• So g has “order” q

Let $G = \{1, g, g^2, \ldots\}$ be group “generated by” g
Generalizing Cryptographic Groups

Replace fixed family of groups with “group generator” algorithm

\[(G, g, q) \leftarrow \text{GrGen}(\lambda)\]
Decisional Diffie Hellman for GrGen:
For any algorithm running in polynomial time, there exists negligible ε such that:

$$\left| \Pr[1 \leftarrow (g, g^a, g^b, g^{ab}) : (G, g, q) \leftarrow \text{GrGen}(\lambda), a, b \leftarrow \mathbb{Z}_q] - \Pr[1 \leftarrow (g, g^a, g^b, g^c) : (G, g, q) \leftarrow \text{GrGen}(\lambda), a, b, c \leftarrow \mathbb{Z}_q] \right| \leq \varepsilon(\lambda)$$
Back to our PRG

Seed space: \mathbb{Z}_q^2
Range: G^3

$\text{PRG}(a,b) = (g^a, g^b, g^{ab})$

Security almost immediately follows from DDH
Generalizing Cryptographic Groups

Can also define Dlog, CDH relative to general GrGen

In many cases, problems turns out easy
Ex: $G = \mathbb{Z}_q$, where $g \otimes h = g + h \mod q$
• What is exponentiation in G?
• What is discrete log in G?

Essentially only two groups where Dlog/CDH/DDH is conjectured to be hard:
• \mathbb{Z}_p^* and its subgroups
• “Elliptic curve” groups
Parameter Size in Practice?

\[G = \text{subgroup of } \mathbb{Z}_p^* \text{ of order } q, \text{ where } q | p - 1 \]

- In practice, best algorithms require \(p \geq 2^{1024} \) or so

- \(G = \text{“elliptic curve” group} \)
- Can set \(p \approx 2^{256} \) to have security
 \[\Rightarrow \text{best attacks run in time } 2^{128} \]

Therefore, elliptic curve groups tend to be much more efficient \(\Rightarrow \text{preferred in practice} \)
Naor-Reingold PRF

Domain: \(\{0,1\}^n\)
Key space: \(\mathbb{Z}_q^{n+1}\)
Range: \(G\)

\[F((a,b_1,b_2,...,b_n), x) = g^a b_1^{x_1} b_2^{x_2} ... b_n^{x_n}\]

Theorem: If DDH assumption holds on \(G\), then the Naor-Reingold PRF is secure
Proof by Hybrids

Hybrids 0: \(H(x) = g^{a \ b_1^{x_1} \ b_2^{x_2} \ ... \ b_n^{x_n}} \)

Hybrid i: \(H(x) = H_i(x_{[1,i]})^{b_{i+1}^{x_{i+1}} \ ... \ b_n^{x_n}} \)
• \(H_i \) is a random function from \(\{0,1\}^i \rightarrow G \)

Hybrid n: \(H(x) \) is truly random
Proof

Suppose adversary can distinguish Hybrid $i-1$ from Hybrid i for some i

Easy to construct adversary that distinguishes:

$$x \rightarrow H_i(x) \text{ from } x \rightarrow H_{i-1}(x_{[1,i-1]})^{b_{xi}}$$
Proof

Suppose adversary makes $2r$ queries
• Assume wlog that queries are in pairs $x||0, x||1$

What does the adversary see?
• $H_i(x)$: $2r$ random elements in G

• $H_{i-1}(x_{[1,i-1]})^{b_i x_i}$: r random elements in G, $h_1, ..., h_q$ as well as $h_1^b, ..., h_q^b$
Lemma: Assuming the DDH assumption on G, for any polynomial r, the following distributions are indistinguishable:

$$(g, g^{x_1}, g^{y_1}, \ldots, g^{x_q}, g^{y_q}) \text{ and } (g, g^{x_1}, g^{b \cdot x_1}, \ldots, g^{x_q}, g^{b \cdot x_q})$$

Suffices to finish proof of NR-PRF
Proof of Lemma

Hybrids 0: \((g, g^{x_1}, g^b x_1, \ldots, g^{x_r}, g^b x_r)\)

Hybrid i:
\((g, g^{x_1}, g^{y_1}, \ldots, g^{x_i}, g^{y_i}, g^{x_{i+1}}, g^b x_{i+1}, \ldots, g^{x_r}, g^b x_r)\)

Hybrid q: \((g, g^{x_1}, g^{y_1}, \ldots, g^{x_r}, g^{y_r})\)
Proof of Lemma

Suppose adversary distinguishes Hybrid $i-1$ from Hybrid i

Use adversary to break DDH:

$$(g, g^{x_1}, g^{y_1}, \ldots, g^{x_{i-1}}, g^{y_{i-1}}, u, v, g^{x_{i+1}}, h^{x_{i+1}}, \ldots g^{x_r}, h^{x_r})$$
Proof of Lemma

\[(g, g^{x_1}, g^{y_1}, \ldots, g^{x_{i-1}}, g^{y_{i-1}}, u, v, g^{x_{i+1}}, h^{x_{i+1}}, \ldots, g^{x_r}, h^{x_r})\]

If \((g, h, u, v) = (g, g^b, g^{x_i}, g^b {}^i)\), then Hybrid i-1

If \((g, h, u, v) = (g, g^b, g^{x_i}, g^{y_i})\), then Hybrid i

Therefore, \(\text{\textbullet}\)‘s advantage is the same as \(\text{\textbullet}\)‘s
Further Applications

From NR-PRF can construct:

• CPA-secure encryption
• Block Ciphers
• MACs
• Authenticated Encryption
Announcements/Reminders

Last day to turn in HW3

HW4 due Oct 27