COS433/Math 473: Cryptography

Mark Zhandry
Princeton University
Fall 2020
Announcements/Reminders

HW3 due today

HW4 due Oct 27
Previously on COS 433...
Committments
(Non-interactive)
Commitment Syntax

Message space \mathcal{M}
Ciphertext Space \mathcal{C}
(suppressing security parameter)

$\text{Com}(m; r)$: outputs a commitment c to m

• Why have r?
Commitments with Setup

Message space \mathcal{M}
Ciphertext Space \mathcal{C}
(suppressing security parameter)

$\textbf{Setup}()$: Outputs a key k
$\textbf{Com}(k, m; r)$: outputs a commitment c to m
Using Commitments

Commit Stage

Reveal Stage

m

r ← R

c ← Com(m; r)

m, r

Check that c = Com(m; r)
Using Commitments (with setup)

1. **Commit Stage**
 - $k \leftarrow \text{Setup}()$
 - $r \leftarrow R$
 - $c \leftarrow \text{Com}(k,m;r)$

2. **Reveal Stage**
 - m, r
 - Check that $c = \text{Com}(k,m;r)$
Security Properties

Hiding: \(c \) should hide \(m \)
• Perfect hiding: for any \(m_0, m_1, \)
 \[\text{Com}(m_0) \overset{d}{=} \text{Com}(m_1) \]
• Statistical hiding: for any \(m_0, m_1, \)
 \[\Delta(\text{Com}(m_0), \text{Com}(m_1)) < \text{negl} \]
• Computational hiding:

\[\begin{align*}
 b' & \quad \text{Com}(m_b) \\
 c & \quad \text{Com}(m_0, m_1)
\end{align*} \]
Security Properties (with Setup)

Hiding: \(c \) should hide \(m \)

- Perfect hiding: for any \(m_0, m_1 \),
 \[k,\text{Com}(k,m_0) \equiv k,\text{Com}(k,m_1) \]

- Statistical hiding: for any \(m_0, m_1 \),
 \[\Delta([k,\text{Com}(k,m_0)], [k,\text{Com}(k,m_1)]) < \text{negl} \]

- Computational hiding:

\[c \leftarrow \text{Com}(k,m_b) \]
Security Properties

Binding: Impossible to change committed value

- Perfect binding: For any \(c \), \(\exists \) at most a single \(m \) such that \(c = \text{Com}(m;r) \) for some \(r \)

- Computational binding: no efficient adversary can find \((m_0,r_0),(m_1,r_1) \) such that:
 \[
 \text{Com}(m_0;r_0) = \text{Com}(m_1;r_1) \\
 m_0 \neq m_1
 \]
Security Properties (with Setup)

Binding: Impossible to change committed value
- Perfect binding: For any k, c, \exists at most a single m such that $c = \text{Com}(k, m; r)$ for some r

- Statistical binding: except with negligible prob over k, for any c, \exists at most a single m such that $c = \text{Com}(k, m; r)$ for some r

- Computational binding: no PPT adversary, given $k \leftarrow \text{Setup}()$, can find $(m_0, r_0), (m_1, r_1)$ such that $\text{Com}(k, m_0; r_0) = \text{Com}(k, m_1; r_1)$, $m_0 \neq m_1$
Today

Commitments continued
Who Runs \textbf{Setup}() \\

Alice? \\
• Must ensure that Alice cannot devise k for which she can break binding \\

Bob? \\
• Must ensure Bob cannot devise k for which he can break hiding \\

Solution: Trusted third party (TTP)
Anagrams as Commitment Schemes

\(\text{Com}(m) = \) sort characters of message

Problems?

• Not hiding: “Jupiter has four moons” vs “Jupiter has five moons”

• Not binding: Kepler decodes Galileo’s anagram to conclude Mars has two moons
Anagrams as Commitment Schemes

\(\text{Com}(m) = \text{add random superfluous text, then sort characters of message} \)

Might still not be hiding
• Need to guarantee, for example that expected number of each letter in output is independent of input string

Still not binding...
Other Bad Commitments

\[\text{Com}(m) = m \]
- Has (perfect) binding, but no hiding

\[\text{Com}(m;r) = m \oplus r \]
- Has (perfect) hiding, but no binding
Can a commitment scheme be both statistically hiding and statistically binding?
A Simple Commitment Scheme

Let H be a hash function

$\text{Com}(m;r) = H(m \ || \ r)$

Theorem: $\text{Com}(m;r) = H(m \ || \ r)$ has:
- Perfect binding assuming H is injective
- Computational binding assuming H is collision resistant
- Computational hiding in “random oracle model”: H is modeled as a random function
“Standard Model” Commitments
Single Bit to Many Bit

Let \((\text{Setup, Com})\) be a commitment scheme for single bit messages

Let \(\text{Com'}(k, m; r) = (\text{Com}(k, m_1; r_1), \ldots, \text{Com}(k, m_t; r_t))\)

- \(m = (m_1, \ldots, m_t), \ m_i \in \{0, 1\}\)
- \(r = (r_1, \ldots, r_t), \ r_i\) are randomness for \(\text{Com}\)
Theorem: If \((\text{Setup}, \text{Com})\) is statistically/computationally binding, then \((\text{Setup}, \text{Com}’)\) is statistically/computationally binding.

Theorem: If \((\text{Setup}, \text{Com})\) is statistically/computationally hiding, then \((\text{Setup}, \text{Com}’)\) is statistically/computationally hiding.

Therefore, suffices to focus on commitments for single bit messages.
Statistically Binding Commitments

Let G be a PRG with domain $\{0,1\}^\lambda$, range $\{0,1\}^{3\lambda}$

$\textbf{Setup():}$ choose and output a random 3λ-bit string k

$\textbf{Com}(b; r):$ If $b=0$, output $G(r)$, if $b=1$, output $G(r) \oplus k$
Theorem: \((\text{Setup,Com})\) is statistically binding

Proof: For any \(r,r'\), \(\Pr[G(r) = G(r') \oplus k] = 2^{-3\lambda}\)

By union bound:

\[
\Pr[\exists r,r' \text{ such that } \text{Com}(k,0) = \text{Com}(k,1)] = \Pr[\exists r,r' \text{ such that } G(r) = G(r') \oplus k] < 2^{-\lambda}
\]

Theorem: If \(G\) is a secure PRG, then \((\text{Setup,Com})\) is computationally hiding

Proof: basically stream cipher security
Statistically Hiding Commitments?

Let \(H \) be a collision resistant hash function with domain \(X = \{0,1\} \times \mathbb{R} \) and range \(Z \).

Setup(): \(k \leftarrow K \), output \(k \)

\[\text{Com}(k, m; r) = H(k, (m, r)) \]

Binding?

Hiding?
Statistically Hiding Commitments

Let \mathbf{F} be a pairwise independent function family with domain $\mathbf{X} = \{0,1\} \times \mathbb{R}$ and range \mathbf{Y}

Let \mathbf{H} be a collision resistant hash function with domain \mathbf{Y} and range \mathbf{Z}

$\text{Setup}()$: $\mathbf{f} \leftarrow \mathbf{F}$, $\mathbf{k} \leftarrow \mathbf{K}$, output (\mathbf{f}, \mathbf{k})

$\text{Com}((\mathbf{f}, \mathbf{k}), \mathbf{m}; \mathbf{r}) = \mathbf{H}(\mathbf{k}, \mathbf{f}(\mathbf{m}, \mathbf{r}))$
Theorem: If $|Y|$ is “sufficiently large” relative to $|X|$ and H is collision resistant, then (Setup,Com) is computational binding.

Theorem: If $|X|$ is “sufficiently large” relative to $|Z|$, then (Setup,Com) is statistically hiding.
Proof:
- Suppose \(|Y| \times \gamma = |X|^2\)
- For any \(x_0 \neq x_1\), \(\Pr[f(x_0) = f(x_1)] < \gamma/(|X|^2)\)
- Union bound:
 \[\Pr[\exists x_0 \neq x_1 \text{ s.t. } f(x_0) = f(x_1)] < \gamma \]
- Therefore, \(f\) is injective \(\Rightarrow\) any collision for \(\text{Com}\) must be a collision for \(H\)

Theorem: If \(H\) is collision resistant and \(|X|^2/|Y|\) is negligible, then \((\text{Setup}, \text{Com})\) is computationally binding.
Theorem: If $|X|$ is “sufficiently large” relative to $|Z|$, then (Setup,Com) has statistical hiding.

Goal: show $(f, k, H(k, f(0,r)))$ is statistically close to $(f, k, H(k, f(1,r)))$.

Min-entropy

Definition: Given a distribution \(\mathcal{D} \) over a set \(\mathcal{X} \), the min-entropy of \(\mathcal{D} \), denoted \(H_\infty(\mathcal{D}) \), is

\[
\min_x -\log_2(Pr[x \leftarrow \mathcal{D}])
\]

Examples:
- \(H_\infty(\{0,1\}^n) = n \)
- \(H_\infty(\text{random } n \text{ bit string with parity 0}) = ? \)
- \(H_\infty(\text{random } i>0 \text{ where } Pr[i] = 2^{-i}) = ? \)
Lemma: Let \mathcal{D} be a distribution on \mathbf{X}, and \mathcal{F} a family of pairwise independent functions from \mathbf{X} to \mathbf{Y}. Then
\[\Delta((f, f(\mathcal{D})) , (f, R)) \leq \varepsilon \]
where
- $f \leftarrow \mathcal{F}$
- $R \leftarrow \mathbf{Y}$
- $\log |\mathbf{Y}| \leq H_\infty(\mathcal{D}) + 2 \log \varepsilon$
“Crooked” Leftover Hash Lemma

Lemma: Let D be a distribution on X, and F a family of pairwise independent functions from X to Y, and h be any function from Y to Z. Then

$$
\Delta((f, h(f(D))) , (f, h(R))) \leq \varepsilon
$$

where

- $f \leftarrow F$
- $R \leftarrow Y$
- $\log |Z| \leq H_\infty(D) + 2 \log \varepsilon - 1$
Theorem: If we set $|R|=|Z|^3$ and $|Z|$ is super-poly, then $(\text{Setup},\text{Com})$ is statistically hiding.

Goal: show $(f, k, H(k, f(0,r)))$ is statistically close to $(f, k, H(k, f(1,r)))$

Let $D_b = (b,r)$, min-entropy $\log |R|$
Set $R = |Z|^3$, $\varepsilon = 2/|Z|$

Then $\log |Z| \leq H_\infty(D_b) + 2 \log \varepsilon - 1$
Theorem: If we set $|R| = |Z|^3$ and $|Z|$ is super-poly, then $(\text{Setup}, \text{Com})$ is statistically hiding.

For any k, b,

\[\Delta((f, H(k, f(b, r))) , (f, H(k, U))) \leq \varepsilon \]

Thus (for any k)

\[\Delta((f, H(k, f(0,r))) , (f, H(k, f(1,r)))) \leq 2\varepsilon \]

Therefore

\[\Delta((f, k, H(k, f(0,r))) , (f, k, H(k, f(1,r)))) \leq 2\varepsilon \]
Number Theory and Crypto
(Handout on course website with basic number theory primer)
So Far...

Two ways to construct cryptographic schemes:

• Use others as building blocks
 • PRGs \rightarrow Stream ciphers
 • PRFs \rightarrow PRPs
 • PRFs/PRPs \rightarrow CPA-secure Encryption
 • ...

• From scratch
 • RC4, DES, AES, etc

In either case, ultimately scheme or some building block built from scratch
Cryptographic Assumptions

Security of schemes built from scratch relies solely on our inability to break them
• No security proof
• Perhaps arguments for security

We gain confidence in security over time if we see that nobody can break scheme
Number-theory Constructions

Goal: base security on hard problems of interest to mathematicians

• Wider set of people trying to solve problem
• Longer history
• Ultimately, new applications
Number Theory

\mathbb{Z}_N: integers mod N
\mathbb{Z}_N^*: integers mod N that are relatively prime to N

• $x \in \mathbb{Z}_N^*$ iff x has an “inverse” y s.t. $xy \mod N = 1$
 $\Rightarrow \mathbb{Z}_N^*$ is a multiplicative group

• For prime N, $\mathbb{Z}_N^* = \mathbb{Z}_N \setminus \{0\} = \{1, \ldots, N-1\}$
 $\Rightarrow \mathbb{Z}_N$ for prime N is a field

Totient function: $\Phi(N) := |\mathbb{Z}_N^*|$

Euler’s theorem: for any $x \in \mathbb{Z}_N^*$, $x^{\Phi(N)} \mod N = 1$
Announcements/Reminders

HW3 due Today

HW4 due Oct 27