Homework 5

1 Problem 1 (15 points)

(a) Show that the original version of the decisional Diffie Hellman problem that we saw in class is easy. That is, fix a prime p. You are given

$$(g, g^a \mod p, g^b \mod p, h)$$

where g is a random generator of \mathbb{Z}_p^*, $a, b \leftarrow \mathbb{Z}_{p-1}$, and h is either $g^{ab} \mod p$ or $g^c \mod p$ for a random $c \in \mathbb{Z}_{p-1}$.

Show how to tell whether $h = g^c \mod p$ or $h = g^{ab} \mod p$.

(b) Explain why, despite the above attack, the computational Diffie Hellman problem might still be hard.

(c) Generalize the above attack as follows. Suppose G is a cyclic finite group of order N, and suppose N has a small factor r. Show that the decisional Diffie Hellman problem can be broken in time proportional to r (and polylogarithmic in N).

(d) A number N is t-smooth if all of its prime factors are at most t. Let G be a cyclic finite group of order N, where N is the product of distinct prime factors and N is t-smooth for some small t. Show that the discrete log problem is easy in G: given any g and g^a, it is possible efficiently recover a, with a running time that grows with t, but is otherwise logarithmic in N. The Chinese Remainder Theorem will be helpful here.

(e) Show that the discrete log problem is easy over \mathbb{Z}_N^* for any smooth N. That is, if N is t-smooth, you should give an algorithm for the discrete log over \mathbb{Z}_N^*, whose running time grows with t, but is otherwise logarithmic in N.

Note that the N in part (e) is different from the N in part (d). In part (d), N is the order of the group (the number such that $g^N = 1$), whereas in (e), the order of the group is something very different.
2 Problem 2 (15 points)

Consider the following commitment scheme, built from a group GrGen:

- **Setup()**: run \((\mathbb{G}, g, p) \leftarrow \text{GrGen}(\lambda)\). We will assume \text{GrGen} always produces a prime \(p\). Choose a random \(a \in \mathbb{Z}_p\), and compute \(h = g^a \in \mathbb{G}\). The commitment key is \(k = (g, h)\).

- **Com)**: We will assume the message space is \(\mathbb{Z}_p\). Output \(g^mh^r\), where \(r\) is a random element in \(\mathbb{Z}_p\).

(a) Show that the scheme is perfectly hiding.

(b) Show that the scheme is computationally binding, assuming the discrete log problem is hard for \(\mathbb{G}\).

3 Problem 3 (20 points)

Let \(N = pq\) be the product of two primes. In this problem, we will see that, in addition to \(p\) and \(q\) being large, it is important that \(p - 1\) and \(q - 1\) have large prime factors.

(a) Suppose you know an integer \(r\) that is a multiple of \(p - 1\), but not \(q - 1\). Explain how to factor \(N\). (Hint: what happens when you compute \(x^r\) for an integer \(r\)?)

(b) Suppose \(p - 1\) is \(t\)-smooth (recall that this means all of the factors of \(p - 1\) are at most \(t\)). Explain how to compute an integer \(r\) that is a multiple of \(p - 1\). Your \(r\) should be no larger than about \(p^t\) (so its bit length is at most about \(t \log_2 p\)), and should take time polynomial in \(t\) and \(\log_2 p\) to compute.

(c) You are not quite done, as your multiple \(r\) might also be a multiple of \(q - 1\). Explain how to detect this case.

(d) If your \(r\) is a multiple of both \(p - 1\) and \(q - 1\), then show how to derive a different integer \(r'\) that is a multiple of \(p - 1\) but not \(q - 1\), or vice versa. Assume \(p \neq q\) (if \(p = q\), we can easily factor by taking square roots).

One option to avoid this attack is to choose \(p, q\) to be safe primes, which means that \((p - 1)/2\) and \((q - 1)/2\) are also prime. However, this is not actually necessary, as it turns out that a random large prime \(p\) will, with high probability, have \(p - 1\) not be smooth.
4 Problem 4 (15 points)

Here, you will show that computing discrete logs mod a composite integer $N = pq$ is as hard as factoring N. In other words, you are given an algorithm A such that given $g, h \in \mathbb{Z}_N^*$, A efficiently computes an integer x such that $g^x \mod N = h$. (Note that in general \mathbb{Z}_N^* is not cyclic, so the discrete log is not guaranteed to exist. The algorithm for discrete logs is only guaranteed to work when the discrete log exists). You may assume A finds a discrete log with probability 1 when it exists; there is no guarantee that the x outputted by A will lie in any particular range. Show that given A, you can factor N.

To help you, here are some hints:

- Consider running $A(g, h = g^y)$ for a random $g \in \mathbb{Z}_N^*$, and where y is uniform in $[0, 2N]$. Let x be the output of A. Show that $y \neq x$ with noticeable probability, no matter what A does.
- When $x \neq y$, what relationship must x and y satisfy?
- Can you extend the above to compute the order of g, for any $g \in \mathbb{Z}_N^*$. Consider running A several times on the same g but different h's.
- Finally, if you could compute the order for any $g \in \mathbb{Z}_N^*$, how does this let you factor N?

5 Problem 5 (10 points)

Let G be a group of prime order q. Show that the discrete log problem can be solved in time $O(\sqrt{q})$. To do so, consider the hash function $H : \mathbb{Z}_q^2 \mapsto G$ defined as $H(x, y) = g^x \times h^a$, where $h = g^a$ for an unknown discrete log a \(^1\). Explain how to use the birthday attack on H to compute a in time $O(\sqrt{q})$.

\(^1\)This is like the hash function we saw in class, but abstracted to work with general groups