
Topics in Computational Molecular Biology
March 2001
Lecturer: Mona Singh 1

Protein Motif Recognition I

Introduction

One of the most important problems in molecular biology is the protein structure
prediction problem: given the one-dimensional amino acid sequence that specifies a
protein, what is the protein’s fold in three dimensions? This problem is critical, since
the structure or fold of a protein provides the key to understanding its biological
function, and proteins play a variety of important roles in the body (e.g., as enzymes,
antibodies, etc.). Proteins may also be associated with particular human diseases,
and thus, understanding protein structure may be used to better understand these
diseases and to do rational drug design.

Unfortunately, determining the three-dimensional fold of a protein is very difficult.
Experimental approaches such as nuclear magnetic resonance (NMR) and X-ray crys-
tallography are expensive and can take a long time (sometimes longer than a year).
As a result, there is a large gap between the number of known protein sequences and
the number of known three-dimensional protein structures. This gap has grown over
the past decade (and is expected to keep growing) as a result of the various worldwide
genome projects. Thus, computational methods which may give some indication of
structure and/or function are becoming increasingly important.

Levels of Protein Structure

The structure of a protein is characterized not only by its amino acid sequence and its
full three-dimensional structure, but also by some intermediate levels. The following
structures are in increasing order of complexity.

• Primary structure: the linear amino acid sequence of a protein.

1This lecture is adapted from earlier lectures given by Bonnie Berger and myself. Scribe notes
are adapted from notes taken by Casim Sarkar when I lectured at MIT.

0-1

• Secondary secondary: the local regular structures commonly found within pro-
teins. These include α-helices and β-sheets. (See Figures 0.1 and 0.2.) Often
amino acid residues in a particular protein structure that are not part of either
an α-helix or a β-sheet are put into a catch-all “other” category.

• Super-secondary structure (or motif): local folding patterns built up from par-
ticular secondary structures (e.g., the EF-hand motif consists of an α-helix,
followed by a turn, followed by another α-helix).

• Tertiary structure: the full three-dimensional structure of a protein.

• Quaternary structure: the arrangement of several protein subunits in space.

Figure 0.1: An α-Helix; taken from Introduction to Protein Structure by Branden and
Tooze (1991)

Figure 0.2: A β-Strand and antiparallel strands in a β-sheet; taken from Introduction
to Protein Structure by Branden and Tooze (1991)

0-2

Types of Computational Problems

1. How can one try to predict the three-dimensional fold of a protein (either the
exact or overall fold)? There are many approaches to this problem. Here we
give just a few:

• Model all the energetics involved in protein folding, and try to find the
structure with lowest free energy. This is a very difficult problem, both in
terms of the modeling as well with the searching of the vast conformational
space.

• Exploit high sequence similarity and use alignments. Two sequences that
have just 25% sequence identity usually have the same the overall fold.
Alignments are probably the most widely used tool for getting an idea
of a protein’s 3D structure; however, they are useful only when there are
similar protein sequences for which structural information is known.

• Use the threading approach. This approach starts with the observation
that many protein structures have similar folds, and assumes that there
are just a limited number of distinct folds. Then, for a protein sequence,
the goal is to find the known protein structure which “best fits” it according
to some statistics-based potential function.

2. Since predicting the three-dimensional structure of a protein is difficult, many
researchers have focused on trying to predict the secondary structure of a pro-
tein. That is, for each amino acid in a protein, can you predict whether the
amino acid is in an α-helix, β-sheet, or neither? Unfortunately, predicting the
secondary structure of a protein is also a very difficult problem, perhaps because
the secondary structure depends on the overall three-dimensional structure of
the fold. For example, there are 5-long amino acid subsequences that are known
to occur in helices in one protein, and in sheets in another. Most methods for
secondary structure prediction are statistical in nature, and the overall three-
state prediction accuracy is about 70%.

3. Can you recognize protein structural motifs? The structural motif recognition
problem is: given a particular structural motif, determine if it occurs in a
given amino acid sequence, and if so, in what positions. Protein structural
motifs are made up of particular secondary structure units, often in particular
conformations. Thus, they can often have a regular structure which makes them
amenable to computer-based methods.

0-3

Recognizing the Coiled Coil Structure

The rest of this lecture will be devoted to the third question and will specifically
address coiled coils, although the techniques can be extended to recognizing other
motifs. Our focus will be on the following question: given a subsequence of amino
acid residues, does it fold into a coiled coil? Determining experimentally whether
a subsequence folds into a coiled coil can be quite time-consuming. Thus, ideally,
we would like a reliable computational method to predict whether a subsequence of
amino acid residues folds into a coiled coil. These predictions can then be verified in
the laboratory.

A coiled coil is a structural motif that is found in fibrous proteins such as those making
up hair and skin, in several DNA-binding proteins, and in many viral membrane fusion
proteins. It consists of two or more α-helices wrapped around each other with a slight
left-handed superhelical twist. The amino acid sequences making up each helix can
either be identical (homo-oligomers) or distinct (hetero-oligomers). Coiled coils have
a characteristic heptad repeat unit (see Figure 0.3). Two turns of the helix correspond
to the seven positions of the coiled coil: a, b, c, d, e, f , and g. Residues in the a
and d positions are buried in the core of the coiled coil (between the helices making
up the coiled coil); these are typically hydrophobic residues. Predominantly charged
residues are found in the e and g positions.

Methods for recognizing coiled coils fall into the following framework:

1. Collect a database of known coiled coils and available amino acid subsequences.

2. Devise a method to determine whether the unknown sequence shares enough
distinguishing sequence features with the known coiled coils to be considered a
coiled coil.

Single frequency approach

The first methods for recognizing coiled coils looked at the single frequencies of each
amino acid residue [5, 3]. This exploits the fact that in some of the positions in a
coiled coil, certain residues are more likely to occur than others.

This approach examines the frequency of each residue in each position in a coiled coil.
We can build a table from the protein database that represents the relative frequency
of each amino acid in each position. That is, we have a table entry for each amino
acid/coiled coil position pair. For example, for leucine and position a, the entry in

0-4

a

b

c
d

e

f

g

Figure 0.3: Top view of a single strand of a coiled coil. Each of the seven positions
{a, b, c, d, e, f, g} corresponds to the location of an amino acid residue which makes up
the coiled coil. The arrows between the seven positions indicate the relative locations
of adjacent residues in an amino acid subsequence. The solid arrows are between
positions in the top turn of the helix, and the dashed arrows are between positions
in the next turn of the helix.

the table is the percentage of position a’s in the coiled coil database which are leucine,
divided by the percentage of residues in Genbank (a large protein sequence database)
which are leucine. For example, if the percentage of position a’s in the coiled coil
database which are leucine is 27%, and the percentage of residues in Genbank which
are leucine is 9%, then the table entry value for the pair leucine and position a is 3.
Intuitively, this table entry represents the “propensity” that a leucine residue is in
position a in a coiled coil.

This approach actually looks at 28-long windows, since stable coiled coils are believed
to be at least 28 residues long. Thus for each residue, it looks at each possible
position (a through g), and at all 28-long windows that contain it. It then calculates
the relative frequencies for each residue in the window. If the product of the relative
frequencies for each residue in the window is greater than some threshold, we conclude
that the residue is part of a coiled coil. Overall, the single-frequency method does
rather well. It has been implemented as the COILS program [3] and is widely used.
One weakness of the method is that it tends to over-predict the number of coiled
coils; that is, it has a significant false positive rate.

0-5

Probabilistic Framework

It is possible to state the coiled coil recognition problem within a probabilistic frame-
work, and to use this in methods exploiting higher order dependencies within coiled
coil structures; this has led to coiled coil recognition methods with lower false positive
rates [1, 2]. Before we give the algorithm, we give the probabilistic framework.

Given a subsequence z = r1, r2, . . . , r28, is z a coiled coil?

We will estimate Pr[z ∈ C] , where C is the class of coiled coils. Note that this is not
a probability per se, since either z is a coiled coil or not. However, for convenience,
we will look at this as a probability. If the estimate is large, then we we will conclude
that z is a coiled coil; otherwise, we will conclude that z is not a coiled coil.

Let X = R1, R2, . . . , R28 be a random subsequence selected from Genbank. Then,

Pr[z ∈ C] = Pr[X ∈ C|X = z]
= Pr[X ∈ C|(R1 = r1) ∧ (R2 = r2) ∧ . . . ∧ (R28 = r28)]

=
Pr[(X ∈ C) ∧ (R1 = r1) ∧ . . . ∧ (R28 = r28)]

Pr[(R1 = r1) ∧ . . . ∧ (R28 = r28)]

Using repeated applications of the definition of conditional probability, we can expand
the numerator of this expression (i.e., Pr[(R1 = r1) ∧ . . . ∧ (R28 = r28) ∧ (X ∈ C)]):

= Pr[R1 = r1|(R2 = r2) ∧ . . . ∧ (R28 = r28) ∧ (X ∈ C)]
·Pr[(R2 = r2|(R3 = r3) ∧ . . . ∧ (R28 = r28) ∧ (X ∈ C)]
...
·Pr[R28 = r28|X ∈ C] · Pr[X ∈ C]

=
27∏

i=1
Pr[Ri = ri|(Ri+1 = ri+1) ∧ . . . ∧ (R28 = r28) ∧ (X ∈ C)]

·Pr[R28 = r28|X ∈ C] · Pr[X ∈ C]

The denominator can be expanded in a similar manner.

To estimate these probabilities, we start making assumptions. We can naively assume
that the residues are independent of each other:

Pr[Ri = ri|(Ri+1 = ri+1) ∧ . . . ∧ (R28 = r28) ∧ (X ∈ C)] = Pr[Ri = ri|X ∈ C]

and
Pr[Ri = ri|(Ri+1 = ri+1) ∧ . . . ∧ (R28 = r28)] = Pr[Ri = ri].

0-6

If we simplify the previous equations with this assumption, then the resulting formula
gives the product of the single frequencies. That is, we get the single frequency-
approach.

Of course, in reality, we do not expect the residue probabilities to be completely inde-
pendent. For example, we would expect that a residue is influenced by its neighboring
residues. So a better assumption is that only adjacent positions in the sequence are
dependent:

Pr[Ri = ri|(Ri+1 = ri+1) ∧ . . . ∧ (R28 = r28) ∧ (X ∈ C)]
= Pr[Ri = ri|(Ri+1 = ri+1) ∧ (X ∈ C)]

Here we are assuming that dependencies are captured by adjacency in the sequence.
There can be other dependencies further on in the sequence, but we are assuming
that whatever dependencies exist can be captured by neighboring residues. Using this
assumption (and the analogous assumption for the probabilities in the denominator),
and some simplification, we get:

Pr[z ∈ C] = Pr[X ∈ C]

·
∏27
i=1 Pr[(Ri = ri) ∧ (Ri+1 = ri+1)|(X ∈ C)]

∏27
i=2 Pr[Ri = ri|X ∈ C]

·
∏27
i=2 Pr[Ri = ri]∏27

i=1 Pr[(Ri = ri) ∧ (Ri+1 = ri+1)]

This is better than the naive assumption of complete independence between the
residues. However, we can make even better assumptions. Namely, we assume that
the probability of a residue depends upon several neighboring residues, and the nature
of this dependence is determined by the motif structure. For example, for the coiled
coil motif, a residue in position i is near the next residue in the sequence but is also
near residues in positions i + 3 and i + 4, because these positions come back in the
three-dimensional structure and are near position i. For example, position a is near
positions b, d, and e (see Figure 0.3). Thus the following is a better assumption for
coiled coils:

Pr[Ri = ri|(Ri+1 = ri+1) ∧ . . . ∧ (R28 = r28) ∧ (X ∈ C)]
= Pr[Ri = ri|(Ri+1 = ri+1) ∧ (Ri+3 = ri+3) ∧ (Ri+4 = ri+4) ∧ (X ∈ C)]

We can again plug this in, but now the equation is much more complicated. Although
this is a better assumption than the others, we still have a problem: there are terms
with 4-tuples, and the table gets big ((7 · 20)4 entries). Moreover, we do not have
enough data for this assumption, so many of the entries are 0. As a result, we try to

0-7

capture this by assuming functions over pairwise dependencies. Namely, we assume
that:

Pr[Ri = ri|(Ri+1 = ri+1) ∧ . . . ∧ (R28 = r28) ∧ (x ∈ C)]

= f(Pr[Ri = ri|(Ri+1 = ri+1) ∧ (X ∈ C)],
Pr[Ri = ri|(Ri+3 = ri+3) ∧ (X ∈ C)],
Pr[Ri = ri|(Ri+4 = ri+4) ∧ (X ∈ C)])

where the function f can be a weighted average, a minimum, a maximum, or a
product.

These assumptions can now be used to estimate Pr[z ∈ C]. We can estimate these
probabilities because there is enough data to make a pairwise table. Experimentally,
it was determined that the taking the average over pairwise probabilities worked the
best.

This method works very well. In fact, if it is run on the PDB, the protein database of
solved structures, it removes all false positive results. PairCoil was later extended to
the domain of three-stranded coiled coils using multidimensional clustering in the Mul-
tiCoil program [8]. This program is also able to distinguish 2- and 3-stranded coiled
coils. The LearnCoil-Histidine Kinase program [7] was written to predict coiled-coils
in histidine kinase linker domains. LearnCoil-VMF [6] was developed to predict coiled
coils in viral membrane-fusion proteins. This program was used to identify coiled coils
in many diverse viral membrane fusion proteins, including those of many retroviruses
(e.g., human T-cell leukemia virus, HIV, Visna), paramyxovirues (e.g., parainfluenza
viruses, mumps) and filoviruses (e.g., Ebola). Several of these predictions have since
verified. For example, the predicted regions of Visna virus were synthesized and used
to set crystal trays, and X-ray crystallography revealed the predicted structure [4].

Window based algorithm

We have talked about the probabilistic approach for deciding whether a 28-residue
subsequence is a coiled coil. Now we will consider a longer sequence of some arbitrary
length n, and determine where, if at all, coiled coils occur in the sequence. One way
of doing this is to look at every contiguous subsequence of length w = 28 and to run
the test we just described to determine which subsequences are likely to be coiled
coils. The running time of such an algorithm would naively be O(pwn) where p is
the period of the motif (p = 7 for the coiled coil motif). That is, the most naive
way is to look at all continuous subsequences of length w and run the test we just

0-8

described to see which subsequences are likely to be coiled coils. The running time
of this method is O(pwn), because it needs O(w) steps per period per window, and
there are p periods per window and O(n) windows total.

Actually, we want to compute a score for each position in the sequence. We can define
the score of each position j as the maximum, over all windows W of size w which
contain residue j and over all possible periods p, of the probability that window W
with period p is a coiled coil.

Now, we show how to compute the score of each position in O(pn) time.

We define score(j) as the score of the w-long window ending at position j. After we
have computed the score at position j − 1 (i.e., score(j − 1)), the score of position
j can be computed from score(j − 1) by adding the contribution of position j and
subtracting the contribution of position j−w. For each position, the score is computed
for all periods p, so it takes O(pn) steps total to compute all the window scores.

To compute the maximum window score M(j) for each residue j (i.e., the maximum
score of any window that contains residue j), we can divide the sequence into dn/we
contiguous blocks of size w (except the last block, which will be of size ≤ w). Then we
define two scores: NL(j) is the maximum score(k), where k ranges from the beginning
of j’s partition block to position j and NR(j) is the maximum score(k) where k ranges
from the end of j’s partition block to position j. NL(j) (and NR(j)) can be computed
by a single left-to-right (right-to-left) segmented prefix over the sequence, starting a
new maximum each time a barrier of a partition block is crossed. It takes O(n) time
to compute these values for each residue. It can be shown that

M(j) = max{NR(j), NL(j + w − 1)},

and these values can also be computed in O(n) time. Thus, the total time to compute
scores for each residue is O(pn).

References

[1] Bonnie Berger. “Algorithms for protein structural motif recognition.” Journal of
Computational Biology, volume 2, pages 125–138, 1995

[2] Bonnie Berger, David B. Wilson, Theodore Tonchev, Mari Milla, and Peter S.
Kim. “Predicting coiled coils using pairwise residue correlations.” Proceedings of
the National Academy of Sciences, volume 92, pages 8259–8263, 1995.

0-9

[3] A. Lupas, M. van Dyke, and J. Stock. “Predicting coiled coils from protein
sequences.” Science, 252:1162–1164, 1991.

[4] V. Malashkevich, M. Singh and P. S. Kim. “The trimer-of-hairpins motif in viral
membrane-fusion proteins: Visna virus.” Proceedings of the National Academy
of Sciences, 98: 8502–8506, 2001.

[5] D. A. D. Parry. “Coiled coils in alpha-helix-containing proteins: analysis of
residue types within the heptad repeat and the use of these data in the pre-
diction of coiled-coils in other proteins.” Bioscience Reports, 2:1017–1024, 1982.

[6] M. Singh, B. Berger and P. S. Kim. “LearnCoil-VMF: Computational evidence
for coiled coil-like motifs in many viral membrane-fusion proteins.” Journal of
Molecular Biology 290: 1031–1041, 1999.

[7] M. Singh, B. Berger, P. S. Kim, J. Berger and A. Cochran. “Computational learn-
ing reveals coiled coil-like motifs in histidine kinase linker domains.” Proceedings
of the National Academy of Sciences 95: 2738–2743, 1998.

[8] E. Wolf, P. S. Kim and B. Berger. “MultiCoil: A Program for Predicting Two-
and Three-Stranded Coiled Coils.” Protein Science 6: 1179–1189, 1997.

0-10

