
COS 597c: Topics in Computational Molecular Biology
Lectures 7, 8 and 9: October 11, 13 and 18, 1999
Lecturer: Mona Singh
Scribes: Ching Law and Casim A. Sarkar 1

Phylogeny

Introduction

Phylogenetics is the study of evolutionary relationships among organisms or genes.
Below, we will refer to the objects whose phylogeny we are studying as organisms or
species, but the discussion of methods is valid for the phylogeny of genes as well.

We construct phylogenetic trees to illustrate the evolutionary relationships among a
group of organisms. The purpose of phylogenetic studies are (1) to reconstruct evo-
lutionary ties between organisms and (2) to estimate the time of divergence between
organisms since they last shared a common ancestor.

Mammals Turtles Snakes Birds

Figure 1: A hypothetical example.

There are several types of data that can be used to build phylogenetic trees: Tradi-
tionally, phylogenetic trees were built from morphological features (e.g., beak shapes,
presence of feathers, number of legs, etc). Today, we use mostly molecular data like
DNA sequences and protein sequences.

1Notes originally scribed in April 1998, and last modified October 2002.

1



Data can be classified into 2 categories:

Discrete characters Each character has a finite number of states. For example,
discrete characters include the number of legs of an organism, or a column in
an alignment of DNA sequences. In the latter case, the number of states for the
column character is 4 (A, C, T, G).

Comparative Numerical Data These data encode the distances between objects
and are usually derived from sequence data. For example, we could hypotheti-
cally say distance(man,mouse)= 500 and distance(man,chimp)= 100.

Definitions and Terminology

A

B E

D

C

R

E

D
C
B
A

Figure 2: Rooted and Unrooted Trees.

External nodes are things under comparison, also called operational taxonomic units
(OTUs). Internal nodes are hypothetical ancestral units. They are used to group
current-day units.

In rooted trees, the root is the common ancestor of all OTUs under study. The
path from root to a node defines an evolutionary path. An unrooted tree specifies
relationships among OTUs but does not specify evolutionary paths (Figure 2). We
can root an unrooted tree by finding an outgroup (i.e., if we have some external
reason indicating that a certain OTU branched off first). For example, in Figure 2,
the unrooted tree can be transformed to the rooted tree by making E the outgroup.

2



The topology of a tree is the branching pattern of a tree.

All internal nodes of a bifurcating tree have 2 descendants if it is rooted, or 3 neighbors
if it is unrooted. It is sometimes useful to allow more than 2 descendants (or more
than 3 neighbors in the unrooted case), but we will focus on on bifurcating trees.

The branch length can represent the number of changes that have occurred in that
branch, or can indicate the genetic distance between nodes connected by that branch,
or can indicate the amount of evolutionary time passed along the branch.

Species trees and gene trees. Note that species trees are different from gene trees.
For example, a gene’s divergence may predate the divergence of species, due to genetic
polymorphism in the population. Thus, using this gene to infer the species tree can
lead to an overestimate of branch lengths as well as incorrect topology. Furthermore,
another complication is that during evolution, gene duplications are common, and
these duplicated genes continue to evolve separately. Genes that diverged because of
speciation (e.g., matching genes in different organisms) are called orthologues. Genes
that diverged by duplication are called paralogues. Usually, a protein is more similar
to its orthologue in another genome (after all, it is the “same” or corresponding gene)
than it is to any paralogues in its own genome. Finally, things such as horizontal
gene transfer (i.e., the transfer of genetic material from one genome to another)
may complicate matters. Typically, to infer a species tree, you should use many
orthologous genes.

Constructing Phylogenetic Trees

We will cover three major methods for constructing phylogenetic trees:

Distance methods. Evolutionary distances are computed for all OTUs and these
are used to construct trees.

Maximum Parsimony. The tree is chosen to minimize the number of changes re-
quired to explain the data.

Maximum Likelihood. Under a model of sequence evolution, the tree which gives
the highest likelihood of the given data is found.

Pointers to several tree reconstruction packages are available at
http://evolution.genetics.washington.edu/phylip/software.html. Two pop-

3



ular programs are Paup (Phylogeny Algorithms Using Parsimony) by Swofford, and
Phylip (Phylogeny Inference Package) by Felsenstein.

Distance Methods

The problem can be described as follows:

Input: Given an n × n matrix M where Mij ≥ 0 and Mij is the distance between
objects i and j.

Goal: Build an edge-weighted tree where each leaf corresponds to one object of
M , and such that the distances measured on the tree between leaves i and j
correspond exactly to the value of Mij. When such a tree can be constructed,
we say the distances in M are additive.

Example 1 Suppose we are given the distances as in Table 1. Then Figure 3 is a
tree which exactly fits this distance data.

A B C D E
A 0
B 12 0
C 14 12 0
D 14 12 6 0
E 15 13 7 3 0

Table 1: Example: A Distance Matrix M .

When is a distance matrix additive? We first recall the definition of a metric space.

Definition 1 A metric space is a set of objects O such that to every pair i, j ∈ O,
we associate a non-negative real number dij (distance) with the following properties:

dij > 0 for i 6= j

dij = 0 for i = j

dij = dji ∀i, j
dij ≤ dik + dkj ∀i, j, k (triangle inequality)

4



A

B C D

E
7

5

4 2
2

13

Figure 3: Tree of M .

It turns out the following exactly characterizes when a metric space is additive.

Claim 1 (4 point condition) A metric space O is additive iff given any 4 objects
of O, we can label them i, j, k, l, such that

dij + dkl = dik + djl ≥ dil + djk

We omit the proof of this claim, but provide some intuition. Consider the correspond-
ing tree for an additive matrix M with four species. Here the distances between leaves
in the tree are equal to the entries in the matrix M .

A

B C

D
a

b

x
c

d

Figure 4: Unrooted tree with 4 leaves.

Then:

dik = a+ x + d

djl = b + x+ c

dij = a+ x + c

dkl = b + x+ d

dil = a+ b

djk = c+ d

5



And thus we have:

dij + dkl = a + b+ c+ d+ 2x
dik + djl = a + b+ c+ d+ 2x

= dil + djk + 2x

When a matrix is additive, there is an algorithm for finding the phylogenetic tree
consistent with the data in O(n2) time. Unfortunately, distance matrices are rarely
additive. In this case, what we can do is to try to find the tree which best fits the
distance data. Several criteria for “best” are possible; here we give two:

1. Cavalli-Sforza and Edwards criterion. Given observed distances Mij, we choose
the weighted tree whose predicted distances dij minimizes

∑

i,j

(Mij − dij)2

2. Fitch and Margoliash criterion. We minimize

∑

i,j

(Mij − dij)2

M2
ij

Note that the predicted distances dij depend both on topology and branch lengths.
Note that an enumeration strategy won’t be computationally feasible for a large
number of species–just considering all topologies is computationally difficult (see
Lemma 1). In fact, both the Cavalli-Sforza and Edwards criterion and the Fitch
and Margoliash criterion lead to computationally intractable problems.

Lemma 1 Given n species, there are
∏n
i=3(2i − 5) unrooted bifurcating trees (with

labeled leaves and unlabeled interior nodes)

Intuition Consider an unrooted tree with 3 nodes. Only one such tree is possible
(Figure 5).

Now there are three possible branches where we can possibly add a new leaf (Figure 6).

Now for each of these, there are 5 possible branches where we can add the next leaf.
Continuing in this manner, we can see how the lemma arises. You can show the
lemma more formally by simply using induction.

6



2

1 3

Figure 5: Unrooted tree with 3 nodes.

2

1 34 1 3

2
4

2

1 3

4

Figure 6: Possible unrooted trees with 4 nodes.

It is also easy to show that the number of rooted trees with n leaves is same as number
of unrooted trees with n + 1 trees:

∏n
i=3(2i− 3).

Note that by the time we have 10 species or OTUs, there will be 34, 459, 425 rooted
trees and 2, 027, 025 unrooted trees.

Distance Method Heuristics

UPGMA: Unweighted Pair Group Method with Arithmetic Mean

UPGMA is a sequential clustering algorithm. It starts with the pair most similar
to build a composite OTU. Now from the new group of OTUs, we pick the pair
with highest similarity, and continue in this manner until only 2 OTUs are left. We
illustrate this algorithm by example.

Example 2 Say we are given the distance data from Table 2.

The closest pair are A and C. Thus we have a new OTU (AC).

7



A B C D
A 0
B 8 0
C 7 9 0
D 12 14 11 0

Table 2: Example: A Distance Matrix M .

A

C

3.5

3.5

Distances to this OTU are computed as arithmetic means:

dB(AC) =
dBA + dBC

2
= 8.5

dD(AC) =
dDA + dDC

2
= 11.5

Our new matrix is thus:

(AC) B D
(AC) 0

B 8.5 0
D 11.5 14 0

Table 3: Distance Matrix M Updated.

Now the closest pair are (AC) and B. The branching node is at d(AC)B

2 (Figure 7).

8



A

C

B

.75

3.5

3.5

4.25

Figure 7: Example: Adding node B.

We recalculate our distance matrix:

D(ABC)D =
dAD + dBD + dCD

3
=

37
3

= 12
1
3

(ABC) D
(ABC) 0

D 121
3 0

Table 4: Distance Matrix M Updated twice.

At last, we add D, with branching node at 6 1
6 ≈ 6.17 (Figure 8).

Here, in each step the distance between composite OTUs is the arithmetic mean of
pairwise distances between constituent OTUs of composite OTUs:

dXY =
∑

i∈X,j∈Y

dij
nxny

where nx and ny are the number of constituent OTUs in the composite OTUs X and
Y , respectively.

Note that in the example just considered, the matrix is actually additive. So using
an algorithm for additive matrices, we could have obtained the tree given in Figure 9.
Note that the topology of these two trees is different. The UPGMA algorithm works

9



well if the rates of evolution are approximately the same among different lineages
(which is not the case for the example we just worked through). If the rates of
evolution among different lineages are exactly the same, then we have ultrametric
data, and this method will work exactly.

A

C

B

D

1.92

.75

3.5

3.5

4.25

6.17

Figure 8: Example: Final tree using UPGMA.

A B C D

3 5

1
3

2

6

Figure 9: Tree for Table 2.

10



Neighbor Joining

Neighbor Joining is the most widely used distance based method. The heuristic is to
find neighbors sequentially that minimize the total length of the tree.

1. We start with a star tree for the N OTUs(see Figure 10).

1

2

3

n

n-1

Figure 10: Illustrating the neighbor joining method: Initial tree.

2. The first step is to separate out 2 nodes, say node 1 and node 2, as in Figure 11.

1

2

n

n-1

3

Figure 11: Illustrating the neighbor joining method.

11



3. For such a tree, the sum of the branch lengths (assuming distances on this tree
correspond to our distance matrix), S12 is

1
2(N − 2)

N∑

k=3

(M1k +M2k) +
1
2
M12 +

1
N − 2

∑

3≤i,j≤N
Mij

4. Choose the 2 nodes that give the smallest sum of branch lengths. (In Figure 11,
it is nodes 1 and 2.) Actually, in practice, what is done is as follows:

• Let ui =
∑
k

Mik

(n−2)

• Choose i and j for which Qij = Mij − ui − uj is smallest.

It turns out that Sij = Qij
2 + 1

N−2
∑
i,jMij, so finding i and j to minimize Qij is

equivalent to minimizing the sum of the branch lengths.

5. Create a merged OTU (i, j), and distances between OTUs are computed to
form new distance matrix. The distance from i and j in the tree to node (i, j)
is:

di,(ij) =
(Mij + ui − uj)

2

dj,(ij) =
(Mij + uj − ui)

2

6. Compute distances between new cluster and all other clusters:

M(ij)k =
Mik +Mjk −Mij

2

7. Delete i and j from matrix and replace by (ij)

8. Repeat until all internal branches are found.

For additive matrices, neighbor joining infers the correct topology (although as men-
tioned earlier, there are other methods in the case of additive distance data, and
distance data is rarely additive). On non-additive matrices, neighbor joining often
works well in practice, although negative branch lengths are possible!

12



Computing Distances

We have looked at a couple of distance method heuristics for reconstructing trees,
given distance data. One question we could ask at this point is: how do we obtain
the distance data? One answer is that distance data can be obtained from sequence
data. Let us compare the following two sequences:

Figure 12: Comparison of Two Sequences with Their Ancestor Shows Several Types
of Substitutions

There are only 3 observed difference between the 2 sequences; however, considering the
ancestral sequence, we see that are actually 12 total substitutions. Thus, if multiple
substitutions have occurred at any site (e.g., the convergent substitution at site 11),
then the naive way of computing distance is an underestimate. How can we correct
for multiple substitutions? For DNA sequences, we can use models for nucleotide
substitution. For protein sequences, we have already talked about models for amino
acid substitution in our discussion of PAM matrices. (We will also use these models

13



when we talk about maximum likelihood methods for phylogenetic reconstruction.)

Models for Nucleotide Substitution

Here we will primarily discuss the Jukes and Cantor model for nucleotide substitution.
The key assumptions of this model are that: 1) each position in the DNA sequence
is independent, and 2) mutation of a position to any other base is equally likely.
These assumptions lead to the following figure of nucleotide substitution (where α is
a normalized rate of substitution).

Figure 13: Jukes and Cantor Model for Rates of Nucleotide Substitution

Thus, the rate of substitution is 3α. Given 2 sequences, each of length N , the expected
number of total substitutions is 2(3αt)N .

14



Let us assume that the nucleotide at a certain site in the DNA sequence is an A at
time t = 0 [i.e., pA(0) = 1].

Then:

pA(1) = (1− 3α)
pA(2) = (1− 3α) · pA(1) + α · [1− pA(1)]

...
pA(t+ 1) = (1− 3α) · pA(t) + α · [1− pA(t)]

This further implies:

pA(t+ 1)− pA(t) = α · [1− pA(t)]− 3α · pA(t)
=> ∆pA(t) = α− 4α · pA(t)

Approximating this result by a continuous time model, we obtain:
dpA(t)
dt

= α− 4α · pA(t)

=> pA(t) =
1
4

+ (pA(0)− 1
4

) · e−4αt

If pA(0) = 1, then pA(t) = 1
4 + 3

4 · e−4αt. If pA(0) = 0, then pA(t) = 1
4 − 1

4 · e−4αt.

In general,

pii(t) = Pr[i at time t|i at time 0] = 1
4 + 3

4 · e−4αt

pij(t) = Pr[j at time t|i at time 0] = 1
4 − 1

4 · e−4αt, where i 6= j

Now, consider Figure 14. The probability that the nucleotide A is conserved from the
ancestor to both children is [pAA(t)]2. Therefore, the probability that a given site is
the same in the two children (not necessarily the ancestor) is:

I(t) = [pAA(t)]2 + [pAT (t)]2 + [pAG(t)]2 + [pAC(t)]2

=
1
4

+
3
4
· e−8αt

The probability that the sites, kSeq, are different is:

Pr[kSeq1 6= kSeq2|t] = 1− I(t)

=
3
4
· (1− e−8αt)

=> αt = −1
8
· ln(1− 4

3
· Pr[kSeq1 6= kSeq2|t])

15



Figure 14: Nucleotide Conservation from Ancestor to Children

Earlier, we calculated the expected total number of substitutions for two sequences
of length N (i.e., 2(3αt)N). For a single site comparison, the expected number of
substitutions is 6αt. Substituting for αt using the above equation, the expression for
the expected number of substitutions per site becomes:

−3
4 · ln(1− 4

3 · Pr[kSeq1 6= kSeq2|t])

We do not know the value of Pr[kSeq1 6= kSeq2|t], but we know it is equal to the
expected number of differences in the two sequences divided by the length of the
sequences. We do not know the expected number of differences in the two sequences,
but we assume that the observed number of differences is a good approximation. So
we estimate Pr[kSeq1 6= kSeq2|t] using the naive method for distance calculation (i.e.,
the observed number of differences divided by the sequence length).

For example, given two DNA sequences, each of length 100, with 25 differences, the
naive method gives an observed probability, or “distance,” of 1/4. Plugging in this
value for the probability in the above expression, we estimate the actual number of
substitutions per site to be ≈ 0.304.

Another model that is used is Kimura’s two-parameter model. This model emphasizes
the fact that A-G substitutions and C-T substitutions are the most likely (and are

16



weighted accordingly). All other substitutions are considered less likely (and are also
weighted accordingly). Models more general than this also exist.

Character Based Methods

Discrete characters include morphological data (such as the absence or presence of
feathers), protein data (20 possible amino acids), and DNA data (four possible nu-
cleotides). All character based methods assume that different characters are indepen-
dent of each other. Given character data, how does one find a tree to fit the data?
What criteria are used to pick the best tree?

Maximum Parsimony

One method is to use maximum parsimony. In this instance, we want to find the
tree that minimizes the number of changes needed to explain the data. For example,
given the following DNA data, which tree is most parsimonious?

1 2 3 4 5 6
A G T C G T A
B G T C A C T
C G C G G T A
D A C G A C A
E A C G G A A

We can create a tree and look at each site individually (see Figure 15).

Sites 1 and 2 each require one change for the given tree. It turns out that the entire
data can be explained with a minimum of 9 changes using the tree in Figure 15.
However, changing the tree will alter the minimum number of changes required. This
example leads us to ask two important questions relating to parsimony:

1. Given a particular tree, how do you find the minimum number of changes needed
to explain the data? [Easy]

2. How do you find the most parsimonious tree? [NP-hard]

To answer the easy first question, we use Fitch’s Algorithm. The idea is to construct
a set of possible states (e.g., nucleotides) for internal nodes based on the states of the
children. For each site, each leaf is labelled by a singleton set containing, for example,

17



Figure 15: Trees for First Two Sites of Sequences A Through E

the nucleotide at that position. For each internal node i, with children j and k (labels
Sj and Sk):

Si = Sj ∪ Sk, if Sj ∩ Sk = Ø
Si = Sj ∩ Sk otherwise

The total number of changes equals the total number of union operations. This is
illustrated by the Figure 16. We can see from Figure 16 that there are three unions
in the tree; this implies that this site requires three changes. It is easy to implement
this algorithm by post-order traversal of the tree.

In contrast, the answer to the second question, finding the most parsimonious tree,
is not easy. There are many heuristics for doing this. We will quickly talk about
two techniques: 1) the branch-and-bound method (prunes search space, and finds
the most parsimonious tree) and 2) the nearest-neighbor interchange method (fast
heuristic, which may not find most parsimonious tree).

Branch and bound. The branch-and-bound method (as applied here) counts the
number of changes for an initial tree (e.g., an initial tree may be obtained using the
neighbor-joining method). Then, starting from scratch, we will search our space by

18



Figure 16: Pictorial Example Employing Fitch’s Algorithm for a Given Site

building partial trees (i.e., one branch is added at a time). That is, in the kth level
of the search, we will have nodes representing all possible phylogenetic trees with k
leaves for the first k species (the order is fixed beforehand arbitrarily). If the cost of
any partial tree we are building is greater than that of the initial tree, then search
along this line is abandoned. We can improve our search (potentially getting rid of
more things) by computing an estimate of the minimum number of changes required
to add the additional species.

There is no guarantee with branch and bound on how much of the search space is
eliminated.

Nearest-neighbor interchange. The nearest-neighbor interchange method in-
volves rearranging trees at the “neighbor” level and choosing the “neighbor” tree
with the best score (i.e., the least number of changes). There are many possibilities
for how you can define neighbors. Neighbors in this heuristic procedure are defined
as follows. Considering any internal edge, we break up our tree into 4 subtrees. For
example, in the tree in Figure 4, the subtrees would consist of the leaves A, B, C and
D, although in general these subtrees consist of more than 1 leaf. This original tree
(which has A and B branching off separately from C and D) has two neighbors: one
with the roles of B and D switched (i.e., with A and D branching off separately from
B and C) and one with the roles of B and C switched (i.e., with A and C branch-
ing off separately from B and D). Starting with one tree, we repeatedly choose the
neighboring tree with the best score, until there are no neighboring trees with better

19



scores. This is a hill-climbing method, and there is no guarantee that we will find the
most parsimonious tree.

There are also many other heuristics for this problem.

Finally, we note that while the parsimony method makes very few assumptions, it
ignores branch lengths in building trees. If there are branches that diverge much more
rapidly than others, it is easy to convince yourself that the parsimony method can
lead to incorrect topologies.

Maximum Likelihood Methods

Another method commonly used for reconstructing trees is that of maximum likeli-
hood (ML). Given a probabilistic model for nucleotide substitution (e.g., the Jukes
and Cantor model), pick the tree that has the highest probability of generating the
observed data. In other words, given character data D and a model M , we want to
find the tree T that maximizes the expression Pr[D|T,M ].

We make two independence assumptions to simplify things. We assume that different
characters evolve independently. We also assume that after species have diverged,
they evolve independently. Thus, if Di is the data for the ith character, then:

Pr[D|T,M ] =
∏

i

Pr[Di|T,M ]

Figure 17: Example Tree for Maximum Likelihood

20



Given the tree in Figure 17, and assuming a constant rate of mutation along each
branch, we can express the probability as:

Pr[i, j, k, l|T,M ] =
∑

x

∑

y

∑

z

px(0) · pxl(t1 + t2 + t3) · pxy(t1) ·

pyk(t2 + t3) · pyz(t2) · pzj(t3) · pzi(t3)

If we are given the topology of the tree with branch lengths, then we can compute the
likelihood of the data using dynamic programming (covered in lecture, but missing
from these notes). However, to use maximum likelihood methods for reconstructing
evolutionary trees, we must also search over all tree topologies (a hard problem–see
Lemma 1), and for each tree topology, we must find the optimal branch lengths. The
optimal branch lengths cannot be found analytically and are often computed using the
EM algorithm. However, recall from previous lectures that the EM algorithm leads
to a local optimum, and thus it does not necessarily lead to the optimal solution.

Note that the maximum likelihood method is the most time intensive of the methods
discussed thus far.

Finally, note that the maximum likelihood procedure for reconstructing phylogenetic
trees explicitly assumes a model of evolution (e.g., the PAM-1 matrix for protein
sequences or the Jukes and Cantor model for DNA sequences); obviously, the quality
of the tree will depend on how appropriate the model of evolution is.

Bootstrapping: Confidence in Reconstructed Trees

Bootstrapping is a technique commonly used for estimating statistics or parameters
when the distribution is difficult to derive analytically. For example, say we were
given the following data, and we obtained a tree in which A and B were immediate
children of one ancestor and C and D were immediate children of another.

1 2 3 4 5 6 7 8
A G C A G T A C T
B G T A G T A C T
C A C A A T A C C
D A C A A C A C T

Now, we would like to get confidence levels that A and B belong together and that C
and D belong together. We create pseudo-samples by choosing a site at random and

21



placing it in column 1. We continue to sample with replacement until the number of
random columns generated equals the number of sites in the original sequences. Thus,
each pseudo-sample we generate omits different columns from our original alignment.
Each pseudo-sample created is used to construct a tree. The confidence for each pair
being together is the fraction of times they appear together in the trees generated
from the many pseudo-samples.

References

[1] Wen-Hsiung Li. Molecular Evolution. Sinauer Associates, 1997.

[2] R. Durbin, S. Eddy, A. Krogh and G. Mitchison. Biological Sequence Analysis.
Cambridge University Press, 1998.

[3] D. Swofford, G. Olsen, P. Waddell, and D. Hillis. Phylogenetic Inference. Molec-
ular Systematics, Chapter 11, Sinauer Associates, 1996.

22


