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Multiple Sequence Alignments II 
 

 
A common heuristic for multiple sequence alignments is the method of progressive alignments.   
Here, pairwise alignments are computed between all sequences, and then a multiple sequence 
alignment is built by “merging”  these pairwise alignments. The following describes the general 
approach used for progressive alignment methods such as ClustalW, but the exact 
implementation details are omitted as they continually evolve:   
 
1. Determine all pairwise alignments between sequences and determine degrees of similarity 

between each pair. 
2. Construct a "rough" similarity tree 
3. Combine the alignments starting from the most closely related groups to most distantly 

related groups, while maintaining the "once a gap, always a gap" policy.   
 
We illustrate the above algorithm with an example.  Given k sequences, { s1, s2, … ,sk} , we want 
to find an alignment of these k sequences.   
 
Step 1:  Determine all pairwise alignments between sequences and determine degrees of 
similarity between each pair. 
 
a. We compute pairwise alignments as we learned in the previous lecture on global sequence 

alignments.   
b. We use these pairwise alignments to compute a "distance" between all pairs of sequences.  

One method to assign distances is the following. For each pairwise alignment, look at the  
non-gapped positions and count the number of differences per site.  For example, the best 
alignment for the two sequences in Figure 1 has a distance of 1/4 = .25 for the mismatch 
between the M and V.  
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Fi gur e 1.   A sampl e al i gnment  of  2 sequences wi t h one mi smat ch 
 

 
Note:  The number of observed substitutions underestimates the number of actual 
substitutions; we will consider this problem in a later lecture.   



 

 

 
Fi gur e 2.   " Rough"  t r ee showi ng s i mi l ar i t i es bet ween var i ous 
gl obi n pr ot ei ns.   
 
 
After computing the pairwise distances, we input them into a matrix.  Note that we have 
computed distances to be in the range of 0 to 1, with smaller values indicating more closely 
related sequences.    
 
Table 1 is an example for globin protein data, with k=7 sequences.  
 

Gl obi n t ype  1 2 3 4 5 6 7 
Hbb_human 1 -        
Hbb_hor se 2 . 17 -       
Hba_human 3 . 59 . 60 -      
Hba_hor se 4 . 59 . 59 . 13 -     
Myg_whal e 5 . 77 . 77 . 75 . 75 -    
Cyng_l ampr ey 6 . 81 . 82 . 73 . 74 . 80 -   
Lgb_l upus 7 . 87 . 86 . 86 . 88 . 93 . 90 -  

 
Tabl e 1.   Gl obi n s i mi l ar i t y  dat a.  
 

We can neglect to fill in the rest of the matrix since it is symmetric.   
 
 

Step 2:  Construct a "rough" similarity tree 
We now construct a tree that is based on the above distance matrix.  The exact details of tree 
construction will be discussed in a later lecture.  The ClustalW software uses the neighbor 
joining (NJ) method to compute this tree.  



 

 

 
Figure 2 is an example of a tree for our data.  In an ideal case, the distances between 
elements in the above matrix is exactly equivalent to the sum of the branch lengths between 
these elements in the tree.  However, this case is rarely possible in practice.  In Figure 2, we 
see that the distance between Hbb_human and Hbb_horse in the tree is .081 + .084 = .165 
which is close to .17 from the matrix in Table 1.   

 
Step 3: Combine the alignments starting from the most closely related groups to most distantly 
related groups, while maintaining the "once a gap, always a gap" policy.   

 
We build our alignment using the tree as a guide, and proceed from its tips to its root.  We 
start by aligning Hbb_human and Hbb_horse.  Then, we align Hba_human and Hba_horse.  
Now we combine the alignments of the Hbb's and the Hba's.  We continue to do this up the 
tree until we reach the root.   
 
As we combine pairwise, we are forcing gaps in the alignments via the "once a gap, always a 
gap" policy.  We align each pair of sequences via the Needleman-Wunsch method (see 
previous lectures) with an affine gap penalty.  That is, we charge a smaller penalty for a gap 
continuation than for a gap initiation.   Note, we must also align alignments with other 
alignments.  As with pairwise alignments, we do this via dynamic programming, but here the 
score in each cell of the sim matrix uses the average of all pairwise scores from the 2 sets of 
sequences used in the 2 alignments.  For example, suppose we have the following two 
alignments, one of 2 sequences and the other of 4 sequences: 

 
       Al i gnment  1:   ATA 

    CCA 
 
Al i gnment  2:   TCAFE 
    TAT- E 
    TATF-  
    AGTFD 

 
We would score the first column of the first alignment against the second column in the other 
alignments using: 
 

= 1/ 8( scor e( A, C)  + scor e( A, A)  + scor e( A, A)  + scor e( A, G)  + 
scor e( C, C)  + scor e( C, A)  + scor e( C, A)  + scor e( C, G) )  

 
Here score(A,C) is the score of aligning A against C; other scores are assigned similarly.  For 
example,  in the examples studied in previous lectures, these scores come from match=+1, 
mismatch =-1, and a gap=-2.   

 
Additional Issues 
 
Sequence Weighting.  By giving each sequence equal weighting we are not taking into account 
any evolutionary relationships.  Two sequences that are closely related should receive less 



 

 

weight than two sequences that are less closely related.  The closely related sequences contain 
duplicate information so we should not give too much weight to this type of data.   

 
A common method to overcome this issue is implemented as follows.  As our tree above has 
distances between each sequence, we can weight the alignments based on the tree distances.   

a. We use the lengths from the length from root to sequences to compute weights.  
Therefore, there is increased weight for more divergent species.   

b. If two or more sequences share a branch, the length of the branch is split amongst the 
sequences.  This reduces the weight for related sequences.   

In our tree from Figure 2, therefore, Lgb_lupus would get a weight of .442.  The Hba_human 
would get a weight of .194 

  
W( Hba_human)  = . 055+ . 216/ 2+. 061/ 4+ . 015/ 5+ . 062/ 6 = . 194 

 
Usually, the weights are normalized for each sequence with the maximum weight set to 1.  Now, 
these weights are used to adjust the scores of the alignments.   

 
Caveats.   

a. There are no guarantees with respect to the alignment.  For example, the alignment found 
this way says nothing about the optimum MSA with respect to the sum-of-pairs measure 
we talked about earlier.   

b. The initial errors from the "once a gap, always a gap" policy are propagated and 
compounded. 

c. There is more than one optimum pairwise alignment possible, yet we are committing 
ourselves to only one at the outset.   

d. The order in which we add sequences to the alignment (e.g. based on the guide tree) 
affects the alignment.   

e. Parameter settings are always a problem in alignment 
(1).  Which matrix should one use?  We should use a different matrix for scoring the 

alignments based on how closely related the sequences are.   
(2).  How should we handle gaps?  

f. If any pair of sequences are less than 25% identical, then the alignments are prone to be 
bad.   

g. In general, one needs to correct some alignments manually. 
 

 
Substitution Matr ices 
 
In the previous lectures we have used  simple scoring schemes based on matches and 
mismatches. These are often used for DNA alignments (e.g., BLAST's default is match = +1 and 
mismatch = -3).  However, for proteins we can increase sensitivity to weak alignments through 
better scoring schemes that take into account how particular amino acids substitute for each 
other.  In particular,  we know that certain amino acids substitute more easily for one amino acid 
than another.  This is because certain amino acids have similar biochemical properties, such as 
hydrophobicity, size, or charge.   

 



 

 

Using the correct protein substitution matrix when aligning is important for the following 
reasons: 

a. Scoring matrices appear in all analysis involving sequence comparison. 
b. The choice of a matrix influences the outcome of the analysis. 
c. The scoring matrices implicitly represent a particular theory of evolution. 
d. Different sets of values may be desired for comparing very similar as opposed to 

highly divergent sequences. 
 

Protein substitution matrices can be derived from the following data: 
a. Physical/chemical characteristics of the protein sequences, but this is difficult to 

assess.   
b. Comparing how easy it is for simple base changes in DNA sequence codons 

(triplet of DNA) to create a change in amino acid.  For example, GAA codes for 
glutamic acid while GGA codes for glycine. 

c. The most common method, however, is to just conduct direct observations of 
sequences that are known to be aligned properly.  The PAM and BLOSUM 
matrices are derived from these data.    

 
We will hear more about substitution matrices in the next lecture. 
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