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Sequence Comparison: Local and Multiple Alignments

Recap: Global Alignment Algorithm

In the last lecture, we covered global sequence alignment. Here, we want to align
two sequences s and t, with |s| = m and [t| = n. We use dynamic programming
to optimally align all the prefixes of s with all the prefixes of . We use a matrix
sim (with m 4+ 1 rows and n + 1 columns) to keep track of the optimal scores of
alignments of prefixes. That is, in the matrix sim, entry sim(i,j) is the score of
the optimal alignment of the ith prefix of s with the jth prefix of . For the simple
similarity function we considered (match = 1, mismatch =-1, and gap = -2), to
calculate sim(i,7), we find the maximum of the three numbers sim(i — 1,j) — 2,
sim(i,j—1)—2, and sim(i—1,7—1)+1. We choose +1 in the last term if s(i) = (¢);
otherwise we choose —1. We also record which matrix entries the maximum derived
from by using one or more arrows.

To construct an optimal alignment, we examine the entry sim(m,n) and follow a
direct path back through the arrows to the origin of the matrix. The direction of the
arrows pointing out of sim(i, j) indicate the type of alignment at that position. A
diagonal arrow indicates that s(i) is aligned with #(j); a horizontal arrow indicates
that ¢(7) is aligned with a gap; and a vertical arrow indicates that s(7) is aligned with

a gap.

This algorithm uses time O(mn) and space O(mn). There is also an improvement
which uses O(m + n) space.

Local Alignments

Motivation: Proteins are built of modules that can be mixed and matched. Thus,

!Portions of this lecture are adapted from one given by Bonnie Berger at MIT. Scribe notes
adapted from notes taken by Antonio Ramirez, also at MIT.



the global similarity may be poor for some sequences, but we may want to look for
local regions of similarity that suggest shared structural or functional subunits.

A local alignment of strings s and ¢ is an alignment of a substring? of s with a substring
of ¢.

Problem: Given two sequences (s of length m and ¢ of length n), find the highest
scoring local alignment between them.

We can naively test all possible substrings against each other, yielding an algorithm
with a running time of O((nm)3). Here we present an algorithm that runs in time

O(nm).
Algorithm:

Definition: A suffiz is a substring containing the last character of a string (includes
the empty string). (Example: the suffixes of the string TAC are: empty, C, AC, TAC.)

The local alignment algorithm algorithm (or Smith-Waterman algorithm) involves
a very simple modification to the global alignment algorithm. We will again use a
(m+1) x (n+1) matrix sim. However, this time, the (7, j)th entry of the matrix sim
will hold the optimal alignment between a suffiz of the ith prefix of s and a suffiz of
the jth prefix of ¢.

The basic intuition is that a suffix of a prefix is a substring, and sim(i, j) holds the
best alignment score between substrings that end in s(7) and #(j). Suppose that we
want the best alignment between a substring of s ending in s(i) and a substring of
t ending in #(j). This means that we need to pick the best starting points for the
strings, since their endpoints are determined. Note that s(7) is not necessarily aligned
with £(j).

Note: there are no initial or trailing gaps in an optimal local alignment. Since
introducing gaps causes the alignment score to drop, we can always delete the initial
or trailing columns containing gaps and increase the score of the resulting alignment.

We will fill in the sim matrix. A small addition to the global alignment algorithm
solves this problem. First we zero out the first row and column of sim, because there
are no initial gaps in the best local alignment. Then we use the rule:
sim(i—1,7—1)+1

sim(i —1,7) — 2

sim(i,j —1) — 2

0

(1)

sim(3, j) = max

2Recall that a substring must consist of contiguous characters.



where the sign for the first case is chosen, as before, according to whether s(i) matches
t(j) or not. As we fill in the array, we remember when a zero came from the fourth
case. Intuitively, this case says that the best match between suffixes might be to align
empty suffixes, which yields a score of zero.

See Figure 1 for an example of the algorithm at work, in a local alignment of strings
s = AGCT and t = GCA.

M- Glca
o0 0 0
Alo 0 01
Glo/1/0]0
clolofz2]o
Tlolo[0|1

Figure 1: Local alignment example

To construct an optimal local alignment, we look for the maximum value in the
matrix. Then we follow its arrows back until we hit a zero. In Figure 1, we choose
the value 2 in entry sim(3,2). This gives the local alignment

s: GC
t: GC

If we want further optimal alignments, we take another maximum value in the matrix,
generally one that has not already been visited by a previous path. If we want the
second best local alignment, we take the second highest value in the matrix that
has not already been visited. These alignments are sometimes useful and are called
near-optimal alignments. In our case, if we start from sim(1,3), we obtain the local
alignment.

Tt ®»
= =

This algorithm uses time O(mn) and space O(mn). Again, it is possible to improve
it to use space O(m + n).



Idea for inductive proof. Suppose we know the best alignment of a substring of
s ending in position ¢ with a substring of ¢ ending in position j. There are four cases:

e The alignment was gotten by aligning s(i) with ¢(j). What is left is a suffix
ending in s(¢ — 1) and a suffix ending in #(j — 1). We already have the best
alignment for that through the inductive hypothesis.

e The alignment was gotten by aligning s(¢) with a gap. What is left is to align a
suffix ending in s(7 — 1) with a suffix ending in #(j). We already have the best
for that through the inductive hypothesis.

e The alignment was gotten by aligning a gap with ¢(j). This case is analogous
to the previous case.

e It was gotten by aligning empty strings (suffixes can be empty!).

The base cases in the induction are the alignments of an empty string with any prefix.
That is, sim(i,0) = sim(0,7) = 0 for all ¢ and j.

Extensions to the Alignment Problem

Sequence comparisons in practice often use different gap penalties (as well as different
substitution matrices). Using different gap penalties can require changes in our basic
algorithm.

We often don’t penalize opening or trailing gaps in a global alignment; this can be
easily done with a slight modification to the Needleman-Wunsch algorithm (change
the initial conditions and where to begin the traceback from in the similarity matrix).

Gap penalties are also important when we want to note the difference between k
interspersed spaces and k contiguous spaces, as in the example below:

xabcaxbxcxabc
x—--—a-b-c-abc

VS.

xabcaxbxcxabc



We model favoring the second alignment using linear (affine) gap penalty: the gap
penalty is now expressed as a function

w(k) =p+qk

where p is the gap open penalty, ¢ is the gap continuation penalty, and £ is the number
of consecutive gaps in a row. In practice, the penalty p is made much worse than
the penalty ¢g. The reason is that a break in a molecule for a deletion or insertion is
hard to make. Once a break is made, though, it is relatively easy to make multiple
insertions or deletions. This type of gap penalty function is used in computing most
pairwise alignments.

With linear gap penalties, we can still find a solution in time O(mn); the idea is to use
three (m+1) x (n+ 1) arrays that keep track of what kind of gap we have and where
it comes from (either in s or ¢). See [2] or the Setubal and Meidanis textbook [3] for
details.

Multiple Sequence Alignments (MSA)
So far, we have concentrated on comparisons between a pair of sequences. However,
we often are given several sequences that we have to align simultaneously.

Motivation: Multiple sequence alignments (or MSAs)

e provide stronger evidence than pairwise similarity for functional and structural
inferences.

e are useful for detecting regions of variability or conservation (that might be
missed in a pairwise alignment)

e are the first step in other computational procedures:

— phylogenetic reconstruction
— secondary structure prediction

— building profiles (for use in locating other similar sequences)

So, given k strings s1, S, . . . S, & multiple sequence alignment is obtained by inserting
spaces in the sequences to make them the same length.

Note: no column can be all spaces.

Example: MSA of 4 sequences:



$; : MQPILLLV
Sy : MLR-LL--
3 : MK-ILLL-
4 : MPPVLILV

Question: How to score an alignment?

There are many possibilities; one commonly studied scoring measure is sum-of-pairs.
It is determined for each column in the alignment, and it is the sum of the scores
of all pairs of symbols in the column. In the example above, the score of the fourth
column is:

SP(I, -, I, V) = score(I, -) + score(I, I) + score(I, V) + score(-, I) + score(-, V) +
score(I, V)

Note: score(-, =) = 0; gaps never occur in an entire column, but may occur pairwise.
SP-MSA Problem: Find the best MSA under the SP scoring system.

Is sum-of-pairs a good measure for scoring multiple sequence alignments? It is not
clear, as sum-of-pairs may lead to aberations when scores from closely related se-
quences can overrun lower scores from distant but more informative sequences. Nev-
ertheless, it is a widely used and studied scoring system.

Note: Optimum SP-MSA alignments may not give an optimal alignment for a given
pair. For example,

Ss1 : AT
So 1 A-
SgI—T
S4IAT
851AT

has a sum-of-pairs score of —4. The pairwise alignment of sequences s, and s3 has
score —4 in this multiple sequence alignment, but their optimum pairwise alignment
would be:

SQZA
832T



with a score of —1. However, replacing this back into the MSA gives:

SllAT
So 1 A-
s3 : T-
841AT
851AT

with a sum-of-pairs score of —7. Thus, it is clearly not the case that the best SP-MSA
alignment can be found easily using pairwise alignments.

We will sketch the idea for finding the optimum MSA under the sum-of-pairs criterion.

Let’s assume we have k sequences si,S>...S5; each of length n. Instead of a 2-
dimensional array, we will have a k-dimensional array, with (n+1)* entries. How will
we fill out this matrix? Again, let’s consider the last column of the alignment and
see what happens. For each sequence, either its last character is in the last column of
the alignment, or it’s not (and we have a gap instead). This gives 2¥ — 1 possibilities,
since we can’t have all gaps in a column in the alignment.

So to fill out the (n + 1)* entries in the array, we need to take the maximum over
2% —1 possibilities to compute each entry, and for each possibility we need to calculate
the sum of the pairwise scores (O(k?) time, as there are k(k — 1)/2 pairwise scores).
So the total running time is: O(2Fn*k?).

The complexity of this algorithm is exponential in the number of input sequences,
thus can’t be used in practice for more than a few sequences. In fact, SP-MSA has
been shown to be NP-complete, and in the next lecture we’ll discuss heuristics for
multiple sequence alignment that are used in practice.
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