
COS 597c: Topics in Computational Molecular Biology
Lecture 11: October 25, 1999
Lecturer: Mona Singh
Scribes: Jordan Parker1

Profile Hidden Markov Models

In the previous lecture, we began our discussion of profiles, and today we will talk
about how to use hidden Markov models to build profiles. One of the advantages of
using hidden Markov models for profile analysis is that they provide a better method
for dealing with gaps found in protein families. We will begin by an introduction of
hidden Markov models. HMMs have also been used in many other areas of compu-
tational biology, including for gene finding as well as construction of genetic linkage
maps and of physical maps.

1 Introduction to Hidden Markov Models

A hidden Markov model is defined by specifying five things:

Q = the set of states = {q1, q2, ..., qn}

V = the output alphabet = {v1, v2, ..., vm}

π(i) = probability of being in state qi at time t = 0 (i.e., in initial states)

A = transition probabilities = {aij},
where aij = Pr[entering state qj at time t+ 1 | in state qi at time t]. Note that
the probability of going from state i to state j does not depend on the previous
states at earlier times; this is the Markov property.

B = output probabilites = {bj(k)},
where bj(k) = Pr[producing vk at time t | in state qj at time t]

1Portions of the notes are adapted from lecture notes originally scribed by Xuxia Kuang in Fall
1998. Last edited October 2002.
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Figure 1: A Hidden Markov Model

As an example, let’s say that we have two biased coins, which we are flipping, and an
observer is seeing the results of our coin flips (not which coin we’re flipping). In fact,
suppose that what we are actually doing can be described by Figure 1. Here, the
states of the HMM are q1 and q2 (the coins), the output alphabet is {H, T}, and the
transition and output probabilities are as labelled. If we let π(q1) = 1 and π(q2) = 0
then the following is a example of a possible transition sequence and output sequence
for the HMM in Figure 1:

0.8 0.8 0.2 0.6 0.4 0.8
q1 −→ q1 −→ q1 −→ q2 −→ q2 −→ q1 −→ q1

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
H H T T T T H

We can easily calculate probabilities for the following events.

1. The probability of the above state transition sequence:

Pr[q1q1q1q2q2q1q1] = π(q1)a11a11a12a22a21a11 ≈ 0.025

2. The probability of the above output sequence given the above transition se-
quence:

Pr[(HHTTTTH)|(q1q1q1q2q2q1q1)] =
2
3
· 2

3
· 1

3
· 5

6
· 5

6
· 1

3
· 2

3
≈ 0.23
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3. The probability of the above output sequence and the above transition sequence:

Pr[(HHTTTTH)∧ (q1q1q1q2q2q1q1)] ≈ (0.025) · (0.023) ≈ 5.7× 10−4

While we just considered the case where we knew both the results of the coin flips,
and which coin was being flipped, in general, we consider the case where we do not
know which coins are being flipped. That is, while we know the underlying model
is as described in Figure 1, and we observe the output symbol sequence, the state
sequence is “hidden” from us. In this case, we can also figure out the answers to the
following questions:

1. What is the probability of the observed data O1, O2, . . . OT given the model?
That is, calculate Pr(O1, O2, . . . OT |model).

2. At each time step, what state is most likely? It is important to note
that the sequence of states computed by this criterion might be impossible.
Thus more often we are interested in what single sequence of states has the
largest probability. That is, find the state sequence q1, q2, . . . , qT such that
Pr(q1, q2, . . . , qT |O1, O2, . . . OT , model) is maximized.

3. Given some data, how do we “learn” a good hidden Markov model to describe
the data? That is, given the topology of a HMM, and observed data, how do
we find the model which maximizes Pr(observations|model)?

To answer the first two questions, we can use dynamic programming techniques. To
compute the answer to the last question, we can use the Baum-Welch method. We
will briefly discuss the general methods to solve of these questions (see the appendix).
More details can be found in Rabiner and Juang’s tutorial paper on hidden Markov
models [1]. We will discuss in more detail the methods used to answer these questions
in the context of HMM profiles.
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2 Building HMM-Profiles

How does the above relate to profiles? Let’s see how we can use HMMs to model
them. In the last lecture, we built a profile for the alignment:

LEVK
LDIR
LEIK
LDVE

Ignoring the “background” frequencies for now, a profile for this alignment can be
viewed as trivial HMMs with one “match” state for each column, where consecutive
match states are separated by transitions of probability 1. We also need to define
output probabilities for each of these match states; these come from the probability
of observing a particular amino acid in the corresponding column (i.e., these are
identical to the probabilities we compute per column for the original profile method).
We also introduce “dummy” begin and end states which emit no output symbols.
This trivial HMM is illustrated in Figure 2.

Pos1
M1

Pr(L)=1

Pos2
M2

Pr(E) = 1/2
Pr(D) = 1/2

Pos3
M3

Pr(V) = 1/2
Pr(I) = 1/2

Pos1
M4

Pr(R) = 1/4
Pr(K) = 1/2
Pr(E) = 1/4

Begin End

Figure 2: A profile-HMM

Now let’s extend our model to handle insertions. Insertions are portions of sequences
that do not match anything in the above model. We will introduce insert states Ij,
which will model inserts after j th column in our alignment. See Figure 3. Typically,
the output probabilities for insert states are set equal to the background probabilities.
Note that we can have different probabilities for entering different insert states, and
this models the fact that insertions may be less well-tolerated in certain portions of
the alignment. Also, for any particular insert state, we may have different transition
probabilities for entering it for the first time vs. staying in the insert state; this
models affine gap penalities.
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M1 M2 M3 M4Begin End

I1 I2 I3 I4

Figure 3: Insert States

One could model deletions is as in Figure 4. However, arbitrarily long gaps introduces
lots of transitions in the model. Instead, we will introduce “delete” states that do
not emit any symbols (see Figure 5). The structure of the complete HMM with both
inserts and deletes is shown in Figure 6.

M1 M2 M3 M4Begin End

Figure 4: Possible deletions
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M1 M2 M3 M4Begin End

D1 D2 D3 D4

Figure 5: Deletions

Begin End

Delete

Insert

Match

Figure 6: The complete HMM formation

We have just given the overall topology of a profile-HMM, but we still need to decide
how many states our HMM has, what the transition probabilities are, etc. As an
example, let’s build an HMM profile for following multiple sequence alignment:

VGA--HAGEY
V----NVDEV
VEA--DVAGH
VKG------D
VYS--TYETS
FNA--NIPKH
IAGADNGAGY

How do we pick the length of the HMM (i.e., how many match states do we have in
the profile?). One heuristic is to only include those columns that have amino acids
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in at least half of the sequences. For example, in the above alignment, there would
be match states for each column except for the fourth and fifth columns.

How do we pick output probabilities for match states? We will use the same technique
as was used with building our non-HMM profiles. For example, for the first match
state we have:

bm1V = 5
7

bm1F = 1
7

bm1I = 1
7

In reality, we must connect for zero frequency case. As mentioned in the last lecture,
a common way of doing this by adding a small amount to every frequency (e.g., the
“add-one” rule). Using the add-one rule, our probabilities would be:

bm1V = 5+1
7+20 = 6

27
bm1F = 2

27
bm1I = 2

27
all else = 1

27

How do we pick transition probabilities? We let the transition probability of going
from state k to state l akl be equal to:

number of times go from state k to state l
the number of times go from state k to any other state

So, to calculate the probability of transition from match state 1 to match state 2, we
count the number of times we get a match (=6) in the second column, as well as the
number of gaps (=1). (Note, using the initial alignment and our model, we only have
insertions after the third match state.)

aM1M2 = 6
7

aM1D1 = 1
7

aM1I1 = 0
7

Again, using the add-one rule, we correct our probabilites to be:
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aM1M2 = 6+1
7+3 = 7

10
aM1D1 = 2

10
aM1I1 = 1

10

The rest of the parameters are calculated analagously.

In the next lecture, we will address the question of how we use a given profile model
of a protein family to figure out whether a new protein sequence is a member of
that family. We will also show how to find the most likely alignment of this protein
sequence to the family.

We can actually build profiles from unaligned sequences using the Baum-Welch proce-
dure, but we won’t have time to go over this. Note, however, the topology of the HMM
is fixed before learning. We might not always know the number of relevant positions
in the family (i.e., the number of conserved positions). One heuristic to get around
this is as follows. First, guess the number of states by choosing an initial length.
Then, after learning, if more than half of the paths of sequences choose the delete
state at a particular position, do “model surgery” and remove the whole position.
If more than half of the paths choose an insert state in a position, then add insert
states at this position, with the number of new states equal to the average number of
inserts. In practice, methods for learning HMMs are prone to getting caught in local
minima, and, so it is best to start with a good initial guess (in our case, an aligment),
and to start with different starting parameters. In fact, mostly HMM-profiles are
built just from alignments, similar to the way we have just described via our example
(i.e., without trying to learn the parameters).
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Appendix

Given an HMM, we can figure out the answers to the following questions:

1. What is the probability of the observed data O1, O2, . . . OT given the model?
That is, calculate Pr(O1, O2, . . . OT |model).

2. At each time step, what state is most likely? It is important to note
that the sequence of states computed by this criterion might be impossible.
Thus more often we are interested in what single sequence of states has the
largest probability. That is, find the state sequence q1, q2, . . . , qT such that
Pr(q1, q2, . . . , qT |O1, O2, . . . OT , model) is maximized.

3. Given some data, how do we “learn” a good hidden Markov model to describe
the data? That is, given the topology of a HMM, and observed data, how do
we find the model which maximizes Pr(observations|model)?

To answer the first question we must calculate: Pr[observed data | model]
=

∑
(Pr[observed data | state sequence, model]× Pr[state sequence | model])

where we are summing over all possible state sequences. That is, we must calcu-
late:

Pr[O1O2...OT |λ] =
∑

q1...qT

Pr[O1O2...OT |q1...qT , λ]× Pr[q1...qT |λ]

where λ is the model.

However, there are exponentially many possible state sequences. To solve the problem
in polynomial time, we can use dynamic programming. In particular, the algorithm
used is known as the Forward Algorithm.

Our dynamic programming recurrence is as follows. Let
αt(i) = Pr[O1, O2...Ot, qt = Si|λ]. That is, αt(i) is the probability of observations
O1,...,Ot and being in state i at time t.

1. Initially we have:
α1(i) = π(i)bi(O1), for 1 ≤ i ≤ n

2. Induction step:

αt+1(j) =
[
n∑

i=1
αt(i)aij

]
bj(Ot+1)
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3. Finally:

Pr(O|λ) =
n∑

i=1
αT (i)

Hence we can calculate Pr[O1O2...OT ] in O(N2T ) time.

To answer the second question we must find a state sequence q1, q2 . . . , qT , such that
Pr[q1q2...qT |O1O2...OT ,model] is maximized. We can also use dynamic programming
techniques, specifically the Viterbi Algorithm.

Our dynamic programming recurrence is as follows.
Let δt(i) = maxq1...qt−1 Pr[q1q2...qt = i, O1O2...Ot|λ]. That is, δt(i) is the highest
probability along a single path at time t which accounts for the first t observations
and ends in state Si. We will also use φt(i) to help us in keeping track of the actual
path; that is, φt(i) tells us which state at time t−1 “led” us to the highest probability
δt(i) at time t.

1. Initially we have:
δ1(i) = π(i)bi(O1), for 1 ≤ i ≤ n

φ1(i) = 0

2. Induction:
δt(j) =

(
max
1≤i≤n

[δt−1(i)aij]
)
bj(Ot)

φt(j) = argmax1≤i≤n[δt−1(i)aij]

3. Finally, we find the states q∗1, . . . , q∗T by backtracking:

q∗T = argmax1≤i≤nδT (i)

q∗t = φt+1(q∗t+1)

To answer the third question, given the topology of a HMM and observed data, we
must find the model that maximizes Pr[O1O2 . . . OT |λ].

There is no optimal analytical way of doing this. However, we can choose parameters
using Baum-Welch, an iterative procedure which finds a local maximum. We will
not go over this algorithm, but the idea as follows. To re-estimate the transition
probabilities aij, for example, we calculate:
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expected # of transitions from qi to qj
expected # of transitions from qi

Other parameters are updated in similar fashion.
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