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We present a computational method for de novo identification of gene function using only cross-organismal
distribution of phenotypic traits. Our approach assumes that proteins necessary for a set of phenotypic traits are
preferentially conserved among organisms that share those traits. This method combines organism-to-phenotype
associations, along with phylogenetic profiles, to identify proteins that have high propensities for the query
phenotype; it does not require the use of any functional annotations for any proteins. We first present the statistical
foundations of this approach and then apply it to a range of phenotypes to assess how its performance depends on
the frequency and specificity of the phenotype. Our analysis shows that statistically significant associations are
possible as long as the phenotype is neither extremely rare nor extremely common; results on the flagella, pili,
thermophily, and respiratory tract tropism phenotypes suggest that reliable associations can be inferred when the
phenotype does not arise from many alternate mechanisms.

[Supplemental material available online at www.genome.org.]

The increasing number of fully sequenced genomes has made it
possible to infer protein function using comparative genome
techniques. Most current computational methods assign func-
tion to proteins by matching them to other proteins with known
function (for review, see Bork et al. 1998); this matching has
traditionally relied on sequence homology (Altschul et al. 1990),
but nonhomology-based methods have also been introduced re-
cently. The Clusters of Orthologous Groups (COGs) database
(http://www.ncbi.nlm.nih.gov/COG/) is a homology-based
method that establishes COGs as groups of homologs that are
found in at least three major phylogenetic lineages, and enables
transfer of functional information from one ortholog to the en-
tire set of proteins within a COG (Tatusov et al. 1997). Phyloge-
netic profiles (Gaasterland and Ragan 1998; Pellegrini et al.
1999), gene clusters (Overbeek et al. 1999), and gene fusion
analysis (Enright et al. 1999; Marcotte et al. 1999; Snel et al. 2000)
are methods that can group together proteins that do not neces-
sarily share sequence homology. Phylogenetic profiles describe
the presence or absence of proteins in different genomes, and
proteins with similar phylogenetic profiles are thought to share
similar functions (Pellegrini et al. 1999). Gene cluster analysis
(Overbeek et al. 1999; Tamames et al. 2001) infers functional
relationships between genes from conservation of chromosomal
proximity. Gene fusion analysis (Enright et al. 1999; Marcotte et
al. 1999; Snel et al. 2000) identifies proteins that either belong to
a protein complex or catalyze consecutive steps in a pathway by
looking for corresponding genes that are separate in one organ-
ism, but are fused into one sequence in another. For a compari-
son of these nonhomology techniques see Huynen et al. (2000).

This study introduces an alternative method that infers pro-
tein function without requiring any prior functional annotation
on any proteins. Instead, the method uses organism-level phe-
notype annotations and phylogenetic profiles to identify pro-
teins with high propensities for a given phenotype. The method
has broad applicability, as there are many well-characterized phe-

notypes, and phylogenetic profiles can be directly computed
from sequenced genomes. A recent work (Levesque et al. 2003)
described a related but different approach for predicting protein
function on the basis of phenotypic traits, and applied them to
identify flagellar proteins; that approach uses various set-
theoretic algorithms and phylogenetic information in the form
of orthologous gene sets obtained from the COGs database. An-
other recent work (Martin et al. 2003) used clusters of phyloge-
netic profiles to identify proteins that differentiate Gram-positive
from Gram-negative bacterial genomes.

We first present the statistical foundations of our approach.
Then, we apply our method to the flagella phenotype to show
that our method works better than earlier approaches that use
phylogenetic profiles (Pellegrini et al. 1999; Levesque et al. 2003).
In addition, we apply our approach on three new phenotypes
that have not been tried previously (pili, thermophily, and res-
piratory tract tropism), and make novel predictions. Our analyses
show that reliable associations can be inferred when the pheno-
type is unlikely to arise from many alternate mechanisms. As
opposed to previous approaches, our method has the advantage
that it can eliminate annotations that are not statistically signifi-
cant; additionally, our theoretical analysis shows that pheno-
types that are either extremely rare or extremely common do not
permit annotations of gene function. These features are critical
for general application of the approach to a wide range of phe-
notypes.

METHODS
Each protein in a reference organism with the phenotype of in-
terest is analyzed by identifying whether it is preferentially con-
served among organisms exhibiting the phenotype. For each pro-
tein, a BLAST search (Altschul et al. 1990) against the nonredun-
dant (nr) database (http://www.ncbi.nih.gov/BLAST/
blast_databases.html) reveals possible homologs, and a genome
is considered to contain a homolog when one of its proteins has
an alignment to the query protein sequence with e-value below
1.0 e-10, and when the length of the alignment is at least 2/3 the
length of the query sequence (the latter requirement is useful for
screening out good alignments from shorter motifs).
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Once homologs in all genomes are identified, proteins are
matched to the phenotype of interest as follows. The extent to
which a protein i is associated with a given phenotype f is quan-
tified by a propensity score �f(i):

�f�i� =

fraction of genomes with phenotype f
that contain protein i

fraction of genomes that contain protein i

=
ti,f �Tf
ni�N

( 1 )

in which Tf is the number of genomes that exhibit phenotype f,
N is the total number of genomes, ti,f is the number of genomes
that both exhibit phenotype f and contain homologs to gene i,
and ni is the total number of genomes that contain homologs to
gene i.

The hypergeometric distribution is then used to screen out
statistically insignificant protein-phenotype associations. For a
given gene i, if its homologs are found in a total of ni genomes,
then

Hfi�t� =
�Tft � �N − Tf

ni − t �
�Nni�

( 2 )

gives the probability that by random chance alone the gene is
found in t genomes exhibiting phenotype f. The probability that
a gene is found in at least ti,f genomes with phenotype f by ran-
dom chance alone is 1 � �t=0

ti,f�1 Hfi(t). Finally, using the conser-
vative Bonferroni correction (Miller Jr. 1991) to account for mul-
tiple testing, the probability that some gene i is found in at least
ti,f genomes with phenotype f among a set of X genes is given by

Pf�i� = X � �1 − �
t= 0

t
i,f

− 1

hfi�t��, ( 3 )

in which X is the number of genes in the organism whose genes
we are annotating. These Pf(i) values are used for eliminating
protein-phenotype associations that are not statistically signifi-
cant.

Theoretical Limitations
The number of organisms exhibiting a phenotype limits the
maximum propensity score. �f(i) is maximized when gene i is
found only in the target genomes (i.e., when ti,f = ni). Therefore,
the maximum propensity �f

* for phenotype f is:

�f* =
N
Tf
. ( 4 )

The number of organisms exhibiting a given phenotype also lim-
its the statistical significance of the results. In particular, Pf(i) is
minimized (most significant) when ti,f = ni = Tf, and the mini-
mum Pf

* on the propensity scores for a phenotype f is:

P*f =
X

�NTf�
. ( 5 )

Equations 4 and 5 describe a trade-off between statistical signifi-
cance and propensity when choosing the query phenotype. For a
given number of sequenced genomes N, a smaller Tf (i.e., a more
rare phenotype) will allow for higher propensity scores but at
lower statistical significance limits. Intuitively, a large Pf

* indi-
cates that phenotype f is too rare or too common, and a small �f

*

indicates that the phenotype is too common. With 86 genomes
and 4000 genes, Pf

* is <4.0 e-07 when 7<Tf <79 (see Fig. 1).

RESULTS
We apply our method to identify proteins associated with fla-
gella, pili, thermophily, and respiratory tropism phenotypes us-
ing 86 sequenced genomes (13 archaeabacteria and 73 eubacte-
ria) annotated for these phenotypes (see online Supplemental
Material available at www.genome.org for the list of organisms
and their phenotype annotations). The phenotype annotations
were obtained by reading through all matching PubMed (http://
www.ncbi.nlm.nih.gov/entrez/query.fcgi?db-PubMed) abstracts
supplemented by an exhaustive search of relevant online re-
search Web pages; however, it is possible that a few phenotype
annotations are missing in our data set. The frequency of each of
these phenotypes does not preclude statistically significant asso-
ciations (see Table 1), and thus, our approach is applicable.

Flagellar Proteins
The many annotated flagellar proteins in Escherichia coli allow us
to assess the performance of our method. Additionally, previous
work on this phenotype allows us to benchmark and compare
our method with other approaches. Table 2 shows the 60 most
statistically significant Escherichia coli genes with flagellar pro-
pensity scores >1.9 (90% of the maximum flagellar propensity
2.15). This list includes 24 known flagellar genes, one putative
motility gene (mbhA, b0230), and five nonflagellar genes known
to be involved in chemotaxis.

The list in Table 2 contains 12 additional known flagellar

Figure 1 Relationship between maximum propensity � and minimum
estimated Pf

* as a function of the number of organisms exhibiting phe-
notype f, given that there are N = 86 total genomes and that we are
testing X = 4000 genes.

Table 1. Maximum Propensities and Minimum Pf Values for
Flagella, Pili, Thermophily, and Respiratory Tract
Tropism Phenotypes

Phenotype f Tf

Max
Propensity

�f* X
Min Estimated
p-Value Pf*

Flagella 40 2.15 4289 7.93e-22
Pili 14 6.14 5565 1.22e-12
Thermophily 15 5.73 2588 1.19e-13
Respiratory Tract

Tropism 14 6.14 2240 4.93e-13

The values are computed with N = 86 genomes. X is the number of
ORFs in the organism that we are annotating, and is used to apply the
Bonferroni correction to the minimum Pf values.
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genes that were not identified using the original phylogenetic
profile approach described in Pellegrini et al. (1999). This list also
includes all of the genes already identified in that approach ex-
cept for fliQ, which has a propensity score of 2.15, but is not
included in Table 2 because its Pflagella value is not significant.
Note that the original phylogenetic profile approach does not use

phenotype information and instead transfers functional annota-
tions between proteins with similar profiles.

We also compared our method to the Similarity Measure
(Levesque et al. 2003) method. To make direct comparisons, we
applied this method to the 86 genomes considered here. At a
similarity threshold of 0.65, the least restrictive cutoff used in

Table 2. The 60 Most Statistically Significant Escherichia coli Genes With Flagellar Propensity Scores Greater Than 1.9 (90% of
Max Propensity)

Locus Gene Propensity p value t/n Identification

b1077 flgF 2.15 2.950E-11 30/30 +flagellar biosynthesis cell-proximal portion of basal-body rod
b1078 flgG 2.15 2.950E-11 30/30 +flagellar biosynthesis cell-distal portion of basal-body rod
b1939 fliG 2.15 2.950E-11 30/30 +flagellar biosynthesis, component of motor switch and energizing
b0229 fhiA 1.97 5.730E-10 33/36 +polar flagellar assembly protein
b1879 flhA 1.95 8.642E-08 30/33 +flagellar biosynthesis; possible export of flagellar proteins
b1880 flhB 1.97 5.730E-10 33/36 +putative part of export apparatus for flagellar proteins
b1948 fliP 1.97 5.730E-10 33/36 +flagellar biosynthesis protein flip
b1938 fliF 2.15 7.081E-10 28/28 +flagellar biosynthesis; basal-body membrane ring and collar protein
b1074 flgC 2.08 7.231E-10 30/31 +flagellar biosynthesis cell-proximal portion of basal-body rod
b1941 flil 1.92 4.597E-09 33/37 +flagellum-specific ATPase
b1076 flgE 2.15 1.378E-08 26/26 +flagellar biosynthesis hook protein
b1950 fliR 2.15 1.378E-08 26/26 +flagellar biosynthesis
b1884 cheR 2.01 4.494E-08 29/31 response regulator for chemotaxis; protein glutamate methyltransferase
b1887 cheW 2.15 5.606E-08 25/25 positive regulator of CheA protein activity
b1945 fliM 2.15 5.605E-08 25/25 +flagellar biosynthesis component of motor switch
b1080 flgI 2.15 2.172E-07 24/24 +homolog of Salmonella P-ring of flagella basal body
b1883 cheB 2.00 8.063E-07 27/29 response regulator for chemotaxis (cheA sensor); protein methylesterase
b1888 cheA 2.07 1.113E-06 25/26 sensory transducer kinase between chemo- signal receptors and CheB and CheY
b1079 flgH 2.15 2.863E-06 22/22 +flagellar biosynthesis basal-body outer-membrane L ring protein
b1082 flgK 2.15 9.791E-06 21/21 +flagellar biosynthesis hook-filament junction protein 1
b1890 motA 2.15 3.187E-04 18/18 +proton conductor component of motor; no effect on switching
b0230 mbhA 2.15 9.560E-04 17/17 * putative motility protein
b1889 motB 2.15 9.560E-04 17/17 +enables flagellar motor rotation, linking torque machinery to cell wall
b1924 fliD 2.15 9.560E-04 17/17 +flagellar biosynthesis; filament capping protein; enables filament assembly
b0316 yahB 2.15 2.789E-03 16/16 putative transcriptional regulator LYSR-type
b1659 ydhB 2.15 2.789E-03 16/16 putative transcriptional regulator LYSR-type
b1339 ydaK 1.95 1.062E-02 19/21 putative transcriptional regulator LYSR-type
b0504 ybbS 2.03 1.179E-02 17/18 putative transcriptional regulator LYSR-type
b3105 yhaJ 2.02 3.211E-02 16/17 putative transcriptional regulator LYSR-type
b1925 fliS 2.15 2.789E-03 16/16 +flagellar biosynthesis; repressor of class 3a and 3b operons (RflA activity)
b1946 fliN 2.15 2.789E-03 16/16 +flagellar biosynthesis, component of motor switch and energizing
b0494 tesA 2.04 4.199E-03 18/19 acyl-CoA thioesterase I; also functions as protease I
b0387 yaiI 2.15 7.921E-03 15/15 orf, hypothetical protein
b2213 ada 2.15 7.921E-03 15/15 O6-methylguanine-DNA methyltransferase; transcription activator/repressor
b2681 2.15 7.921E-03 15/15 putative transport protein
b3686 glnG 2.15 7.921E-03 15/15 response regulator for gln
b3687 ibpA 2.15 7.921E-03 15/15 heat shock protein
b3081 ygjL 1.95 1.062E-02 19/21 putative NADPH dehydrogenase
b0898 ycaD 2.03 1.179E-02 17/18 putative transport
b4119 melA 2.03 1.179E-02 17/18 alpha-galactosidase
b1542 ydfI 1.94 2.896E-02 18/20 putative oxidoreductase
b2172 yeiQ 1.94 2.896E-02 18/20 putative oxidoreductase
b4323 uxuB 1.94 2.896E-02 18/20 D-mannonate oxidoreductase
b1521 uxaB 2.02 3.211E-02 16/17 altronate oxidoreductase
b3356 yhfA 1.94 2.896E-02 18/20 orf, hypothetical protein
b3924 fpr 1.94 2.896E-02 18/20 ferredoxin-NADP reductase
b1256 yciD 2.02 3.211E-02 16/17 putative outer membrane protein
b1813 yeaB 2.02 3.211E-02 16/17 orf, hypothetical protein
b2069 yegD 2.02 3.211E-02 16/17 putative heat shock protein
b3775 ppiC 2.02 3.211E-02 16/17 peptidyl-prolyl cis-trans isomerase C (rotamase C)
b0610 rnk 2.15 5.931E-02 13/13 regulator of nucleoside diphosphate kinase
b1075 flgD 2.15 5.931E-02 13/13 +flagellar biosynthesis, initiation of hook assembly
b1083 flgL 2.15 5.931E-02 13/13 +flagellar biosynthesis; hook-filament junction protein
b1688 2.15 5.931E-02 13/13 orf, hypothetical protein
b2922 yggE 2.15 5.931E-02 13/13 putative actin
b3010 yqhC 2.15 5.931E-02 13/13 putative ARAC-type regulatory protein
b3328 hofG 2.15 5.931E-02 13/13 putative general protein secretion protein
b4355 tsr 2.15 5.931E-02 13/13 methyl-accepting chemotaxis protein I, serine sensor receptor
b1073 flgB 2.02 8.488E-02 15/16 +flagellar biosynthesis, cell-proximal portion of basal-body rod

The genes marked with + in the identification column are know flagellar genes. t is the number of flagellar bacteria that contain homologs to the
gene, and n is the total number of genomes that contain homologs to the gene. Genes in adjacent shaded rows are paralogs.
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Levesque et al. (2003), their method identified 12 known flagellar
genes; all of them are a subset of the 24 identified by our ap-
proach.

Both the Similarity Measure and our method have similar
performance when applied to the COGs data with the 21 ge-
nomes considered in Levesque et al. (2003); each identifies 29
known flagellar genes, among 34 top scoring genes for the Simi-
larity Measure algorithm and 31 top scoring genes for our method.

More rigorously, the Receiver Operating Characteristic
(ROC) curves in Figure 2 compare the sensitivity versus specific-
ity tradeoffs when all three approaches are applied to the 86
genomes considered here. These curves show that our approach
consistently produces fewer false positives at each level of sensi-
tivity. It is important to note that the false-positive rates in Figure
2 are upper bounds, because we cannot assume that all flagellar
proteins have been annotated (i.e., some of the putative false
positives may be flagellar proteins). Figure 2 also shows that pro-
pensity scores can be used to improve performance indepen-
dently of the estimated P values. At high specificity, the ROC
curves improve (move closer to the upper, left corner) as we in-
crease the propensity cutoffs from 1 to 1.8. Larger propensity
cutoffs increase the number of false negatives, and eventually at
cutoffs �2.0, the flagella ROC curves begin to worsen.

Proteins Associated With Pili
Pili are another structural feature of some bacteria for which
some of the component proteins are known. Table 3 shows the
40 most statistically significant Pseudomonas aeruginosa proteins
with propensity scores >4.5 for organisms that have pili (Sauer et
al. 2000). Five of the seven known proteins in this list are known
fimbrial biogenesis proteins (pilA, pilN, pilO, pilP, and pilQ);
their corresponding Bonferroni corrected Pf values are <0.109,
with three of these five having Pf values <0.05.

Proteins Associated
With Thermophily
Thermoanaerobacter tengcongensis is
an anaerobic thermophilic eubacterium
whose genome was sequenced recently
(Bao et al. 2002). How thermophiles
have adapted to survive at high tempera-
tures is not fully understood. Radiation
sensitivity studies indicate that thermo-
philes repair DNA efficiently, but se-
quencing results suggest that many of
their DNA repair genes are still unrecog-
nized because they are too different from
those of well-studied organisms (Grogan
1998). Here, we use our method to un-
cover the 40most statistically significant
T. tengcongensis genes with thermophily
propensity scores >3.0 (Table 4). This list
includes three DNA repair genes, one of
which is reverse gyrase. Reverse gyrase is
the only known topoisomerase that in-
duces positive supercoiling in DNA, and
hence, improves DNA stability at high
temperatures (Forterre et al. 2000). This
list also includes nine components of
ferredoxin oxidoreductase. Anaerobic
metabolism involving ferredoxin oxido-
reductase appears to be unique to hyper-
thermophiles (Kelly and Adams 1994),
and oxidoreductases related to hydrogen
evolution have been shown recently to
be crucial in the central metabolism of

hyperthermophiles, replacing dehydrogenases in many key steps
of metabolism (Borges et al. 1996). In addition, the recent isola-
tion of a strain of microorganisms from hydrothermal vents that
use Fe(III) as the electron acceptor and can grow at 121°, suggests
that Fe(III) reduction may be an important process for growing in
hydrothermal environments (Kashefi and Lovely 2003). Alto-
gether, Table 4 identifies at least 21 genes that may be associated
with thermophily: three DNA repair genes, nine ferredoxin oxi-
doreductase genes, and nine additional hypothetical genes that
currently have unknown function.

Proteins Associated With Respiratory Tract Tropism
We identified 14 bacteria with respiratory tract tropism, and used
this list to compute respiratory tract tropism propensity scores
for Streptococcus pneumoniae genes. In this case, there are no genes
with statistically significant propensities for the respiratory tract

Figure 2 Receiver Operating Characteristic (ROC) curves comparing our approach with the ap-
proaches of Levesque et al. (2003) and Pellegrini et al. (1999) on the same flagella data set. Each ROC
curve for our approach is obtained by keeping all genes with propensity scores greater than a fixed
cutoff and varying the P-value cutoffs. The ROC curve for the Levesque et al. (2003) approach is
obtained by varying the similarity threshold cutoff. The ROC curve for the Pellegrini et al. (1999)
approach is obtained by comparing phylogenetic profiles against the FlgL gene (used in their study)
and varying the Manhattan distance cutoff.

Figure 3 Average phylogenetic distances between E. Coli proteins at
each flagellar propensity level.
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tropism phenotype – none of the top propensity scores have Pf
values <2. Perhaps this is because the phenotype description is
too general, as bacterial tropism is known to involve a wide va-
riety of mechanisms that include immune evasion, metabolic
adaptation, and physical attachment and invasion. The lack of sta-
tistically significant associations indicates that respiratory tropism
is difficult to study as a single phenotype, at least using ourmethod.

DISCUSSION
We have described an approach that combines organism-to-
phenotype associations along with phylogenetic profiles to iden-
tify proteins with high propensities for a given phenotype; such
an approach can be used to annotate proteins with phenotype
information. We validated this approach by demonstrating its
ability to identify known flagellar and pili proteins, and then
applied it to the identification of proteins associated with ther-
mophily.

Phenotype annotations are usually more general than tradi-
tional protein functional annotations; typically, several proteins
spanning multiple functional complexes and pathways contrib-
ute to a given phenotype, and the same phenotype can be ac-
complished in more than one way. Correspondingly, we have

found that it is insufficient to simply search for proteins that are
conserved in a majority of the organisms exhibiting the query
phenotype. For example, none of the identified flagellar proteins
are conserved in all 40 flagellar genomes, and most of them are
conserved in 20 or fewer flagellar genomes. By using propensity
scores, our approach is able to match proteins to phenotype
without requiring that the proteins be conserved in a majority of
the organisms with that phenotype.

Proteins with the same propensity scores can have very dif-
ferent phylogenetic profiles, and therefore, it is unlikely that a
single representative protein can be used to match and identify
the set of proteins responsible for a phenotype. Figure 3 shows
the average Hamming distance between phylogenetic profiles of
E. Coli proteins at each flagellar propensity level. The average
Hamming distance between the phylogenetic profiles of the pro-
teins with highest flagellar propensity scores is 4.0, whereas pro-
teins with lower propensity scores can have Hamming distances
>30. In addition, Figure 4 depicts the hierarchical clustering of
the top proteins associated with flagella5 and thermophily (as

5In Figure 4, it is interesting to note that the organisms that exhibit flagella, yet
have few homologs to the top 60 E. coli proteins in Table 2, are archaea.

Table 3. The 40 Most Statistically Significant Pseudomonas aeruginosa Genes With Pili Propensity Scores
Greater Than 4.5.

Locus Gene Propensity p value t/n Identification

PA0454 5.27 2.87E-07 12/14 conserved hypothetical protein
P3651 cdsA 5.20 6.01E-06 11/13 phosphatidate cytidylyltransferase
PA4525 pilA 6.14 2.42E-05 9/9 type 4 fimbrial precursor PilA
PA0618 6.14 2.42E-05 9/9 probable bacteriophage protein
PA0619 6.14 2.42E-05 9/9 probable bacteriophage protein
PA3020 4.83 2.69E-05 11/14 probable soluble lytic transglycosylase
PA0936 6.14 3.15E-04 8/8 hypothetical protein
PA4512 4.91 1.23E-02 8/10 hypothetical protein
PA4115 5.03 1.18E-03 9/11 conserved hypothetical protein
PA3235 5.46 2.64E-03 8/9 conserved hypothetical protein
PA0209 6.14 3.56E-03 7/7 conserved hypothetical protein
PA0616 6.14 3.56E-03 7/7 hypothetical protein
PA0617 6.14 3.56E-03 7/7 probable bacteriophage protein
PA0622 6.14 3.56E-03 7/7 probable bacteriophage protein
PA0623 6.14 3.56E-03 7/7 probable bacteriophage protein
PA1376 aceK 4.91 1.23E-02 8/10 isocitrate dehydrogenase kinase/phosphatase
PA5043 pilN 4.91 1.23E-02 8/10 type 4 fimbrial biogenesis protein PilN
PA5040 pilQ 4.91 1.23E-02 8/10 type 4 fimbrial biogenesis protein PilQ
PA0289 4.91 1.23E-02 8/10 probable transcriptional regulator
PA1009 4.91 1.23E-02 8/10 hypothetical protein
PA1661 4.91 1.23E-02 8/10 hypothetical protein
PA4476 4.91 1.23E-02 8/10 hypothetical protein
PA4970 4.91 1.23E-02 8/10 conserved hypothetical protein
PA5225 4.91 1.23E-02 8/10 hypothetical protein
PA0461 5.38 2.62E-02 7/8 conserved hypothetical protein
PA0834 5.38 2.62E-02 7/8 conserved hypothetical protein
PA0612 5.38 2.62E-02 7/8 hypothetical protein
PA0628 5.38 2.62E-02 7/8 conserved hypothetical protein
PA4879 5.38 2.62E-02 7/8 conserved hypothetical protein
PA2017 6.14 3.56E-02 6/6 hypothetical protein
PA3209 6.14 3.56E-02 6/6 conserved hypothetical protein
PA5536 6.14 3.56E-02 6/6 conserved hypothetical protein
PA0080 4.78 1.09E-01 7/9 hypothetical protein
PA0502 4.78 1.09E-01 7/9 probable biotin biosynthesis protein bioH
PA1727 4.78 1.09E-01 7/9 conserved hypothetical protein
PA3726 4.78 1.09E-01 7/9 conserved hypothetical protein
PA4605 4.78 1.09E-01 7/9 conserved hypothetical protein
PA4777 4.78 1.09E-01 7/9 probable two-component sensor
PA5041 pilP 4.78 1.09E-01 7/9 type 4 fimbrial biogenesis protein PilP
PA5042 pilO 4.78 1.09E-01 7/9 type 4 fimbrial biogenesis protein PilO

t is the number of organisms with pili that contain homologs to the gene, and n is the total number of genomes that
contain homologs to the gene. Genes in adjacent shaded rows are paralogs.
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given in Tables 2 and 4), and shows that the phylogenetic profiles
of the top proteins can vary considerably. Hence, even if it is
possible to identify a representative protein for a given pheno-
type (e.g., as in Pellegrini et al. 1999), it is not possible to find all
relevant proteins by simply searching for other proteins with
similar phylogenetic profiles. Our approach is robust against
these large distances between phylogenetic profiles, because it
uses propensity scores as opposed to raw phylogenetic profiles.

An artifact of previous phylogenetic comparison approaches
is that distances between phylogenetic profiles are sensitive to
the size of the set of background genomes. For example, arbi-
trarily expanding the set of background genomes usually in-
creases the distances between phylogenetic profiles. In our ap-
proach, this scaling relationship is automatically captured by
propensity scores, and expanding the set of background genomes
will, in general, increase the statistical significance (i.e., lower Pf
values) of the top proteins. Follow-up work along these lines
should address evolutionary distances between species; it is not
obvious how to handle statistical significance in an analytical
way, and nonparametric approaches may be more promising in
this regard.

These initial results are encouraging, and provide a statisti-
cal framework for the general application of the approach to a

large class of well-characterized phenotypes. This process might
begin by looping through organism phenotype annotations and
computing their �f

* and Pf
* scores in order to filter out phenotypes

that are too common or too rare, and then match the remaining
phenotypes to individual proteins by checking each protein’s
propensity for that phenotype. With the rapidly increasing pace
of whole-genome sequencing, and the commensurate accumula-
tion of novel genes, approaches such as ours can efficiently gen-
erate high-yield hypotheses for experimental validation of gene
function. In this regard, whole-organism characterization of phe-
notypic traits may become a central activity in the post-genomic
approach to understanding biological networks.

ACKNOWLEDGMENTS
We thank the anonymous referees for many helpful suggestions.
M.S. is supported in part by NSF PECASE award MCB-0093399
and DARPA grant MDA972-00-1-0031. S.T. is supported in part
by NSF CAREER award MCB-0133750 and DARPA grant N66001-
02-1-8929.

The publication costs of this article were defrayed in part by
payment of page charges. This article must therefore be hereby
marked “advertisement” in accordance with 18 USC section 1734
solely to indicate this fact.

Table 4. The 40 Most Statistically Significant T. tengcongensis Proteins With Thermophily Propensity Scores Greater Than 3.0

Locus Gene Propensity p value t/n Identification

TTE2470 MesJ4 5.38 2.40E-12 15/16 predicted ATPase of the PP-loop superfamily implicated in cell cycle control
TTE0073 MesJ 5.06 1.65E-11 15/17 predicted ATPase of the PP-loop superfamily implicated in cell cycle control
TTE0285 5.73 9.29E-12 14/14 conserved hypothetical protein
TTE1955 PflA2 4.78 9.78E-11 15/18 Pyruvate-formate lysase-activating enzyme (protein modification & repair)
TTE0474 Gcd14 4.30 1.84E-09 15/20 predicted SAM-dependent methyltransferase involved in tRNA-Met maturation
TTE1745 rgy 5.73 7.71E-09 12/12 Reverse gyrase (DNA replication, recombination, and repair)
TTE1895 SmtA4 5.29 9.63E-08 12/13 SAM-dependent methyltransferases
TTE2198 PorA6 3.58 1.55E-07 15/24 ferredoxin oxidoreductase, alpha subunit (anaerobic metabolism)
TTE1209 PorA3 3.34 1.46E-05 14/24 ferredoxin oxidoreductase, alpha subunit (anaerobic metabolism)
TTE1340 PorA4 3.34 1.46E-05 14/24 ferredoxin oxidoreductase, alpha subunit (anaerobic metabolism)
TTE0961 PorA2 3.39 1.22E-04 13/22 2-oxoacid ferredoxin oxidoreductase, alpha subunit (fermentation)
TTE1354 SpeD 4.01 3.05E-07 14/20 S-adenosylmethionine decarboxylase (polyamine biosynthesis)
TTE1210 PorB2 3.44 3.88E-07 15/25 ferredoxin oxidoreductase, beta subunit (anaerobic metabolism)
TTE1341 PorB3 3.44 3.88E-07 15/25 ferredoxin oxidoreductase, beta subunit (anaerobic metabolism)
TTE1276 Nfo 4.91 6.50E-07 12/14 Endonuclease IV (DNA degradation)
TTE1779 PflX 4.85 1.02E-05 11/13 pyruvate formate lyase activating enzyme (protein modification and repair)
TTE0960 PorB 3.34 1.46E-05 14/24 2-oxoacid ferredoxin oxidoreductase, beta subunit (fermentation)
TTE1571 3.73 2.01E-05 13/20 conserved hypothetical protein
TTE2189 3.24 2.72E-04 13/23 conserved hypothetical protein
TTE2193 PorG3 4.50 4.50E-05 11/14 indolepyruvate ferredoxin oxidoreductase, beta subunit
TTE1537 HypE3 3.09 6.99E-05 14/26 Hydrogenase maturation factor (electron transport)
TTE2532 3.82 1.13E-04 12/18 predicted Zn-dependent hydrolases of beta-lactamase fold
TTE0444 5.73 3.13E-04 8/8 conserved hypothetical protein
TTE1518 LigT 5.73 3.13E-04 8/8 3-5 RNA Ligase (cell envelope: synthesis of murein sacculus & peptidoglycan)
TTE0818 GltB 4.69 1.34E-03 9/11 Glutamate synthase domain 3 (methanogenesis)
TTE1866 3.28 1.58E-03 12/21 conserved hypothetical protein
TTE0714 5.10 2.59E-03 8/9 putative integrase-resolvase (DNA replication, recombination, repair)
TTE2659 5.10 2.59E-03 8/9 putative RecB family exonuclease
TTE0820 GltB3 5.73 3.11E-03 7/7 amidophophoribosyltransferase (purine ribonucleotide synthesis)
TTE1891 5.73 3.11E-03 7/7 MinD P-loop ATPase containing an inserted ferredoxin domain (electron transport)
TTE1892 5.73 3.11E-03 7/7 MinD P-loop ATPase containing an inserted ferredoxin domain (electron transport)
TTE1893 5.73 3.11E-03 7/7 conserved hypothetical protein
TTE1898 5.73 3.11E-03 7/7 predicted methyltransferases
TTE2657 5.73 3.11E-03 7/7 conserved hypothetical protein
TTE0705 4.59 1.20E-02 8/10 putative integrase-resolvase (DNA replication, recombination, repair)
TTE0715 4.59 1.20E-02 8/10 predicted transposase
TTE1551 Dap2 3.97 1.50E-02 9/13 putative acyl-peptide hydrolase
TTE2658 3.97 1.50E-02 9/13 conserved hypothetical protein
TTE2633 5.02 2.26E-02 7/8 conserved hypothetical protein
TTE2194 PorA5 3.37 2.72E-02 10/17 indolepyruvate ferredoxin oxidoreductase, alpha subunit

t is the number of thermophiles that contain homologs to the protein, and n is the total number of genomes that contain homologs to the protein.
Genes in adjacent shaded rows are paralogs.
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Figure 4 Hierarchical clustering (average-linkage) of the top proteins associated with flagella and thermophily (see Tables 2 and 4), on the basis of
their phylogenetic profiles. Genomes are on the x-axis, and genes are on the y-axis. Gray coloring indicates the presence of a gene in a genome.
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