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29.1 Introduction

Proteins play a key role in almost all biological processes. They take part in, for example,
maintaining the structural integrity of the cell, transport and storage of small molecules,
catalysis, regulation, signaling and the immune system. Linear protein molecules fold up
into specific three-dimensional structures, and their functional properties depend intricately
upon their structures. As a result, there has been much effort, both experimental and
computational, in determining protein structures.

Protein structures are determined experimentally using either x-ray crystallography or
nuclear magnetic resonance (NMR) spectroscopy. While both methods are increasingly
being applied in a high-throughput manner, structure determination is not yet a straight-
forward process. X-ray crystallography is limited by the difficulty of getting some proteins
to form crystals, and NMR can only be applied to relatively small protein molecules. As a
result, whereas whole-genome sequencing efforts have led to large numbers of known pro-
tein sequences, their corresponding protein structures are being determined at a significantly
slower pace. On the other hand, despite decades of work, the problem of predicting the
full three-dimensional structure of a protein from its sequence remains unsolved. Never-
theless, computational methods can provide a first step in protein structure determination,
and sequence-based methods are routinely used to help characterize protein structure. In
this chapter, we review some of the computational methods developed for predicting local
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FIGURE 29.1: Proteins are polymers of amino acids. Each amino acid has the same
fundamental structure (boxed), differing only in the atoms making up the side chain. Here,
the i-th side chain in the protein sequence is designated by Ri. The carbon atom to which
the amino group, carboxyl group, and side chain are attached is called the alpha carbon
(Cα). Two amino acids i− 1 and i are linked linearly through a peptide bond between the
carboxyl group of amino acid i− 1 and the amino group of amino acid i; a water molecule
is removed in the process of bond formation.

aspects of protein structure.

29.1.1 Background

We begin by giving some introductory background to protein structure; there are many
excellent sources for further information (e.g.,[BT99, Les01, Ric81]).

A protein molecule is formed from a chain of amino acids. Each amino acid consists of a
central carbon atom (Cα), and attached to this carbon are a hydrogen atom, an amino group
(NH2), a carboxyl group (COOH) and a side chain that characterizes the amino acid. The
amino acids of a protein are connected in sequence with the carboxyl group of one amino
acid forming a peptide bond with the amino group of the next amino acid (Figure 29.1).
Successive bonds make up the protein backbone, and the repeating amino-acid units (also
called residues) within the protein consist of both the main-chain atoms that comprise the
backbone as well as the side-chain atoms.

There are 20 side chains specified by the genetic code, and each is referred to by a one-
letter code. A protein sequence can thus be described by a string over a 20-letter alphabet,
and the primary structure of a protein refers to the covalent structure specified by its se-
quence (i.e., Figure 29.1), along with its disulfide bonds. The 20 side chains vary in atomic
composition, and thus have different chemical properties. Some side chains are non-polar,
or hydrophobic, because of their unfavorable interactions with water. Side chains have
many other characteristics, and different side chains are commonly described as being pos-
itively charged, negatively charged, polar, small or large. Hydrophobic amino acids include
isoleucine (I), leucine (L), methionine (M), phenylalanine (F) and valine (V). Arginine (R)
and lysine (K) are positively charged in physiological pH, and aspartic acid (D) and glutamic
acid (D) are negatively charged. Polar amino acids include asparagine (N), glutamine (Q)
histidine (H), serine (S) and threonine (T). Alanine (A) is a small amino acid that is non-
polar. Glycine (G) is the smallest amino acid, with just a hydrogen. Cysteine (C) can
take part in disulfide bridges. Proline (P) has the strongest stereochemical constraints, and
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tryptophan (W) and tyrosine (Y) are large, ring-shaped amino acids. There are many other
(and sometimes conflicting) ways to classify and describe the amino acids.

The differences in physico-chemical properties of side chains result in the diversity of
three-dimensional protein folds observed in nature. In particular, each possible structural
conformation brings together a different set of amino acids, and the energy of the confor-
mation is determined by the interactions of the side-chain and main-chain atoms with each
other, as well as with solvent and ligands. There are many forces driving protein folding;
for water-soluble proteins, the most dominant is the hydrophobic effect, or the tendency of
hydrophobic amino acids to avoid water and bury themselves within the core of the pro-
tein. Hydrogen bonding, electrostatic interactions and van der Waals forces are also very
important.

From a structural perspective, it is useful to think of protein chains as subdivided into
peptide units consisting of the main-chain atoms between successive Cα atoms. In protein
structures, the atoms in a peptide unit are fixed in a plane with bond lengths and angles
similar in all units. Each peptide unit essentially has only two degrees of freedom, given by
rotations around its N-Cα and Cα-C bonds. Phi (φ) refers to the angle of rotation around
the N-Cα bond, and psi (ψ) refers to the angle of rotation around the Cα-C bond. The
entire backbone conformation of a protein can thus be specified with a series of φ and ψ
angles. Only certain combinations of φ and ψ angles are observed in protein backbones,
due to steric constraints between main-chain and side-chain atoms.

As a result of the hydrophobic effect, the interior of water-soluble proteins form a hy-
drophobic core. However, a protein backbone is highly polar, and this is unfavorable in the
hydrophobic core environment; these main-chain polar groups can be neutralized via the
formation of hydrogen bonds. Secondary structure is the “local” ordered structure brought
about via hydrogen bonding mainly within the backbone. Regular secondary structures
include α-helices and β-sheets (Figure 29.2). A canonical α-helix has 3.6 residues per turn,
and is built up from a contiguous amino acid segment via backbone-backbone hydrogen
bond formation between amino acids in positions i and i + 4. The residues taking part
in an α-helix have φ angles around −60◦ and ψ angles around −50◦. Alpha helices vary
considerably in length, from four or five amino acids to several hundred as found in fibrous
proteins. A β-strand is a more extended structure with 2.0 residues per turn. Values for φ
and ψ vary, with typical values of −140◦ and 130◦, respectively. A β-strand interacts via
hydrogen bonds with other β-strands, which may be distant in sequence, to form a β-sheet.
In parallel β-sheets, the strands run in one direction, whereas in antiparallel sheets, they
run in alternating directions. In mixed sheets, some strands are parallel, and some are
antiparallel. A β-strand is typically 5–10 residues in length, and on average, there are six
strands per sheet. Coil or loop regions connect α-helices and β-sheets and have varying
lengths and shapes.

Supersecondary structures, or structural motifs, are specific combinations of secondary
structure elements, with specific geometric arrangements with respect to each other.1 Com-
mon supersecondary motifs include α-helix hairpins, β hairpins, β-α-β motifs, and coiled
coils. Elements of secondary structure and supersecondary structure can then combine to
form the full three-dimensional fold of a protein, or its tertiary structure. Many proteins
exist naturally as aggregates of two or more protein chains, and quartenary structure refers
to the spatial arrangement of these protein subunits.

1Supersecondary structure is sometimes defined so as to require that the secondary structure units are
consecutive in the protein sequence; we do not take that viewpoint here.
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FIGURE 29.2: Schematic backbone conformations of an α-helix (left) and a β-sheet (right).
An α-helix consists of contiguous amino acid residues. A β-sheet consists of individual β-
strands, each of which is made up of contiguous amino acid residues. Here, a 5-stranded
β-sheet, without the intervening regions, is shown.

29.1.2 Difficulty of general protein structure prediction

Experiments performed decades ago demonstrated that the information specifying the three-
dimensional structure of a protein is contained in its amino acid sequence [AHSW61, Anf73],
and it is generally believed that the native structure of the majority of proteins is the confor-
mation that is thermodynamically most stable. It is now known that some proteins require
specific proteins, or chaperones, to help them fold into their global free-energy minimum.
A quantum mechanics treatment to predict structure is intractable for protein sequences,
and thus physics-based methods for structure prediction typically use empirical molecular
mechanics force fields. In these methods, the system is described as a set of potential en-
ergy terms (typically modeling bond lengths, bond angles, dihedral angles, van der Waals
interactions and electrostatics), and the goal is to find, for any given protein sequence,
the conformation that minimizes the potential energy function (e.g., see [BBO+83]). The
accuracy of state-of-the-art energy functions, the small energy differences between native
and unfolded proteins, and the size of the conformational space that must be searched
are all limiting factors in the overall performance of these physics-based methods. In the
case where a protein is homologous to another with known structure, the search space is
limited, as the homolog provides a template backbone; improved statistical methods for re-
mote homology detection as well as the increasing number of solved protein structures have
made such approaches more widely applicable. Purely statistical approaches have also been
developed for predicting the tertiary structure of a protein. One such approach is known
as threading [Sip90, BLE91, JTT92, BL93], where a sequence is aligned (or “threaded”)
onto all known backbones using an energy function that is estimated from observed amino
acid frequencies in known protein structures. Many modern approaches use a combination
of both statistics and physics; for example, in some of the more successful approaches for
predicting protein structure, backbone fragments for particular subsequences are sampled
from known structures, and then pieced together and evaluated using a molecular mechanics
energy function [BCM+03]. While there has been much progress in developing computa-
tional methods for predicting the three-dimensional structures of proteins, it is clear that
the problem is far from being solved (e.g., [MFZH03, KWK+03, ASHR03, TM03]).

29.1.3 A bottom-up approach

Because of the difficulty of the general protein structure prediction problem, an alternative
approach for predicting protein structure is “bottom-up”: here, the goal is to focus on
specific, local three-dimensional structures, and develop specialized computational methods
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for recognizing them within protein sequences. At the most basic level, a protein’s secondary
structure can be predicted. At the next level, computational methods may be developed
to predict local supersecondary structures or structural motifs. Protein structure can also
be characterized by identifying portions that are membrane-spanning, or by assessing the
solvent accessibility of individual residues, though such subjects will not be reviewed here.
By focusing on specific aspects of protein structures, it is possible to develop computational
methods that can make high-confidence predictions; these can then be used to constrain
methods that attempt to predict tertiary structure. At the same time, one hope is that
ultimately it will be possible to build up a “library” of increasingly complex structures that
can be recognized via specialized computational methods, and that this library may provide
an alternative means for predicting the tertiary structures of proteins.

In the remaining portion of this chapter, we review computational techniques that have
been developed for predicting secondary and supersecondary structures. While the most
accurate predictions of structure are made by detecting homology to proteins with known
structure, we primarily focus on methods that can make predictions even if there are no such
homologs. Since there have been hundreds of papers written on predicting the secondary
and supersecondary structure of proteins, we will only have a chance to discuss a small
subset of the many important papers in the field.

29.2 Secondary structure

Most commonly, the secondary structure prediction problem is formulated as follows: given
a protein sequence with amino acids r1r2 . . . rn, predict whether each amino acid ri is in
an α−helix (H), a β−strand (E), or neither (C). Predictions of secondary structure are
typically judged via the 3-state accuracy (Q3), which is the percent of residues for which a
method’s predicted secondary structure (H, E, or C) is correct. Since residues in known
protein structures are approximately 30% in helices, 20% in strands and 50% in neither,
a trivial algorithm that always predicts C has a 3-state accuracy of 50%. The 3-state
accuracy measure does not convey many useful types of information. For example, it does
not indicate whether one type of structure is predicted more successfully than another,
whether some structure is over- or under- predicted, or whether errors are more likely
along the boundaries of secondary structure units than within them. Nevertheless, 3-state
accuracy is a concise, useful measure that is frequently used to compare how well different
methods perform. Other methods to judge the quality of secondary structure predictions
include the Matthews correlation coefficient [Mat75] and measures of how well the predicted
secondary structure segments overlap the actual ones [RSS94b, ZVFR99].

Secondary structural elements are readily evident in the crystal structures of proteins,
and are defined operationally based primarily on their hydrogen bonding patterns. Given
the 3D atomic coordinates of a protein structure, there are several automated means for
extracting secondary structure, including DSSP [KS83a] and STRIDE [FA95]. The as-
signment of secondary structure to each amino acid is not completely well-defined, and
these two programs differ on approximately 5% of residues (e.g.,see [CB99b]). Both DSSP
and STRIDE report detailed descriptions of secondary structure. For example, the DSSP
method has eight secondary structure classifications: H, α-helix; E, β-strand; G, 310 helix,
a helix with backbone-backbone hydrogen bonds between positions i and i+3; I, π-helix, a
helix with backbone-backbone hydrogen bonds between positions i and i+ 5; B, bridge, a
single residue β-strand; T, a hydrogen bonded turn; S, bend; and C, any residue that does
not belong to any of the previous seven groups.

There are different schemes for translating the more detailed descriptions given by DSSP
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and STRIDE into the three broad categories corresponding to helix, sheet and other. One
scheme translates all helices (H, G, and I) into H, bridges and strands (E, B) into E and
every thing else (T, S, C) into C. An alternative scheme takes the DSSP categories of H

and E as helix and strand, and maps all other categories into C. The reported performance
of a secondary structure prediction method can vary depending on which precise translation
scheme is used, with the second scheme leading to higher estimates of accuracy [CB99b].

Testing of secondary structure prediction methods has improved over the years. We note
that whereas the PDB (the Protein Data Bank of solved structures [BWF+00]) contains
structures for many very similar sequences, the training set used for estimating parameters
should not contain sequences that are too similar to those in the test set. In particular, a
protein sequence in the test set should be less than 25–30% similar to any sequence in the
training set. Otherwise, reported accuracy is likely to be an overestimate of actual accuracy.
Methods are typically tested using N -fold cross-validation, where a dataset is split into N
parts. Each part is in turn left out of the training set and performance is judged on it. The
performance of the method is the average performance over each left out part.

Early secondary structure prediction methods (such as Chou-Fasman and GOR, described
below) have a 3-state cross-validation accuracy of 50–60%. Today’s methods have an accu-
racy of > 75%.

29.2.1 Early approaches

The earliest approaches for secondary structure prediction considered just single amino
acid statistics and properties, and were limited by the small number of proteins with solved
structures. While these early methods are not state-of-the-art, they are natural first at-
tempts to the secondary structure prediction problem, and are the basis of many subsequent
approaches. Below, we consider three of the most well-known early secondary structure pre-
diction methods.

Chou-Fasman method. One of the first approaches for predicting protein secondary
structure, due to Chou and Fasman [CF74], uses a combination of statistical and heuristic
rules. First, using a set of solved protein structures, “propensities” are calculated for each
amino acid ai in each structural conformation sj , by taking the frequency of ai in each
structural conformation, and then normalizing by the frequency of this amino acid in all
structural conformations. That is, if a residue is drawn at random from the space of protein
sequences, and its amino acid identity A and structural class S are considered, propensities
are computed as Pr(A = ai|S = sj)/Pr(A = ai).

2 These propensities capture the most basic
concept in predicting protein secondary structure: different amino acids occur preferentially
in different secondary structure elements.

Once the propensities are calculated, they are used to categorize each amino acid as either
a helix-former, a helix-breaker, or helix-indifferent. Each amino acid is also categorized as
either a sheet-former, a sheet-breaker, or sheet-indifferent. For example, as expected, glycine
and proline have low helical propensities and are thus categorized as helix-breakers. Then,
when a sequence is input, “nucleation sites” are identified as short subsequences with a
high-concentration of helix-formers (or sheet-formers). These sites are found with heuristic

2Sometimes propensities are defined by considering the frequency of a particular structural conformation
given an amino acid, and normalizing by the frequency of that structural conformation. These two
formulations are equivalent since Pr(A = ai|S = sj)/ Pr(A = ai) = Pr(S = sj |A = ai)/ Pr(S = sj).
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rules (e.g., “a sequence of six amino acids with at least four helix-formers, and no helix-
breakers”), and then extended by adding residues at each end, while maintaining an average
propensity greater than some threshold. Finally, overlaps between conflicting predictions
are resolved using heuristic rules.

GOR method. The GOR method [GOR78] formalizes the secondary structure prediction
problem within an information-theoretic framework. If x and y are any two events, the
definition of the information that y carries on the occurrence of event x is [Fan61]:

I(x; y) = log

(

Pr(x|y)

Pr(x)

)

. (29.1)

For the task at hand, the goal is to predict the the structural conformation Sj of residue Rj

in a protein sequence, and the GOR method estimates the information that the surrounding
“local” 17-long window contains about it:

I(Sj ;Rj−8, . . . , Rj , . . . Rj+8) = log

(

Pr(Sj |Rj−8, . . . Rj , . . . , Rj+8)

Pr(Sj)

)

. (29.2)

In fact, each structural class x is considered in turn, and the following value, representing
the preference for x over all other alternatives x is computed:

I(Sj = x : x;Rj−8, . . . , Rj , . . . Rj+8) = I(Sj = x;Rj−8, . . . , Rj , . . . , Rj+8) −

I(Sj = x;Rj−8, . . . Rj , . . . , Rj+8).

To predict residue Rj ’s structural conformation, these values are computed for all structural
states, and the one that has the highest value is taken as the prediction.

Because there are far too many possible sequences of length 17, it is not possible to esti-
mate Pr(Sj |Rj−8, . . . Rj , . . . , Rj+8) with any reliability. Instead, the original GOR method
assumes that the values of interest can be estimated using single residue statistics:

I(Sj = x;Rj−8, . . . , Rj , . . . , Rj+8) =

m=8
∑

m=−8

I(Sj = x;Rj+m), (29.3)

where by definition I(Sj = x;Rj+m) = log(Pr(Sj = x|Rj+m)/Pr(Sj = x)).3 I(Sj =
x;Rj+m) represents the information carried by a residue at position j +m on the confor-
mation assumed by the residue at j. If m 6= 0, this does not take into account the type of
residue at position j, and the intuition is that it describes the interaction of the side chain
of residue j + m with the backbone of residue j. For each structural class, this method
requires estimating 20 × 17 parameters.

Lim method. A complicated, stereochemical rule-based approach for predicting secondary
structure in globular proteins was developed at about the same time as the statistical meth-
ods discussed above. In this method, longer-range interactions between residues are con-
sidered. If the protein sequence is r1r2 . . . rn, then for the i-th residue, the following pairs
and triples are considered particularly important for helical regions: (ri, ri+1), (ri, ri+3),
(ri, ri+4), (ri, ri+1, ri+4), (ri, ri+3, ri+4). Note that residues three and four apart are con-
sidered, as they lie on the same face of an α-helix. Similarly, the pair (ri, ri+2) contains

3Note that when m = 0, these values are equivalent to taking the log of the Chou-Fasman propensity
values.
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residues on the same face of a β-strand. Pairs and triplets of particular amino acids are then
deemed as compatible or incompatible with helices and strands based on various rules that
try to ensure that these residues present a face that allows tight packing of hydrophobic
cores. Factors used to determine these rules include each amino acid’s size, hydrophobicity,
charge, and its ability to form hydrogen bonds. For example, if a protein sequence has
hydrophobic residues every three to four residues, this method predicts compatibility with
an α-helix, as this would result in one side of the helix being hydrophobic, thus facilitating
packing onto the rest of the protein structure.

29.2.2 Incorporating local dependencies

Whereas the first statistical methods for predicting protein secondary structure examined
each amino acid individually, later approaches began to consider higher-order residue in-
teractions, either within statistical approaches or via machine learning methods. Reported
3-state accuracies for most of these methods are above 60%.

Information theory approaches. One approach to incorporate higher-order residue
interactions is an extension to the original GOR method [GGR87]. The notion of conditional
information is helpful here. In particular, I(x; y2|y1) is defined as log(Pr(x|y1, y2)/P (x|y1)).
Note that I(x; y1, y2, . . . , yn) = I(x; y1)+ I(x; y2|y1)+ . . .+ I(x; yn|y1, y2, . . . yn−1). Instead
of the assumption made in equation 29.3, the following assumption is made:

I(Sj = x;Rj−8, . . . , Rj , . . . , Rj+8) = I(Sj = x;Rj) +

m=8
∑

m=−8,m 6=0

I(Sj = x;Rj+m|Rj).

This formulation incorporates the information carried by the residue at j+m on the confor-
mation of the residue at j, taking into account the type of residue at position j. Note that
by changing these assumptions, different pairwise or higher-order residue interactions may
be considered. Later versions of the GOR algorithm do precisely this (e.g., see [KTJG02]).

Nearest-neighbor approaches. Nearest-neighbor methods classify test instances ac-
cording to the classifications of “nearby” training examples. In the context of secondary
structure prediction, the overall approach is to predict the secondary structure of a residue
in a protein sequence by considering a window of residues surrounding it, and finding sim-
ilar sequence segments in proteins of known structure. The assumption is that short, very
similar sequences of amino acids have similar secondary structure even if they come from
non-homologous proteins. The known secondary structures of the middle residue in each of
these segments are then combined to make a prediction, either via a simple voting scheme
or a weighted voting scheme, with segments more similar to the target segment weighed
more. Early nearest-neighbor approaches include [NO86, LRG86]. Similar segments can be
found via sequence similarity, or via structural profiles [BLE91], as in [LL93].

Neural network approaches. Neural networks provide another means for capturing
higher-order residue interactions. They were first applied to predict secondary structure
by [QS88, HK89], and some of the most successful modern methods are also based on
neural networks (e.g., [RS93] and its successors).

Because neural nets are widely used in the field of secondary structure prediction, we
briefly describe them here. Neural networks, loosely based on biological neurons, are ma-
chine learning methods that learn to classify input vectors into two or more categories.
Feedforward neural networks consist of two or more connected layers. The first layer is the
input layer, and the last layer is the output layer that indicates the predicted category of
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the input. All other layers are called hidden layers. A simple neural network with no hidden
units is given in Figure 29.3. The inputs can be encapsulated in a vector ~x = (x1, . . . , xm)T ,
and each of the input edges has a corresponding weight, giving ~w = (w1, . . . , wm)T . Each
input is multiplied by the corresponding weight of its edge. Then, the network computes
a weighted sum, and feeds it into some activation or continuous threshold function σ. For
example, σ(a) could be 1

1+e−a
, which is a sigmoidal function with values between 0 and

1.4 Thus, the function computed by this simple neural network is given by σ(~w · ~x), and is
essentially linear. In most cases, a neural net must learn the weights from a training set of
input vectors {~xi} where the target value ti for each is known. For example, in the scenario
described, there may be two classes of examples with target values of 0 and 1. Typically,
the goal is to find the weights ~w minimizing some error function (e.g., the squared error
E =

∑

i(σ(~w · ~xi) − ti)
2). Such a ~w can be found via gradient descent.5 A full-blown

neural net is built up from a set of simpler units that are interconnected in some topology
so that the outputs of some units become the inputs of other units (e.g., see Figure 29.4).
The gradient descent procedure for arbitrary neural networks is implemented via the back-
propagation algorithm [RHW86b, RHW86a]. While neural nets with multiple layers are not
as easy to interpret as those without hidden layers, they can approximate any continuous
function f : Rm → R as long as they have a sufficient number of hidden units and at least
two hidden layers [Cyb89].

The two early neural-network approaches to secondary structure prediction use similar
neural network topologies. Holley and Karplus [HK89] build a neural net that tries to predict
the secondary structure of a residue rj by considering residues rj−8, . . . , rj , . . . , rj+8. Each
of these residues is represented with 21 bits, corresponding to the 20 amino acids and an
extra bit for the case where the window overlaps the beginning or end of the sequence.
Thus, each example is represented by 17 × 21 bits, with only 17 non-zero entries. The
topology of the neural net has one hidden layer with two nodes, and two output nodes, one
corresponding to helix and the other to sheet (see Figure 29.4). For the training process,
if the middle residue’s secondary structure is helix, then the target output has the helix
output set to 1 and the sheet output set to 0. For a new sequence, helix is assigned to four
or more adjacent residues each with helix output value greater than both the sheet output
value and some threshold. Strand is assigned similarly, though only two adjacent strand
residues are required.

Qian and Sejnowski [QS88] have a slightly different network topology. They consider
13-long windows, and have three output units (one for each of the three states). More sig-
nificantly, they additionally use a cascade of neural networks in order to capture correlations
between secondary structure assignments of neighboring residues. In particular, they show
improved performance by first training a neural net to predict the secondary structure of
a central amino acid, and then taking the outputs for adjacent residues using this trained

4While a strict 0/1 threshold function can also be used, a continuous function is preferred for ease of
optimization.
5There are many other approaches to find a set of weights that “best” linearly separate two classes.
For example, the support vector machine framework (SVM) [Vap98] finds weights so that the margin
between the two classes of examples is maximized; that is, an SVM finds the weights by maximizing the
distance between the hyperplane specified by the weights and the closest training examples. In the case
where the two classes are not linearly separable, the data are typically embedded in a higher dimensional
space where they are separable. An alternative approach, linear discriminant analysis, tries to find a set
of weights so that when considering Dx = ~w · ~x for all examples ~x, these values are as close as possible
within the same class and as far apart as possible between classes.
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FIGURE 29.3: A simple neural network with no hidden units. There are m inputs x1

. . .xm, and the neural net computes a function on these inputs by first calculating
∑

iwixi,
and then using this as input to an activation function σ.
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FIGURE 29.4: A neural network topology for predicting secondary structure [HK89]. To
predict the secondary structure of the middle residue, eight residues on either side are
considered. Each of the 17 input units drawn actually consists of 21 mutually exclusive
binary inputs, one for each possible amino acid, and one used when the window overlaps
the end of the protein sequence. There is one hidden layer with two units, and an output
layer with two units. Here, each node in the hidden layer and output layer contains both a
summation and activation component. The basic neural network of [QS88] is similar, but
with 13 input units, more hidden units, and a third output unit corresponding to coil.

network and feeding them into a second network. The input layer of this second network
has 13 groups, with three units per group, one for each output unit from the first network.

29.2.3 Exploiting evolutionary information

It is well-known that protein structure is more conserved than protein sequence, and that two
sequences that share more than 30% sequence identity are likely to have similar structures.
Thus, when predicting the secondary structure of a particular protein sequence, predictions
for its homologs may also prove useful. Additionally, conservation evident in multiple
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sequence alignments (MSAs) of homologs helps reveal which amino acids are likely to be
functionally or structurally important, and may highlight the characteristic hydrophobic
patternings of secondary structure elements. For example, surface-exposed loop regions
that are not important functionally tend to be part of variable regions in MSAs.

A natural first attempt to use homologous proteins in order to improve secondary struc-
ture prediction might make predictions for each homolog, and then average (or otherwise
combine) these predictions for corresponding amino acids [ZBTS87, KTJG02]. Alterna-
tively, information from all sequences may be used at once in order to make one set of
predictions. This is the approach taken by Rost and Sander [RS93], and their neural net-
work based program was the first to surpass 70% 3-state accuracy. The use of evolutionary
information is critical for the improved performance, and all modern approaches use evolu-
tionary information in making secondary structure predictions.

To make predictions about a single protein sequence, the approach of [RS93] begins with
homologs gathered via database search. These homologs are then aligned in a MSA, and a
profile is made. In particular, for each column j in the MSA, the frequency of each amino
acid i in the column is computed. To determine the secondary structure of residue rj , a
sequence-to-structure neural network considers a window of 13 residues rj−6 . . . rj . . . rj+6.
For each residue in the window, instead of giving just the identity of this residue as input to
the neural net, the frequencies of all amino acids in the corresponding column of the MSA
are fed into the neural network. These frequencies encapsulate the evolutionary constraints
on each residue. Other features, including overall amino acid composition, are also input
to the network. This network has three output units, one for each secondary structure
state. Similar to [QS88], the output of this first level neural network is fed to a structure-
to-structure network. Finally, a jury system is used to make the final predictions. Because
neural networks are sensitive to topology, the set of training data, the order of training,
as well as other parameters, several networks are trained while varying these parameters.
The jury system level takes as input the results from each of these nets and averages them.
The secondary structure with the highest average score is output as the prediction. A very
useful feature of this approach is a per-position reliability index, where higher numbers
correspond to more confident predictions. Neural nets have become the most common
approach to secondary structure prediction; more recent extensions have included the use
of recurrent neural nets to capture non-local interactions [BBF+99, PPRB02].

Incorporating evolutionary information into other basic secondary structure prediction
methods also results in improved performance, and while it was initially suggested otherwise,
it is unlikely that there is some special feature of neural nets that makes them particularly
well-suited to predicting secondary structure. For example, similar performance has also
been achieved using support vector machines (SVMs) [HS01]. Adding evolutionary infor-
mation to nearest-neighbor approaches [SS95] also performs competitively; here, predictions
are made individually for each homolog and then combined. Another MSA approach with
similar reported performance [KS96] uses linear discriminant analysis to combine several
predictive attributes. These include: residue propensities, computed as in GOR [GOR78];
distance from the end of the protein sequence; moments of hydrophobicity [EWT84] for each
residue under the assumption that it and its three neighboring residues in each direction
are in either helices or sheets; whether or not an insertion or deletion is observed in any
of the homologs in the MSA; and an entropy-based measurement of residue conservation.
Sequence correlations are captured by feeding in the output of the first linear discrimina-
tion function into another one, and additionally incorporating smoothing of features over
nearby residues, predicted ratios of α-helix and β-strand, and measures of sequence amino
acid content.

While most methods incorporate evolutionary information using global MSAs, an alter-
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nate method relies solely on pairwise local alignments [FA96]. A weight is computed for
each pairwise alignment based on its score and length. For each residue in the original
sequence, the weighted sum over all aligned sequences is computed independently for sev-
eral propensity values, which are then combined using a rule-based system to make a final
prediction. These propensity values are interesting, as several of them try to incorporate
non-local interactions [FA96]. In particular, β-strand hydrogen bonding parallel and anti-
parallel propensities (obtained from known structures) are computed between neighboring
sequence fragments, and helical hydrogen bonding propensities are computed for fragments
by considering residues i and i+4. A propensity concerning β-turn is also used ([HT94], see
below), as well as helical, strand and coil propensities computed using a nearest-neighbor
approach.

29.2.4 Recent developments and conclusions

Further improvements in performance have come from better remote homology detection
(e.g., using PSI-BLAST [AMS+97] or hidden Markov models [KBH98, KKD+03]), and
larger sequence databases [CB99a, Ros01]. For example, Jones [Jon99] obtained better
performance than [RS93] (> 75% 3-state accuracy) using a similar neural network ar-
chitecture (without a jury system layer), but where homologs are first detected via PSI-
BLAST [AMS+97]. PSI-BLAST is an iterative database searching method that uses ho-
mologs found in one iteration to build a profile used for searching in the next iteration.
The detected homologs are then input into the neural network via the profile provided
by PSI-BLAST; this profile incorporates sequence weighting so that several closely-related
homologs detected in the database do not overwhelm the contribution of more remote ho-
mologs. It is likely that sequence weighting also plays a role in the improved performance
of this method, as it has been shown that predictions improve when getting rid of closely
related homologs [CB99b].

Several authors have also attempted to predict secondary structure by combining the
results of several different programs. For example, Cuff and Barton [CB99b] predict sec-
ondary structure by taking the most commonly predicted state by four methods [RS93,
SS95, KS96, FA97], and show a modest improvement in performance. Existing approaches
have also been combined using machine-learning methods such as linear discriminant anal-
ysis, decision trees and neural nets, and have shown to give upto a 3% improvement in
3-state accuracy over the best individual method [KOS+00].

Future evaluation. An important recent development has been to set up continuous eval-
uation procedures (such as EVA [EMRP+01]). Protein sequences with newly determined
structures are sent to the webservers of the programs being evaluated. In general, evaluation
and comparison of methods is often difficult, due to differences in the evaluation methodol-
ogy and the changing structural databases; thus, a community-wide approach such as this
should have great impact on future development of secondary structure prediction methods.

Limitations of secondary structure prediction. In general, it is believed that α-helices
are easier to predict than β-sheets. A recent evaluation found that helices were predicted
9.5% more accurately than strands [ASHR03]. This may be because the hydrogen bonding
patterns for α-helices are among amino acids in close proximity to each other, and those for
β-sheets are not. Additionally, shorter secondary structure elements are harder to predict,
presumably because the signal is not strong enough from these fragments.

Clearly, protein secondary structure is influenced by both short- and long-range inter-
actions. It has been demonstrated that there are 11-long amino acid sequences that can
fold into an α-helix in one context, and a β-sheet in another [MK96]. However, even as-
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suming that long-range tertiary interactions can be incorporated into secondary structure
prediction algorithms, the best possible 3-state accuracy will not be 100%. First, assign-
ment of secondary structure is not always clear even when there is a crystal structure.
This is evident from the observed differences between STRIDE and DSSP [CB99b]. Ad-
ditionally, while secondary structure predictions improve when incorporating evolutionary
information, homologous structures do not share identical descriptions of secondary struc-
ture assignments [RSS94a]. Even when a query sequence can be aligned confidently to a
sequence of known structure, the alignment will produce a secondary structure “predic-
tion” with 3-state accuracy of only 88% on average [RSS94a]. Accordingly, while secondary
structure prediction methods continue to improve, it is unlikely that any method that does
not also solve the tertiary structure prediction problem will achieve ideal performance in
predicting secondary structure.

29.3 Tight turns

Tight turns are secondary structure elements consisting of short backbone fragments (no
more than six residues) where the backbone reverses its overall direction. Tight turns allow
a protein to fold into a compact globular structure, and identifying them correctly in a
protein sequence limits the search space of possible folds for the sequence. Tight turns are
also important because they are often on the surface of proteins, and thus may play a role in
molecular interactions. Tight turns are categorized according to their lengths into δ−, γ−,
β−, α− and π− turns, which consist of two, three, four, five, and six residues respectively.

Computational methods have been developed for recognizing tight turns in protein struc-
tures, with most of the work focusing on β-turns, which occur most frequently in pro-
tein structures. Approximately one-quarter of all protein residues are in β-turns [KS83a].
A β-turn is defined as four consecutive residues ri, ri+1, ri+2 and ri+3, where the dis-
tance between the Cα of residue ri and the Cα of residue ri+3 is < 7 Å, and the cen-
tral two residues are not helical. These β-turns can be further assigned to one of sev-
eral (6–10) classes on the basis of the backbone φ and ψ angles of residues ri+1 and
ri+2 [Ven68, LMS73, Ric81, HT94, Cho00]. The first methods for predicting β-turns focused
on identifying which residues take part in β-turns [LMS71, CF79], and later methods have
additionally attempted to predict the type of β-turn [WT88]. Some β-turn types show pref-
erences for particular topological environments; for example, type I′ and type II′ β-turns
are preferentially found in β hairpins [ST85].

As with 3-state secondary structure prediction, methods to predict β-turns fall into two
classes: probabilistic methods and machine-learning methods. The earliest probabilistic
methods computed the probability that a certain amino acid ai is located at the j-th position
in a β-turn by dividing the number of times the amino acid ai occurred in the j-th position
of a turn by the total occurrences of amino acid ai [LMS71]. Assuming independence
between positions, the probability that a certain 4-long window is an occurrence of a β-turn
is calculated by the product of the appropriate four terms, and a cutoff for prediction is
chosen. These predictions can be further refined so that a 4-long window that has helical or
sheet propensity that is larger than its β-turn propensity is eliminated [CF79]; structural
propensities are defined as in [CF74]. Modifications of this basic approach to predict turn
types include [WT88, WT90, HT94].

Other probabilistic methods consider each possibility Ψ (where Ψ can be each type of β-
turn as well as non-β-turns) in turn, and compute the probability of observing a particular
4-long window given that it is an instance of Ψ. In particular, given a subsequence r1r2r3r4,
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it is scored by considered a random subsequence R1R2R3R4 and computing

Pr(R1 = r1, R2 = r2, R3 = r3, R4 = r4|Ψ).

The possibility Ψ giving the largest value is taken as the prediction. Assuming that each
position is independent of every other, this simplifies to

i=4
∏

i=1

Pr(Ri = ri|Ψ).

For each type of β-turn, probabilities are estimated from known structures for each of
the four positions. Later models [ZC97] consider the spatial arrangement of β-turns and
assumed dependencies between the first and fourth position, and the second and third
positions:

Pr(R1 = r1|Ψ)Pr(R2 = r2|Ψ)Pr(R3 = r3|R2 = r2,Ψ)Pr(R4 = r4|R1 = r1,Ψ).

Alternate models make the 1st order Markov assumption that all dependencies can be
captured by considering adjacent residues [Cho97, CB97]:

Pr(R1 = r1|Ψ)Pr(R2 = r2|R1 = r1,Ψ)Pr(R3 = r3|R2 = r2,Ψ)Pr(R4 = r4|R3 = r3,Ψ).

The earliest neural network approaches [MFS89] to β-turn prediction take as input a
4-long window of amino acids (each residue is represented with 20 bits), and include a
hidden layer. There are four output nodes, two for the most common β−turn classes,
one for all other β-turns, and one for non-β-turns. Later approaches subdivide the prob-
lem into first predicting whether a window contains a β-turn and then predicting the type
of turn [SGT99]. As in neural network based approaches to predicting secondary struc-
ture [QS88, RS93], several layers of neural networks are used. In the first, a nine amino
acid window is considered. Additionally, for each residue, secondary structure predictions
(helix, sheet or other) are considered; inclusion of such predictions improves performance
for both neural network [SGT99, KR03b] and statistical approaches [KR02] for β-turn pre-
diction. The output for adjacent residues using this neural network are fed into a second
structure-to-structure network, along with secondary structure predictions. Predictions are
also filtered via a rule-based system. Finally, all data identified by the turn/not-turn net-
works as possibly taking part in β-turns are input to networks for turn types, with only
4-long amino acid windows considered. When several turn types can be potentially pre-
dicted for a particular window, the one with the largest score is taken as the prediction.
As with 3-state secondary structure prediction, further improvements in β-turn prediction
have been obtained by using evolutionary information, where each sequence position is en-
coded using a profile describing its amino acid distribution in a MSA [KR03b, KR04]. More
recently, nearest-neighbor [Kim04] and SVMs [CLL+03] have also been applied to predict
β-turns.

Predictions of β-turns are not as reliable as 3-state predictions of secondary structure.
Approximately 50% of β-turns can be identified with 75% of the sequence fragments pre-
dicted as β-turn actually being correct. Overall accuracy of predictions is around 75%;
a method that always predicts non-β-turns would have similar accuracy. Furthermore,
predictions of β-turn types are only possible for the most frequent turn types.

More recently, attempts have been made to predict γ-turns and α-turns [KR03a, CC99,
CFLC03]. The computational techniques are very similar to the ones applied to β-turns.
Perhaps due to the vastly fewer number of residues taking part in either γ- or α-turns, these
methods have only had limited success.
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29.4 Beta hairpins

Beta hairpins are one of the simplest supersecondary structures and are widespread in glob-
ular proteins. They consist of short loop regions (or turns) between antiparallel hydrogen
bonded β-strands. Typically, the length of these loop regions is eight residues or less, with
two residue loops being most common [ST85, KMB04]. Correct identification of such struc-
tures can significantly reduce the number of possible folds consistent with a given protein, as
differing tertiary folds contain different arrangements and numbers of β-strands. As noted
in [dlCHST02, KMB04], consecutive β-strands in a protein sequence can either form more
“local” hairpin structures or “diverge” so that the β-strands may pair with other strands.
Methods for predicting β hairpins have just begun to appear, and two recent approaches
are based on neural networks.

In the first approach [dlCHST02], β hairpins are identified by first predicting secondary
structure. Each predicted β-coil-β pattern is further evaluated by comparing it to all known
β hairpins of the same length. Each comparison between the pattern and a known β hairpin
results in 14 scores. These scores are computed based on the compatibility of the predicted
secondary structures and solvent accessibilities with those known for the hairpin, and ad-
ditionally incorporate the segment’s turn potential, secondary structure elements’ lengths,
putative pairwise residue interactions, and pairwise residue contacts. These scores are then
fed into a neural network that is trained to discriminate between hairpins and non-hairpins.
Finally, all the database matches for a particular β-coil-β segment are evaluated, and if
there are more than 10 predictions of a hairpin structure, the segment is predicted as a
hairpin.

The second approach [KMB04] incorporates evolutionary information in predicting β hair-
pins. Homologs are obtained using PSI-BLAST [AMS+97], and each position is represented
via the underlying profile (as in [Jon99]). Two neural networks are trained, where the first
predicts the state of the first residue in a turn, and the second predicts the state of the
last residue of the turn. Each neural network predicts whether the residue being considered
is the first (or last) residue of a hairpin, a diverging turn, or neither. To predict whether
a residue is the start of turn, four residues before it and seven residues after it are con-
sidered. Similarly, to predict whether a residue is the end of turn, seven residues before
it and four residues after it are considered. Thus, turns up to length eight are completely
included in the input window. Each residue in the window is encoded using the appropriate
column in the PSI-BLAST profile, as well as three additional parameters corresponding to
secondary structure as predicted by [Jon99]. Finally, the per-residue predictions are com-
bined to determine the probability of a particular structure (hairpin turn, other turn, or
no turn) starting at residue i and ending at residue j. The authors additionally show that
incorporating predictions of hairpins or diverging turns improves their method [SKHB97]
for tertiary structure prediction.

The performance of the two approaches is not directly comparable, as the first consid-
ers hairpins of all lengths, and the second limits itself to hairpins with turn regions of
length at most eight. It is likely that longer-range interactions are more difficult to predict.
Additionally, the two approaches use different PDB training and testing sets, and report
different fractions of β-coil-β patterns that are hairpins (40% vs. 60%). The approach
of [dlCHST02] relies on the correct secondary structure prediction, and thus cannot predict
β hairpins whose underlying secondary structure is not predicted correctly. Given an actual
turn, the approach of [KMB04] identifies whether it is hairpin or diverging with accuracy
75.9%; a baseline performance of 60% is possible by predicting all turns as hairpin.
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FIGURE 29.5: (a) Side view of a parallel 2-stranded coiled coil. (b) Top view of a parallel 2-
stranded coiled coil. The interface between the α-helices in a coiled-coil structure is formed
by residues at the core positions a, d, e and g. For notational convenience, positions in the
two helices are distinguished by the prime notation (e.g., a and a′ are analogous positions
in the two helices).

29.5 Coiled coils

The coiled coil is a ubiquitous protein structural motif that can mediate protein interac-
tions. Roughly 5–7% of eukaryotic proteins contain coiled-coil regions. Coiled-coil struc-
tures are associated with several cellular functions, including transcription, oncogenesis, cell
structure and membrane fusion. Coiled coils consist of two or more right-handed α-helices
wrapped around each other with a slight left-handed superhelical twist. The helices in
a coiled coil may associate with each other in a parallel or anti-parallel orientation, and
the sequences making up the helices may either be the same (homo-oligomers) or different
(hetero-oligomers). Helices taking part in coiled-coil structures exhibit a characteristic hep-
tad repeat, denoted (abcdefg)n, spread out along two turns of the helix (see Figure 29.5).
Residues at positions a and d tend to contain hydrophobic residues, and residues at posi-
tions e and g tend to contain charged or polar residues. The heptad repeat falls 20◦ short of
two complete turns of a regular α-helix, and the supercoiling of the helices maintains that
the a and d positions stay within the core of the structure. Coiled-coil helices pack with
each other in a “knobs-into-hole” fashion [Cri53], where a residue in the a (or d) position
is a “knob” that packs into a hole created by four residues on the other α-helix.

Just as secondary structure assignment from known three-dimensional structures is not
unambiguous (e.g., [CB99b], and see above discussion), it is non-trivial to determine coiled
coils in the set of solved structures. Different researchers may have different opinions on
whether a particular structure is a coiled coil or not. The approach of [WW01] detects coiled
coils by searching for knobs-into-holes packing. This approach identifies “true” coiled coils,
as well as helical bundle domains where a subset of the helices interact with each other in
a knobs-into-holes fashion.

Computational approaches have been developed both for identifying portions of protein
sequences that can take part in coiled-coil structures, as well as for predicting specific in-
teractions between coiled-coil proteins. While in principle it is possible to identify helices
taking part in coiled coils by secondary structure prediction methods, in practice it is more
effective to develop specialized methods for recognizing their hallmark heptad repeat. Most
of the methods outlined below rely on having databases of known coiled-coil and non-coiled
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coil sequences. Non-coiled coil databases can be derived from the PDB by excluding poten-
tial coiled-coil proteins. Coiled-coil databases are built both from analyzing the PDB, and
from including fibrous proteins whose X-ray diffraction patterns reveal coiled-coil structures
but do not permit high-resolution structure determination (review, [Coh98]).

29.5.1 Early approaches

The earliest approaches [Par82, LvDS91] to recognize coiled coils use sequences of known
coiled-coil proteins, and construct a 20 × 7 table tabulating the frequency with which each
amino acid is found in each of the seven heptad repeat positions, normalized by the frequency
of the amino acid in all protein sequences. These values are very similar to the propensity
values computed by the Chou and Fasman approach [CF74]. For example, for leucine and
position a, the corresponding entry in the table is the percentage of position a residues
in the coiled coil database which are leucine, divided by the percentage of residues in all
protein sequences that are leucine. For each amino acid in a protein sequence, this approach
considers all l-long windows that contain it.6 Each of the l windows is considered with its
first amino acid starting in each of the seven possible heptad repeat positions, and the
heptad repeat proceeding uninterrupted in the window. Thus, 7l windows are considered
for each residue, and each window is scored by taking the product of the propensities for
each amino acid (in the appropriate heptad repeat position) in the window. The score
for each residue is then the maximum score for any of the windows containing it, and the
score for the sequence is the maximum score of any of its residues. Scores are converted
to probabilities by approximating both the background and coiled-coil score distributions
with Gaussians, and assuming that 1 in 30 residues is in a coiled coil.

This method has also been extended to recognize the “leucine zipper” family of coiled coils
found in bZIP transcription factors. The bZIPs are a large family of eukaryotic transcription
factors (review, [Hur95]), and their dimerization is mediated by the leucine zipper coiled-
coil region. While the tendency is not uniformly true, leucine zippers tend to have leucines
in the d position of the coiled coil. Early attempts to recognize leucine zippers focused on
identifying leucine repeats, but since leucine is the most frequent amino acid, such patterns
are frequently found by chance [BK89]. Both [HVSB96] and [BBRV98] find leucine zipper
proteins by first identifying leucine repeats, and then requiring a coiled-coil prediction
by [LvDS91]. [HVSB96] further uses both disallowed and highly preferred pairs of residues
to identify leucine zipper coiled coils. The approach of [BBRV98] relaxes the requirement of
a strict leucine repeat, and additionally focuses on identifying the short coiled-coil segments
found in transcription factors.

29.5.2 Incorporating local dependencies

Subsequent approaches to predicting coiled-coil helices incorporate pairwise frequencies by
explicitly considering the problem within a probabilistic framework [Ber95, BWW+95]. This
overall framework for coiled-coil prediction is similar to the information theory approaches
described above for secondary structure prediction [GGR87]; however, the assumptions
used in practice are very different. Here, the goal is to predict whether a subsequence

6A typical window length is 28 (four heptads), as it is thought that peptides that can form stable coiled
coils in solution should be at least this length. Shorter windows can also be employed; typically, the
discriminatory performance of methods deteriorate with shorter window sizes.



29-18

z = r1, r2, . . . , rl is a coiled coil by estimating Pr(z ∈ C), where C is the class of coiled
coils [Ber95]. If X = R1, R2, . . . , Rl is a random subsequence selected from the universe of
all known protein sequences, then

Pr(z ∈ C) = Pr(X ∈ C|X = z)

=
Pr(X = z|X ∈ C) Pr(X ∈ C)

Pr(X = z)

∝
Pr(R1 = r1 ∧ . . . ∧Rl = rl|X ∈ C)

Pr(R1 = r1 ∧ . . . ∧Rl = rl)

Using repeated applications of the definition of conditional probability, this is equal to:

∏l−1
i=1 Pr(Ri = ri|Ri+1 = ri+1 ∧ . . . ∧Rl = rl ∧X ∈ C) · Pr(Rl = rl|X ∈ C)

∏l−1
i=1 Pr(Ri = ri|Ri+1 = ri+1 ∧ . . . ∧Rl = rl) · Pr(Rl = rl)

. (29.4)

To estimate these probabilities, it is necessary to make assumptions. For example, the
simplest assumption is that the residues are independent of each other:

Pr(Ri = ri|Ri+1 = ri+1 ∧ . . . ∧Rl = rl ∧X ∈ C) = Pr(Ri = ri|X ∈ C)

and
Pr(Ri = ri|Ri+1 = ri+1 ∧ . . . ∧Rl = rl) = Pr(Ri = ri).

Simplifying the previous equation with these assumptions gives

Pr(z ∈ C) ∝

l
∏

i=1

Pr(Ri = ri|X ∈ C)

Pr(Ri = ri)
,

and this is equivalent to the approach of [LvDS91].
In α-helices, a better assumption might be that a residue in position i is dependent on the

next residue in the sequence i+1, as well as on those in positions i+3 and i+4, both of which
are on the same face of the helix as position i (see Figure 29.5). This gives the following
assumption: Pr(Ri = ri|Ri+1 = ri+1 ∧ . . . ∧ Rl = rl ∧X ∈ C) = Pr(Ri = ri|Ri+1 = ri+1 ∧
Ri+3 = ri+3 ∧Ri+4 = ri+4 ∧X ∈ C). However, this would require that 74204 parameters be
estimated, and is not feasible in practice. The approach suggested in [Ber95] is to assume
that Pr(Ri = ri|Ri+1 = ri+1 ∧ . . .∧Rl = rl ∧X ∈ C) can be approximated by some function
f (e.g., weighted average, minimum or maximum) over Pr(Ri = ri|Ri+1 = ri+1 ∧X ∈ C),
Pr(Ri = ri|Ri+3 = ri+3∧X ∈ C) and Pr(Ri = ri|Ri+4 = ri+4∧X ∈ C). More generally, ifD
is the set of dependencies (e.g., for helices, D = {1, 3, 4} is the natural set of dependencies),
then it is assumed that the probability of interest can be estimated as a function over the
corresponding pairwise probabilities. In [BWW+95, BS97, SBK+98, SBK99], a geometric
average over the pairwise probabilities is used.

The approach outlined above works well if the probabilities are estimated from a database
representative of the types of coiled-coil structures that are to be predicted. However, the
databases are heavily biased towards certain types of coiled coils. In [BS97], it is proposed
that the basic method be used to iteratively scan a large database of sequences. Initially,
the known database is used to estimate the required probabilities. Then, each sequence is
scored using the framework described above, and this raw score is converted into a (0, 1)
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probability p of its being a coiled coil. This probability is computed by fitting a Gaussian to
the score distribution. In each iteration of the algorithm, a sequence is chosen with chance
proportional to its probability of being coiled coil, and if chosen, its predicted coiled-coil
residues will be used in the next iteration of the algorithm to update the probabilities. Single
and pairwise frequencies are estimated in a Bayesian manner, with the initial estimates
providing the prior. The iterative process continues until it stabilizes. This approach has
been successful in identifying coiled-coil-like structures in histidine kinases [SBK+98] and
viral membrane fusion proteins [SBK99], with crystal structures confirming several novel
predictions [ZSMK00, MSK01].

Hidden Markov models (HMMs) have also been applied to coiled-coil recognition [BW95,
DS02]. (For a general introduction to HMMs, see [DEKM00].) These approaches do not
require that a fixed-length window be used, and thus may better predict shorter coiled-coil
segments. Additionally, for coiled coils longer than a particular window length, HMMs can
incorporate longer-range information than window-based approaches. In theory, HMMs
permit modeling of interruptions in the heptad repeat pattern; however, in practice, such
interruptions are severely penalized.

One HMM approach [DS02] builds a model of 64 states. There is a background state 0
corresponding to residues that do not take part in coiled coils. The other 63 states are
denoted by a group number 1–9 and by a letter that refers to the heptad position. The first
four groups model the first four residues in a coiled-coil segment, and the last four groups
model the last four residues in a coiled-coil segment. The fifth group models internal coiled-
coil residues. Each state corresponding to the same heptad repeat position is given the same
emission probabilities. For groups 1–4 and 6–9, transition probabilities are specified to go
from group i to group i + 1, with deviations from the heptad repeat pattern given some
very small (though non-zero) chance. For group 0, self-transitions are allowed, as well as
transitions to states in group 1. For state 5, there are transitions between states within this
group as well as to states in group 6; in both cases, strong preference is given to transitions
maintaining the heptad repeat. For any sequence, the prediction of whether each residue is
in a coiled coil or not is given by the most likely state sequence through the HMM, given
the sequence.

29.5.3 Predicting oligomerization

Natural coiled coils are known to exist as dimers, trimers, tetramers and pentamers. At-
tempts to predict oligomeric states of coiled-coil sequences have focused on differentiating
between dimeric or trimeric coiled coils. In [WA95], amino acid frequencies at each heptad
repeat position are computed for both dimeric and trimeric coiled coils, and normalized
by the frequencies expected by chance. These give dimeric and trimeric propensities for
each amino acid/heptad repeat pair. Each coiled-coil segment is then scored by summing
the logs of the single frequency dimeric (and trimeric) propensities. Finally, the segment is
predicted as dimeric if its dimeric propensity is higher than its trimeric one, and trimeric
otherwise.

An alternate approach exploits pairwise residue correlations [WKB97] in predicting oligo-
merization state. This is a multidimensional scoring approach that uses the framework of
[BWW+95]. Probabilities are estimated from a dimeric coiled-coil database, and then for
1 ≤ d ≤ 7, each subsequence is scored assuming that dependencies exist between residues i
and i + d. The analogous scores are computed using a trimeric database as well. Finally,
a multidimensional score ~s for a subsequence z is converted to a probability of its being a
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dimeric coiled coil by computing:

Pr(~s|z is dimeric) · Pr(dimeric coiled coil)

Pr(~s)
.

These probabilities are estimated by fitting multivariate Gaussians to the distributions of
scores for dimeric coiled coils, trimeric coiled coils and non-coiled coils, and assuming a
prior probability of dimeric, trimeric and non-coiled-coil residues. Trimer probabilities are
computed similarly.

29.5.4 Structure-based predictions

The approaches outlined above have focused on statistical methods for predicting whether
a given sequence takes part in a coiled-coil structure. There has also been work on pre-
dicting the high-resolution atomic structures of model coiled-coil systems using molecular
mechanics. The earliest such attempts include [ZH93, VKBS94, DB94]. In [VKBS94], a
hierarchical procedure is described to predict the structure of the GCN4 leucine zipper; a
backbone root-mean-squared deviation (RMSD) of 0.81 Å is obtained when predicting the
dimeric GCN4 leucine zipper. In [DB94], dimeric and tetrameric variants of GCN4 are
considered, and an RMSD of 0.73 Å is obtained for residues in the dimerization interface.

The coiled-coil backbone can be parameterized [Cri53], and [HTK95] show how to exploit
this parameterization in order to incorporate backbone flexibility in predicting structures.
Coiled-coil backbones can be described by specifying the superhelical radius R0, the su-
perhelix frequency ω0, the α-helical radius R1, the helical frequency ω1, and the rise per
amino acid in the α-helix d. The heptad repeat fixes ω1 to be 4π/7 radians per amino acid,
so that seven residues complete two full turns relative to the superhelical axis, and place
every seventh residue in the same local environment. Additionally, it may be assumed that
the helices making up the coiled-coil are regular and symmetric, and so d can be fixed to
be the rise per amino acid of a regular α-helix (1.52 Å) and R1 can be fixed to be the
Cα radius of a regular α-helix (2.26 Å). The remaining parameters can then be varied to
enumerate backbone conformations. Side chains are then positioned on these backbones
via energy minimization. This approach has resulted in predictions with root-mean-square
deviation from crystal structures of less than 0.6 Å when considering hydrophobic a and d

position residues for three GCN4 variants (2-stranded, 3-stranded and 4-stranded). Addi-
tionally, a novel coiled-coil backbone consisting of a right-handed superhelical twist and an
11-mer repeat has been designed using the parameterized-backbone approach [HPT+98].
A parameterized-backbone approach has also been used to predict the hydrophobic dimer-
ization interface of six designed heterodimeric coiled coils [KMTK01], as well as to predict
the differences in stabilities of these constructs. In this approach, for each backbone, all
near-optimal packings of side chains are identified, and these structures are then relaxed
via energy minimization [BBO+83] to find the minimum energy backbone and side-chain
conformations.

29.5.5 Predicting coiled-coil protein interactions

As outlined above, effective sequence-based prediction methods exist for recognizing single
helices that take part in coiled coils. Since coiled coils are made up of two or more helices
that interact with each other, a natural next step in predicting their structures is to try
to predict which helices are interacting with each other. Since these helices may be in
different protein sequences, this begins to address the problem of predicting protein-protein
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interactions. This is an important problem as protein-protein interactions play a central
role in many cellular functions. Furthermore, the difficulty of computationally predicting
protein structures suggests a strategy of concentrating first on interactions mediated by
specific interfaces of known geometry.

Early approaches towards predicting coiled-coil interaction specificity have counted the
number of favorable and unfavorable electrostatic interactions to make some specific predic-
tions about the nature of particular coiled-coil protein-protein interactions [Par77, MS75,
VHB93]; however, it is known that many other factors play a role in coiled-coil specificity
(e.g., [ORK92, LK95, HZKA93]) and thus such simple approaches are limited in their ap-
plicability.

An alternative approach represents coiled coils in terms of their interhelical residue inter-
actions and derives a “weight” that indicates how favorable each residue-residue interaction
is [SK01, FKS04]. Unlike the other sequence-based approaches outlined in this chapter, this
approach uses not only sequence and structural data, but also experimental data. This use of
experimental data is critical to its performance. The approach has thus far been applied only
to predicting partners for helices taking part in dimeric coiled coils. In dimeric coiled coils,
residues at the a, d, e, and g positions form the protein-protein interface [OKKA91, GH95]
(see Figure 29.5). Experimental studies show that specificity is largely driven by interac-
tions between residues at these core positions (e.g., see [VMA+02]). The method further
assumes that considering interhelical interactions among these residues in a pairwise man-
ner is sufficient.7 Based on structural features of the interhelical interface [OKKA91, GH95]
as well as experiments on determinants of specificity (e.g., [ORK92, LK95, VHB93]), the
following seven interhelical interactions are assumed to govern partnering in coiled coils:

aid
′
i, dia

′
i+1, die

′
i, gia

′
i+1, gie

′
i+1, aia

′
i, did

′
i. (29.5)

The prime differentiates the two strands and the subscript denotes the relative heptad
number (e.g., the first interaction, aid

′
i, is between the a position in the i-th heptad of one

helix and the d position in the same heptad of the other helix).
Consequently, each coiled-coil structure is represented as a 2800-dimensional vector ~x,

the entries of which tabulate the occurrences of amino-acid pairs in the above interactions.
Specifically, entry x(p,q),i,j indicates the number of times amino acids i and j appear across
the helical interface in positions p and q, respectively.

Scoring framework. For each possible interhelical interaction, the method needs a weight
w(p,q),i,j that denotes how favorable the interaction is between amino acid i in position p
and amino acid j in position q. A potential coiled coil represented by ~x is then scored by
computing ~w · ~x where ~w is a vector of such weights. Initially this weight vector ~w is not
known; however, these weights should satisfy certain constraints.

Experimental information on relative coiled-coil stability (e.g, the observation that coiled
coil ~x is more stable than coiled coil ~y) is used to constrain the weight vector ~w by requiring
that

~w · ~x > ~w · ~y. (29.6)

Additionally, sequences known to form coiled coils should score higher than those that do

7It is possible to consider three or more amino acids at a time but this would require a larger coiled-coil
database.
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not:

~w · ~x > 0, for all coiled coils ~x, (29.7)

~w · ~y < 0, for all non-coiled coils ~y. (29.8)

These constraints are similar to those seen most often in machine learning settings.

Finally, knowledge about specific weight elements can be directly incorporated. For exam-
ple, say it is favorable to have a lysine in a g position in one helix with a glutamic acid in
the following position e in the other helix, but not favorable to have glutamic acid in both
these positions (i.e., g-e K E is “better than” g-e E E). Then the following should be true:

w(g,e),K,E > 0, w(g,e),E,E < 0. (29.9)

Indexing each constraint with i, the above constraints (equations 29.6–29.9) can be rewrit-
ten using vectors ~z(i), such that ~w is constrained to satisfy ~w · ~z(i) > 0. Including non-
negative slack variables εi to allow for errors in sequence or experimental data, each con-
straint can then be relaxed as ~w · ~z(i) ≥ −εi. The goal is to find ~w and ~ε such that each
constraint is satisfied and

∑

εi is minimized. Trade-offs between training and generalization
error suggest the approach of support vector machines (SVMs) [Vap98, Bur98], in which
the following quadratic objective function (for some constant C) is minimized, subject to a
variation of the previously described set of linear constraints:

1

2
‖ ~w ‖2 +C(

∑

εi)

subject to

~w · ~z(i) ≥ 1 − εi ∀i

εi ≥ 0 ∀i

Differences between this approach and the traditional application of SVMs include con-
straints on specific elements of the weight vector, and constraints about the relative “score”
of different interactions.

This approach has been tested on a near-complete set of coiled-coil interactions among
human and yeast leucine zipper bZIP transcription factors [NK03], and identifies 70% of
strong interactions while maintaining that 92% of predictions are correct [FKS04]. Though
genomic approaches to predicting protein partners have had some success (e.g., [DSHB98,
MPN+99, EIKO99, GBJ+00, RM03, JYG+03, YLL+04]), as have structure-based threading
methods [AR02, LLS02], the coiled coil is the first interaction interface for which these types
of high-confidence, large-scale computational predictions can be made.

29.5.6 Promising future directions

Since secondary structure prediction methods improved considerably by incorporating evo-
lutionary information, the next obvious step in improving recognition of helices taking part
in coiled coil structures is to use homologous sequences. For predicting coiled-coil interac-
tions, however, homologous sequences can show very different interaction specificity [NK03],
and thus it is not obvious how to exploit evolutionary information in this context. Addition-
ally, while methods have been developed for predicting whether a coiled coil helix is likely
to take part in either a dimeric and trimeric structure [WA95, WKB97], there are no meth-
ods for predicting higher-order oligomerization states or for predicting whether the helices
interact in a parallel or anti-parallel manner. Finally, methods for predicting coiled-coil
protein interactions have focused on parallel, 2-stranded coiled coils, and novel approaches
are needed for predicting coiled-coil protein interactions more generally.
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29.6 Conclusions

In this chapter, we have reviewed the basic computational methods used to predict protein
secondary structure, as well as β hairpin and coiled coil supersecondary structures. Of these
problems, secondary structure prediction has been the most widely studied, and almost
all successful methods for predicting tertiary structure rely on predictions of secondary
structure (e.g.,see [ASHR03]). As methods for predicting other types of local structure
improve, they are likely to play an increasing role in tertiary structure prediction methods.
More recently, effective methods for predicting other types of β-structures, including β-
helices [BCM+01]and β-trefoils [MSK+04], have also been developed, and these types of
specialized computational approaches provide a new means for predicting protein tertiary
structure. Finally, protein interactions are also mediated by various well-characterized
structural motifs (e.g., see [PRN02]), and as demonstrated with the coiled coil, a promising
approach for making high-confidence predictions of protein interactions and quartenary
structure is to focus first on interactions mediated by specific, local structural interfaces.
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