P4All: Modular Switch
Programming Under
Resource Constraints

Mary Hogan*, Shir Landau-Feibish”, Mina Tahmasbi
Arashloo+*, Jennifer Rexford”, David Walker*

*Princeton University, “The Open University of Israel, +Cornell University

Traditional switches hinder
Innovation

Fixed
Configuration

v

y

/_

Fixed-function switch

Protocol Independent
Switch Architecture

Programmable
Configuration

v

y

/—

PISA switch

Protocol Independent
Switch Architecture

Intel® Tofino™

PENSANDO

©® BROADCOM

PISA switch

Programming Protocol
Independent Packet Processors

— \ \ Programmable

Configuration

P4 Program *

y

/_

PISA switch

Programming Protocol
Independent Packet Processors

— \ \ Programmable

Configuration

P4 Program ;

y

-Measure
heavy hitters —

-Rate limiting

-ldentify and

mitigate attacks PISA switch

P4 code should be reusable
A

_—

e | P4 Program

P4 code should be reusable
[A

e | P4 Program

P4 Compiler

P4 code should be reusable
A

[— P4 Program

P4 code i1s not reusable

P4 code i1s not reusable

Data structures (e.g., hash tables, count-min
sketch) are valid for a range of sizes

11

P4 code i1s not reusable

Data structures (e.g., hash tables, count-min
sketch) are valid for a range of sizes

P4 requires explicit definition of size (e.q.,
amount of memory used)

12

P4 code i1s not reusable

Data structures (e.g., hash tables, count-min
sketch) are valid for a range of sizes

P4 requires explicit definition of size (e.q.,
amount of memory used)

Switches have very limited resources that are
shared across all program elements

13

P4 code i1s not reusable

Data structures (e.g., hash tables, count-min
sketch) are valid for a range of sizes

P4 requires explicit definition of size (e.q.,
amount of memory used)

Switches have very limited resources that are
shared across all program elements

Commonly used data structures are rewritten
often

14

P4 code i1s not reusable

Data structures (e.qa.. hash tables. count-min

P4 makes it possible to program the
network, but it does not make It easy.

Commonly used data structures are rewritten
often

15

Circular Development
\

—— | P4 Program

Circular Development
[a

e | P4 Program

!

P4 Compiler

Circular Development

[;— P4 Program
Program doesn’t fit (l
P4 Compiler

Circular Development
[:3
Program doesn’t fit (l

u
. — V

Target

P4 Program

er

Program fits

P4All mitigates circularity

P4All mitigates circularity

P4All streamlines development by allowing for reusable
elastic data structures

21

P4All mitigates circularity

P4All streamlines development by allowing for reusable
elastic data structures

Elastic data structures are defined by symbolic values that
stretch or shrink as needed

22

P4All mitigates circularity

P4All streamlines development by allowing for reusable
elastic data structures

Elastic data structures are defined by symbolic values that
stretch or shrink as needed

P4All automatically sizes programs to make optimal use of
available switch resources

23

Outline

Elastic Structures

P4All
Language
Compiler
Evaluation

Ongoing + Future Work

24

Outline

Elastic Structures

25

Protocol-Independent
Switch Architecture

PISA

PISA

[
-
= .
: ‘
(40
| -
(@)
@)
| -
a B

28

PISA

Pipeline Stages

PISA

Pipeline Stages

Pipeline Stages

A VAVAVAVAVAN

Pipeline Stages

A VAVAVAVAVAN

999999

PISA
R FREEEE PR R

The shapes of data structures change
based on the application.

Count-Min Sketch

Count-Min Sketch

Count-Min Sketch

Count-Min Sketch

y
h2(y)
' 1 1 0
hs(y)

Ak kag

Count-Min Sketch

X
1 0 1
Count(x) = 1

Data Plane Caching

Data Plane Caching

Cache of
popular keys

Server cache

Data Plane Caching

Key e [
1 W

Cache of
popular keys

Server cache

Data Plane Caching

Cache of
popular keys

Server cache

Data Plane Caching

Cache of
popular keys

Server cache

Data Plane Caching

Key Value
1 A
2 B
3 C
4 D
Cache of

popular keys

Tracking Key Popularity

Key Value

2 B Key
5 150
3 C
4 D 120 \
Cache of

CMS
popular keys

Tracking Key Popularity

Key Value

1

2

If requests for key > 80, insert into

3

A

Cache of
popular keys

cache

CMS

nR

PISA
10

PISA

PISA
SRNIE B RERRE B BN AR

Resources vs Accuracy

count(x) =
50
‘ 30
:|:| Estimated
count(x) =
80
90

Resources vs Accuracy

Actual S0
count(x) =
50
00
Estimated

count(x) =

60
70

Outline

P4All
Language

Outline

P4All
Language

Symbolic Values

cols =4

Symbolic Values

cols =4
|

register<bit<32>>(4) rowl;
register<bit<32>>(4) row2;

register<bit<32>>(4) row3;

rows =3 -

60

Symbolic Values

cols = ?

T
IR

rows = ? -

Symbolic Values

cols = ?

register<bit<32>>(cols) [rows] cms_rows;
rows = ?

A
| |
symbolic cols;

62

For Loops

For Loops

increment rowl();
increment row2():
increment_row3(); X

04

For Loops

-] [
TR

for (i < rows) {

increment row()[i];

}

For Loops

00

Objective Functions

cols

—
T C

f(cols) = CMS error

Objective Functions

cols

minimize CmS_error;

f(cols) = CMS error

|
| 1
objective cms_error { f(cols) } [::::::::‘::::::::] [::::::::]

68

Outline

P4All

Compiler

P4AlIl Target Specification
Program (resource constraints, etc.)

o
=
>
O
O
3
j=4
)
-

Concrete values Mapping from
for symbolic values -4 program elements to
(P4 Program) pipeline stages

70

P4AlIl Target Specification
Program (resource constraints, etc.)

P4All Compiler

Linear Program (ILP)

I
I
I
I Generate and Solve Integer-
I
I
I

Concrete values Mapping from
for symbolic values -4 program elements to
(P4 Program) pipeline stages

[a

ILP Constraints
e | WU

ILP Objective

f(cols) = CMS error

1

| !
jective cms_error { f(cols) } [::::::::‘::::::::] [::::::::]
Lm3 cm rror; _

P4All Compiller

CMS row CMS row

CMS row CMS row
4 8

4

P4All Compiller

symbolic rows =6 CMS row CMS row

CMS row

CMS row
7

CMS row
8

lgs)

Outline

P4All

Evaluation

P4All Applications

Application Compile Time (s)
CMS 1.8
Key-value store 15.4
Key-value store + CMS 27.9
Switch.p4 0.2
IP forwarding + stateful firewall 0.4
Beaucoup 0.1
Precision 25.7
NetChain 27.9
SketchlLearn 2.4
Conquest 5.8

’r’

ILP Performance

ILP Performance

B Dependency Constraints

Other Constraints
140001 < ~ Resource Constraints
120004 Variables

18000
16000 -

10000 -
8000 -
6000 -
4000 -
2000 -

ILP Components

18000

16000 -
14000 -
12000 -
10000 -
8000 -
6000 -
4000 -
2000 -

ILP Components

ILP Performance

B Dependency Constraints
Other Constraints

« N Resource Constraints

M Variables

216s

Outline

Ongoing + Future Work

31

Ongoing + Future Work

Design representative objective functions

Ongoing + Future Work

Design representative objective functions

Object-oriented programming model

83

Ongoing + Future Work

Design representative objective functions
Object-oriented programming model

Query language abstraction

34

P4All: Modular Switch
Programming Under
Resource Constraints

Mary Hogan, Shir Landau-Feibish, Mina Tahmasbi
Arashloo, Jennifer Rexford, David Walker

mh43@cs.princeton.edu

