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P4 code i1s not reusable

Data structures (e.qa.. hash tables. count-min

P4 makes it possible to program the
network, but it does not make It easy.

Commonly used data structures are rewritten
often
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P4All mitigates circularity

P4All streamlines development by allowing for reusable
elastic data structures

Elastic data structures are defined by symbolic values that
stretch or shrink as needed

P4All automatically sizes programs to make optimal use of
available switch resources
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The shapes of data structures change
based on the application.
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register<bit<32>>(4) rowl;
register<bit<32>>(4) row2;

register<bit<32>>(4) row3;

rows =3 -
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Symbolic Values

cols = ?

register<bit<32>>(cols) [rows] cms_rows;
rows = ?

A
| |
symbolic cols;

62



For Loops



For Loops

increment rowl();
increment row2():
increment_row3(); X

04



For Loops

- ] [
TR



for (i < rows) {

increment row()[i];

}

For Loops
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Objective Functions

cols

minimize CmS_error;

f(cols) = CMS error

|
| 1
objective cms_error { f(cols) } [::::::::‘::::::::] [::::::::]
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ILP Objective

f(cols) = CMS error
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P4All Applications

Application Compile Time (s)
CMS 1.8
Key-value store 15.4
Key-value store + CMS 27.9
Switch.p4 0.2
IP forwarding + stateful firewall 0.4
Beaucoup 0.1
Precision 25.7
NetChain 27.9
SketchlLearn 2.4
Conquest 5.8
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Ongoing + Future Work

Design representative objective functions
Object-oriented programming model

Query language abstraction
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