Experiences with Tracing Causality in

Networked Services

Rodrigo Fonseca, Brown
Michael Freedman, Princeton
George Porter, UCSD

April 2010

INM/WREN
San Jose, CA N £

Which way to Bangalore?

BROWN

Troubleshooting Networked Systems

* Hard to develop, debug, deploy, troubleshoot

* No standard way to integrate debugging,
monitoring, diagnhostics

Status quo: device centric

Load
Balancer (

Firewall

.
.®

Database

[04:03:23 2006] [notice] Dispatch s2...

[04:07:03 2006] [notice] Dispatch s1...

[04:03:24 2006] [notice] Dispatch s3...

3:32-0700] "GET /gal

28 03:55:38 PM fire...
28 03:55:38 PM fire...

28 03:55:39 PM fire...
28 03:55:39 PM fire...

LOG: statement: select oid...
LOG: statement: SELECT COU...

LOG: statement: select oid...
LOG: statement: SELECT COU...

65.54.188.26 - - [20/Aug/200 32-0700] "GET /gal

Status quo: device centric

* Determining paths:
— Join logs on time and ad-hoc identifiers

* Relies on
— well synchronized clocks

— extensive application knowledge

e Requires all operations logged to guarantee
complete paths

BROWN

e Causality Tracking: an alternative

* Many previous frameworks:
— X-Trace, PIP, Whodunit, Magpie, Google’s Dapper...

* Experiences integrating and using X-Trace

=
T\

o

BROWN

Outline

* Tracing causality with X-Trace

e Case studies
— 802.1X Authentication Service
— CoralCDN and OASIS anycast service

* Challenges

* Conclusion

V-
T\

o

BROWN

 X-Trace records events in a distributed /\
execution and their causal relationship \/

* Events are grouped into tasks

— Well defined starting event and all that is causally
related

* Each event generates a report, binding it to
one or more preceding events

* Captures full happens-before relation

7
9. 2=
B

oo BROWN

X-Trace Output

HTTP
Client

* Task graph capturing task execution

— Nodes: events across layers, devices
— Edges: causal relations between events

Basic Mechanism

g n
HTTP@ [T, al L HTTP [T, g (HTTP
Client - Proxy "\ Server
[T, a] ; h m
TCP 1 /Tcp1 X-Trace Report
Start _End TaskiD: T
EventID: g
Edge: from a, f I

COlE o
* Each event uniquely identified within a task:
[Taskld, Eventid]

[Taskld, Eventld] propagated along execution path
* For each event create and log an X-Trace report
— Enough info to reconstruct the task graph

IEIIE BROWN

X-Trace Library API

LD

7
— =
S

m
Q|

D

Handles propagation within app
Threads / event-based (e.g., libasync)
Akin to a logging API:

— Main call is logEvent(message)

Library takes care of event id creation, binding,
reporting, etc

Implementations in C++, Java, Ruby, Javascript

m BROWN

* Tracing causality with X-Trace

e Case studies
— 802.1X Authentication Service
— CoralCDN and OASIS anycast service

* Challenges
* Conclusion

=
T\

o

BROWN

802.1X Authentication Service

Authenticator Auth Server ldentity Store
Client e.g. Acc. Point RADIUS eg LDAP
RAD/US LDAP
Over UDP
. Identlﬁed 5 common authentication issues from
vendor logs

 Added a few X-Trace instrumentation points sufficient
to differentiate these faults

* Introduced faults in a test environment

BROWN

802.1X Authentication Service

* Instrumentation was easy:
— Nested invocations

— No in-task concurrency
— Extensible protocols (RADIUS, LDAP)
— Modular, request-oriented server software

=
T\

o

BROWN

802.1X Example Faults

* Misconfigured Firewall: no LDAP

87B5AC89
Label: Drop
Firewall
ts: 0.381

BC49BF46
Label: PREOP
OpenRadius-0
ts: 0.379 2.000s
345F 3808

00000000 Label: TIMEOUT
Label: PREOP OpenRadius-0
JRadius ts: 2.379

ts: 0.000 4A239FB5

Label: TIMEOUT
JRadius
ts: 2.008

BROWN

802.1X Example Faults

* Misconfigured Firewall: no LDAP
 Miscalibrated Timeout Value

E26FC313 974D01CA

Label: LDAP PREOP 3.002s . Label: LDAP POSTOP
Sun Directory Server 5 Sun Directory Server 5
0447s ts: 0.447 ts: 3.449
3A2C3623 \ B569AD02
é—;be'liqPSEO'; Label: POSTOP
enRadius- | S— .
) _— OpenRadius-0
ts: 0.000 3.012s ts: 3.012

00000000
LLLLL : PREOP

e Key: multiple correlated vantage points
* Can help tune timeout values

LD

e
ol BROWN

CoralCDN and OASIS

* |[nstrumented production deployment

* Heavy use of sampling:
— 0.1% of requests to CoralCDN traced

* Leveraged libasync, libarpc X-Trace
Instrumentation

* Much more complex program flow
— E.g. windowed parallel RPC calls, variable timeouts

* Found bugs, performance problems, clock
skews...

7
9. 2=
B

oo BROWN

CoralCDN

CoralCDN Distributed
HTTP Cache

BROWN

CoralCDN Response Times

* 189s: Linux TCP 100000 i ! T '
Timeout connecting to 10000 :
origin 000 | 189 seconds _ i

. g 100 — b e lield : ‘ . - =

* Slow connection 5 [‘

Proxy -> Client 8 0¥ ;
'E 1 - ¢) E
[I
- Slow connection Sl _‘
Origin -> Proxy 2 i |
0.01 |
: : 0.001 | Slalca00 .
 Timeout in RPC, due to , Status 400
low Planetlab node! B0 b S
slow * ' 100 1000 10000 100000 1e+06 1e+07 1e+08

Object size (bytes)

w2\
-/

/
T

CoralCDN Response Times

+ 189s: Linux TCP 100000 F———— T T
Timeout connecting to 10000 :
origin oo | 189 seconds _]

) g yoo LT 5 A = | s)

* Slow connection 5 ; ‘

Proxy -> Client 8 0¥ ;
% 1 - ¢) E
- Slow connection Sl _‘
Origin -> Proxy 2 i |
0.01 |
: : 0.001 | Slalca00 .
 Timeout in RPC, due to , Status 400+
slow Planetlab node! T
100 1000 10000 100000 1e+06 1e+07 1e+08

Object size (bytes)

CoralCDN Response Times

 189s: Linux TCP 100000 7= i ‘ —r T '
Timeout connecting to 10000 :
origin oo | 189 seconds _]
% : e X + ' 4+ ‘
£ 100 | - : — 3
* Slow connection 5 ; ‘
Proxy -> Client 0¥ ;
§ 1F -
- Slow connection Sl _‘
. . (o] }
Origin -> Proxy " . .
0.01 |
- : 0.001 S R
 Timeout in RPC, due to , Status 400+
- tatus 500
' . . —l . el . el . —l . —l . ——
SlOW Planetlab nOde° 00001100 1000 10000 100000 1e+06 1e+07 1e+08
Object size (bytes)
]
L Label: vespz:fffiorj origin 200 185.906s Label: hmshedEle\li):gsibj7415 bytes
coralwebsry I 4 coral lwebsrv /‘
B
E E B]:--{()1 planetlab?.cs.ui Tesen

ts: 223.558

CoralCDN Response Times

189s: Linux TCP
Timeout connecting to
origin

Slow connection
Proxy -> Client

Slow connection
Origin -> Proxy

Total Coral Processing Time(s)

Timeout in RPC, due to
slow Planetlab node!

100000 - . v :, v — .
10000 >
1000 | 189 seconds)
I e X+ + } ’
100 | o s)
10 - .

Same symptoms, very different

causes
Status 200]
..... EN—— . . Status 300 B
Status 400 -
Status 500
00001 5 2 ad 2 2 o | 2 2 o | al " 2 A
100 J00 10000 100000 1e+06 1e+07 1e+08

Object size (bytes)

2BC24F6C

! i;;//

Outline

e Brief X-Trace Intro

* Case studies
— 802.1X Authentication Service
— CoralCDN
— OASIS Anycast Service

* Challenges

* Conclusion

V-
T\

o

BROWN

Hidden Channels

 Example: CoralCDN DNS Calls

Tasks DNS Resolver

AO-C : i resolve(foo,*) > >

5 @-0-0 L =

C ‘e —
' i /*

DNS ~ ‘ —

resolve A :_

/ \

* |n general: deferral structures
— E.g., queues, thread pools, continuations
— Store metadata with the structure

z= * Often encapsulated in libraries, high leverage
BROWN

Incidental vs. Semantic Concurrency

* Forks and joins tricky for naive instrumentation

@ done(2)

1

@ do(1) do(2)

— Non-intuitive fork

— Incorrect join

BROWN

Incidental vs. Semantic Concurrency

e Extra code annotation fixes the problem
— Manually change parent of do() events

BROWN

Incidental vs. Semantic Concurrency

e Extra code annotation fixes the problem
— Manually change parent of do() events
— Manually add edges from done() to end

el
S
>
=)
[

BROWN
efo

Dealing with Black Boxes

client proxy server

* |deal scenario: all components instrumented
with X-Trace

— Log all events

=
T\

o

BROWN

Dealing with Black Boxes

client proxy server

* Gray-box proxy: passes X-Trace metadata on
— Log events on the client and server
— Layering does this automatically

=
T\

o

BROWN

Dealing with Black Boxes

client proxy server

>

v
* Black box proxy: drops X-Trace metadata
— No X-Trace events on proxy or server
— Can always trace around black box, in client

=
T\

o

BROWN

Outline

e Brief X-Trace Intro

* Case studies
— 802.1X Authentication Service
— CoralCDN
— OASIS Anycast Service

* Challenges
* Conclusion

V-
T\

o

BROWN

Revisiting Troubleshooting

Device-centric Logs Task-centric traces
 Depends on well sync'd ¢ Does not depend on
clocks clocks (can actually fix
* Joins on ad-hoc them)
identifiers * Deterministic joins on
* Needs all ops logged for standardized ids
complete traces Sample-based tracing
 No modifications to possible
existing code * Requires
5 Instrumentation

o

BROWN

X-Trace Instrumentation

* Instrumenting is easy in most cases

* Afew key libraries go a long way
* Can be done iteratively
— Refining expectations (a la Pip)
e Partial annotation still useful
* Independent instrumentation feasible

 Huge benefits

BROWN

Conclusions

* Simple, uniform task graphs useful in
debugging, troubleshooting, diagnostics

* Instrumentation is feasible

Causal tracing should be a first-class concept in
networked systems

BROWN

Thank you

* More details on paper

e For more info:
WWW.X-trace.net
www.coralcdn.org

BROWN

