
50	 PERVASIVE computing� Published by the IEEE CS n 1536-1268/09/$25.00 © 2009 IEEE

T he Web has revolutionized com-
puting applications. Originally

designed to navigate static documents
using simple browsers and servers, the
Web evolved into a full-fledged appli-
cation platform backed by a myriad of
technologies. This transformation also
fundamentally changed the underlying
network. Without Web applications, we
might not have layer-7 switches, SSL,
or content distribution networks. The
Web’s need for complex, distributed
services similarly changed computer
systems, leading to the “computing
clouds” of large data centers.

The Web’s gradual evolution has
led to complex combinations of many
underlying technologies. While the
ability to flexibly stitch together data-
bases, Ajax, and other technologies has
been empowering, constituent parts
can interact in unforeseen and danger-
ous ways. SQL injection is a canonical
example: a Web service that does not
carefully filter user input is vulner-
able to users writing arbitrary queries
against back-end databases. A clean and
thought-out design would undoubtedly
have been simpler and safer.

We believe that one of the next major
application platforms will be three-
dimensional, online virtual worlds.
They provide a compelling substrate
for shared, networked environments
where people can communicate, shop,
socialize, collaborate, and learn. Appli-
cations of virtual worlds are already
gaining traction. Numerous multi-

player online games such as World of
Warcraft, Everquest, Lineage, and Eve
Online demonstrate that virtual worlds
are a lucrative and powerful platform
for entertainment. An ever-growing
list of blue-chip companies are deploy-
ing their own worlds, as evidenced by
Intel’s and IBM’s research on virtual
worlds, Sony’s Home, and Sun’s Project
Wonderland.

Unfortunately, the early evolution
of virtual worlds is as ad hoc as the

evolution of the Web. Systems have
completely independent constructions,
sharing few architectural aspects and
offering no interoperability. Users gen-
erate content with custom formats, new
world-specific programming languages
are created for programmable behav-
iors, and proprietary protocols run
each world. Systems today are closed,
limited, or do not scale. The problem
of designing open, programmable,
scalable, secure, and extensible vir-
tual worlds remains an open research
problem.

The Meru Project at Stanford Uni-
versity is designing and implementing

an architecture for the virtual worlds of
the future. The hope is that we can avoid
some of the complexities the Web has
encountered by learning how to build
applications and services before they
are subject to the short-term necessi-
ties of commercial development. While
Meru cannot compete with the content
creation of commercial virtual worlds,
it can, like the original World Wide
Web at CERN, investigate basic ques-
tions about system design. By doing so,
we can open the door to a future where
physical sensors in the real world seed
their virtual reflections, users can visu-
ally browse a sea of information, and
virtual avatars convey physical social
cues to bring distance interaction to the
level of actual presence.

Our research suggests that we can
achieve these properties by a careful
architecture of the underlying systems
and using the physical world as analogy
for communication within the virtual
world. By creating a special space zero
that reflects the physical world and by
constraining digital communication
based on real-world physics, we can
bridge virtual and physical environ-
ments at a planetary scale.

Componentizing
a Virtual World System
Virtual worlds today spend signifi-
cant effort to scale to large numbers of
users. Approaches range from sharding
(where different groups of users inhabit
different replicas of the entire world),

Scaling Virtual Worlds
with a Physical Metaphor
Daniel Horn, Ewen Cheslack-Postava, Tahir Azim,
Michael J. Freedman, and Philip Levis

The problem of designing
open, programmable,

scalable, secure,
and extensible virtual

worlds remains an
open research problem.

Spotlight
Editor: Brian Brannon n bbrannon@computer.org

July–September 2009	 PERVASIVE computing� 51

to instancing (where a given world has
multiple copies of a single place), to cus-
tom hardware. For example, World of
Warcraft uses a combination of shard-
ing and instancing. Eve Online, in con-
trast, has a single, always shared world.
Eve Online achieves this by building
custom multimillion-dollar server racks
with battery-backed RAM. To provide
persistence, Eve has one hour of down-
time each day for flushing RAM to a
non-volatile backing store.

Because these worlds are all walled
gardens based on paying custom-
ers, they can architect their systems
around the desired quality-of-service
of their real-time user experience. In
the future, however, when anyone and
everyone might have their own virtual
world, we need more flexible and open
mechanisms. While some worlds might
need to scale to millions of users, there
will be small, private worlds as well.
Small virtual offices for two- or three-
person meetings should be able to run
as a process on a desktop, while virtual
stores could have backing corporate IT
infrastructure.

Second Life presents an interesting
contrast to this approach. The Second
Life world is statically divided into
regions of land called sims. Each sim

is statically assigned to a server (one
server can host multiple sims). This
static allocation provides a strong
minimum quality of service to a given
sim, but as popularity follows a Zipf
curve,1 it results in most computa-
tional resources being idle.

Architecture
The Meru architecture focuses on three
important properties: expansibility, fed-
eration, and migration. Expansibility
means that worlds are not architectur-
ally limited in size, and that expanding
and adding worlds is easy. Supporting
federation recognizes that like the Web,
the universe of worlds will be run by a
multitude of administrative entities on
different computing infrastructures.
Finally, because load in these worlds
can vary greatly both in time and in
space, the ability to efficiently and
quickly migrate load or tasks across the
underlying systems is critical.

Figure 1 shows how the Meru archi-
tecture takes the tasks of a virtual world
server and breaks them into three dis-
tinct services: computation (object
hosts), communication (spaces), and
storage (persistence services). The core
architectural split is between objects,
which perform the computation to sim-

ulate individual object behavior, and
spaces, which are the 3D medium of
communication. A space is a 3D world,
hosted by one or more space servers.
Long-term, highly shared data, such
as meshes and textures, are stored in a
separate persistent storage system.

Object hosts simulate objects. Objects
can move across hosts, and a given object
host can handle objects from many dif-
ferent spaces. Similarly, many different
object hosts can handle the objects of
a single space. On one hand, locality
means that nearby objects should be on
the same or nearby object hosts. On the
other hand, users might wish to control
where their code executes. This tension
between using virtual and physical
resources reflects the common trade-off
between performance and security. The
Meru architecture does not take a posi-
tion on this trade-off, leaving it to indi-
vidual object and object host policies to
decide. A common scenario could be for
an enterprise user to host their objects
on their company’s network, keeping
potentially sensitive data secure, while
connecting to an external space and
maintaining their corporate identity.
This separation allows a user to keep
their data and objects private while still
participating in a public world.

While object hosts store runtime
data, such as object variables, persis-
tence services store the large, read-
mostly data a virtual world needs, such
as textures and meshes. Meru splits
persistence services into a number of
subcomponents. Objects with read-
mostly workloads, such as bitmaps and
meshes, are stored in a content distri-
bution network (CDN), which is opti-
mized for availability, longevity, and
throughput. This offloads most stor-
age from space servers and object hosts,
which no longer require a large storage
component. The CDN may be scaled
using known techniques.2 For other
kinds of persistent data that cannot
be effectively stored in a CDN, such as
financial data with strict ACID require-
ments or objects’ location information
with small and frequent updates, Meru

Object hosts Spaces

Persistence services

Figure 1. The components of the Meru architecture. Object hosts run code for active
behaviors, persistence services store large, static data, and spaces manage the 3D
address space (geometry) of a world.

52	 PERVASIVE computing� www.computer.org/pervasive

Spotlight

Spotlight

allows the object hosts to use their own
persistence solutions.

Space: Communication
Spaces are the key coordinator of the
Meru architecture. A space represents
a virtual world and provides all of the
associated services. First and foremost
among them is communication between
objects: all messages between objects
pass through a space. The space autho-
rizes objects for entry and assigns unique
references for communication. In order
for objects to communicate, a space’s spa-
tial query service must introduce them to
each other. This dependence on proxim-
ity and introduction is in contrast to the
“default on” model of traditional Internet
communication and can protect against
spam and denial-of-service attacks.

The space is responsible for more than
just communication. It also enforces the
rules of the physical space and ensures a
consistent view of the world is presented
to all objects. The particular rules
enforced depend on the type of world,
but a common case is simple collision
detection and resolution. Providing this
service implies that the space is authori-
tative on some critical, space-specific
state for each object such as location
and mesh collisions.

Finally, a space server can include ser-
vices that it can provide more efficiently.
For instance, by leveraging the location
information it already maintains, the
space can efficiently mix and deliver
per-object audio streams, reducing the
overall cost of an audio chat service.
One current area of our research is to
understand which services need suffi-
ciently fine-grained location informa-
tion, such that incorporating them into
a space server is necessary.

Because spaces clearly play a cen-
tral role in the consistency and per-
formance of a virtual world, a scal-
able design is crucial. An enormous
world is a single space spread across
many separate servers, each of which
needs to communicate with others to
pass messages between objects. Later
in this article, we discuss how Meru

uses the cues and physical limitations
of real-world physics to enable space
communication to scale to enormous
worlds. First, however, we touch on a
special space in the Meru architecture:
the real world.

Interacting with the
Real World: Space Zero
Given this architecture for a virtual
world system, how can we allow real,
physical objects to access and interact
with the virtual world? And conversely,
how can we allow virtual objects and
remote users to query and interact with
objects in the real world? Not only does
such functionality provide compelling
use cases for Meru, it also introduces a
scalability challenge if the real-world’s
virtual mirror is similarly large and
seamless.

Meru reserves a special space with
identifier 0, called space zero. Real-
world objects can register with space
zero, thus advertising their presence
and location in the real world to users
of the virtual world. Placing virtual rep-
resentations of physical objects in space
zero provides an elegant way for users
to query and interact with the physical
world. The same fundamental services
provided by any virtual space are also
provided by space zero: authorization,
introduction, communication, and spa-
tial querying.

As an example of how this mirror
world could be used, consider a user
of space zero walking down a (real-
world) city street. That user’s smart-
phone might register an avatar in space
zero, continuously updating its position
via GPS. Shop owners might register
objects for their stores, also providing
their location. Because the world is
real-time, shop owners can advertise
current specials with virtual sale signs.
The user can then query for nearby
stores and retrieve a set of descriptions,
filtering for particular types, such as
restaurants. Businesses could even use
per-object sales and custom pricing to
their advantage to gauge better pric-
ing points as they register queries from

the avatars, which could translate into
physical visits. One important point
here is that, just as with the Web, while
virtual worlds could be designed for
human viewing, bots and other auto-
mated objects will comb through their
data to index and search.

This reflection of the entire physical
world into a single space has several
important implications. First, unlike
most other spaces, space zero is governed
by multiple administrative entities—the
nations and states that constitute physi-
cal space—although space zero might
use an overriding logical administrative
entity to assist with federation (analo-
gous to ICANN for virtual worlds).

Second, the services of the space must
seamlessly scale to planetary levels,
including location, query, and commu-
nication services. The sheer flexibility
afforded by virtual world systems is
both enabling and challenging: it allows
objects to break the limits of physical
reality, but also makes it nontrivial to
build a system which is simultaneously
scalable, robust, and reliable. Indeed,
even a smaller-scale virtual space con-
trolled by a single administrative entity
poses an open engineering problem,
due to highly variable object densities
and bursty message load from object
messages.

Therefore, Meru takes cues from the
real world to aid in constructing a scal-
able virtual world system. In the next
section, we discuss how mirroring and
enhancing one constraint borrowed
from the real world enables the Meru
communication architecture to scale,
even while providing sufficient service
to users under worst-case conditions.

Scalable Communication
Using Geometry
In the real world, physical limits con-
strain interactions between objects.
While we can see and hear significant
details about nearby objects, further
objects lose detail and information.
A virtual world renders to a two-
dimensional display with finite infor-
mation. This places a limit on the

July–September 2009	 PERVASIVE computing� 53

Spotlight

amount of information a client needs
to render the world. The same is true
of audio: while there could be many
sounds, an observer has a single audio
stream. While nearby sounds in a sta-
dium or city might be distinguishable,
most simply become part of an underly-
ing din.

Taking these analogies from space
zero suggests that Meru spaces can
exploit geometry to regulate communi-
cation in a virtual environment. Geo-
metric information could be used to
overcome one of the major limiting fac-
tors in modern virtual world systems:
object density. A virtual world can be
distributed across multiple servers and a
geometric mapping exists from a region
of space to a particular server. By lim-
iting the communication rate between
servers based on the size and proximity
geometric regions they cover, the Meru
architecture can bound the input traffic
to every server.

In virtual worlds replete with objects
maintaining perspective cameras reveal-
ing near objects at far greater sizes and
higher resolutions than far objects, geo-
metric distance serves as an interesting
metric by which to control bandwidth
flow. Using this metric, a space server
allocates smaller portions of the avail-
able bandwidth to communicate with
servers managing distant regions, and
larger ones to servers managing nearby
regions. This lets a space server receive
higher-resolution data and more fre-
quent updates from nearby regions as
compared to regions that are farther
away. One implication of this design is
that objects wanting high-bandwidth
communication must be close to one
another in the world.

By maintaining an upper bound on
the communication rate of each server
and prioritizing the traffic according
to geometry, we aim to achieve more
scalability and efficiency than existing
systems.

Benefits of rate limiting
There are several benefits of the rate-
limiting approach described above:

Guaranteed bandwidth.•	 Under load,
we can distribute bandwidth fairly
which, assuming the underlying net-
working is reliable, guarantees some
minimum bandwidth between two
servers as a function of the virtual-
world distance between spaces they
host.
Straightforward scaling.•	 If demand
for bandwidth exceeds supply, more
bandwidth can be added by simply
reducing the area of the world each
server manages while adding more
servers. Each server can still use the
same maximum bandwidth.
Reduced need for over-provisioning.•	
The system can commit to providing
some minimum quality-of-service
between objects. A priori, we can
determine the number of servers nec-

essary to provide this service over a
given world region. In times of low
demand, we can dynamically reduce
the number of active space servers,
but will still know the maximum
needed under load.

We believe that these benefits will
greatly contribute to Meru being able
to reach a planetary scale.

Calculating the
communication rate
To benefit from these effects, Meru
defines a communication fall-off rate,
such that the bandwidth requirements
from the entire virtual world to a server
responsible for a particular region
asymptotically approaches a constant,
irrespective of the size of the world. The
same would be correspondingly true for
communication from that region. One
such fall-off could be that the communi-
cation bandwidth between two objects
falls off in proportion to the cube of their

distances. This fall-off is intuitive for
graphical systems, as distant portions of
a scene can be sampled less frequently
than nearby portions.3 This implies that
an observer can view a static virtual
environment using a perspective camera
obeying a bandwidth limit proportional
to the observer’s speed alone, irrespec-
tive of the size of the environment.

A space server can apply this logic
to dynamic environments as long as
updates to far pixels can be delayed
proportionately to their distance from
the viewer. This property holds true as
long as all objects in the world obey a
fixed speed limit, and it enables regions
of the world to update each other only
with bandwidth proportional to the
inverse cube of their distances. Because
graphics falls naturally into the band-
width limit, the limit is promising for
virtual world communication in gen-
eral. We’re also investigating the effects
of bandwidth limits that fall off faster
(such as Gaussians) to support more
localized effects and those that fall off
slower (such as the slightly superlinear
functions of distance squared) for ser-
vices with relaxed restrictions on rates
of change.

T he Meru project at Stanford seeks
to explore how to build highly scal-

able 3D virtual worlds. Virtual worlds
have been an anticipated medium for
digital communication for a long time,
but the systems of today fall short of
their imagined potential. We believe
that the key insight to making them
achieve this potential is to model them
after the physical world. By leveraging
proximity, virtual and physical cross-
reality, and using highly distributed ser-
vices, we believe we will be able to build
highly scalable virtual worlds. The real
world is a comfortable metaphor for a
wide range of issues that computer sys-
tems face today, such as security. Our
hope is that not only would applying
this metaphor lead to large, rich worlds,
it will also make them easier to under-
stand and accessible to use.

Geometric distance
serves as an interesting

metric by which to control
bandwidth flow.

54	 PERVASIVE computing� www.computer.org/pervasive

Spotlight

Spotlight

Acknowledgments

This work was supported by generous gifts from

Microsoft Research, Intel Research, DoCoMo Capi-

tal, the National Science Foundation under grants

#0831163 and #0831374 (NeTS-ANET), Stanford

MediaX, and a Stanford Terman Fellowship. None

of the work described in this article reflects the opin-

ions or positions of any of these organizations.

References

	 1.	 A. Bharambe, J. Pang, and S. Seshan,
“Colyseus: A Distributed Architecture
for Online Multiplayer Games,” Proc.
3rd Conf. Networked Systems Design
& Implementation (NSDI 06), Usenix
Assoc., 2006, pp. 155–168.

	 2.	 Akamai Technologies, Inc., www.
akamai.com, 2009.

	 3.	 M. Regan and R. Pose, “Priority Ren-
dering with a Virtual Reality Address
Recalculation Pipeline,” Proc. 21st
Ann. Conf. Computer Graphics and
Interactive Techniques (SIGGRAPH
94), ACM Press, 1994, pp. 155–162.

Michael J. Freedman is an

assistant professor of com-

puter science at Princeton

University. Contact him at

mfreed@cs.princeton.edu.

Philip Levis is an assistant

professor of Computer Sci-

ence and Electrical Engi-

neering at Stanford Univer-

sity. Contact him at pal@

cs.stanford.edu.

Daniel Horn is a PhD stu-

dent in the Computer Sci-

ence Department at Stan-

ford University. Contact him

at danielrh@cs.stanford.

edu.

Ewen Cheslack-Postava

is a PhD student in the

Computer Science Depart-

ment at Stanford University.

Contact him at ewencp@

cs.stanford.edu.

Tahir Azim is a PhD stu-

dent in the Computer Sci-

ence Department at Stan-

ford University. Contact him

at tazim@cs.stanford.ed.

Advertising Sales
Representatives

Recruitment:

Mid Atlantic
Lisa Rinaldo
Phone: +1 732 772 0160
Fax: +1 732 772 0164
Email: lr.ieeemedia@
ieee.org

New England
John Restchack
Phone: +1 212 419 7578
Fax: +1 212 419 7589
Email: j.restchack@
ieee.org

Southeast
Thomas M. Flynn
Phone: +1 770 645 2944
Fax: +1 770 993 4423
Email: flynntom@
mindspring.com

Midwest/Southwest
Darcy Giovingo
Phone: +1 847 498 4520
Fax: +1 847 498 5911
Email: dg.ieeemedia@
ieee.org

Northwest/Southern CA
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@
ieee.org

Japan
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@
ieee.org

Europe
Hilary Turnbull
Phone: +44 1875 825700
Fax: +44 1875 825701
Email: impress@
impressmedia.com

Product:

US East
Dawn Becker
Phone: +1 732 772 0160
Fax: +1 732 772 0164
Email: db.ieeemedia@
ieee.org

US Central
Darcy Giovingo
Phone: +1 847 498 4520
Fax: +1 847 498 5911
Email: dg.ieeemedia@ieee.org

US West
Lynne Stickrod
Phone: +1 415 931 9782
Fax: +1 415 931 9782
Email: ls.ieeemedia@ieee.org

Europe
Sven Anacker
Phone: +49 202 27169 11
Fax: +49 202 27169 20
Email: sanacker@
intermediapartners.de

Advertiser� Page
Percom 2010� Cover 4

Advertising Personnel
Marion Delaney
IEEE Media, Advertising Dir.
Phone: +1 415 863 4717
Email: md.ieeemedia@ieee.org

Marian Anderson
Sr. Advertising Coordinator
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: manderson@computer.org

Sandy Brown
Sr. Business Development Mgr.
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: sb.ieeemedia@ieee.org

AdvertiSER Information
July–September 2009 • IEEE Pervasive Computing

